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A structure of a sounding beam of optical radiation passing through the 
refraction channel at an angle of 90° to the channel optical axis is treated 
theoretically in the paper. An analytical solution has been obtained for the second–
order mutual–coherence function of the sounding radiation field based on the 
Huygen––Kirchhoff method. The conditions have been determined when the maximum 
sensitivity of characteristics of a sounding optical beam to the parameters of refraction 
channel realizes. The wave–front bend of the sounding beam is shown to be large 
enough to ensure an acceptable accuracy when measuring the parameters of the 
refraction channel. The conditions of small aberration distortions of a sounding beam 
are given. 

 

It has been known that at thermal blooming1,2 or 
resonance self–action3,4 of intense optical radiation, there 
occur zones with regular variation of the medium refractive 
index, namely, refraction channels.1–4 The demand for the 
information on characteristics of refraction channels, that is, 
the diameter d

c
 and variation of relative dielectric constant 

of the medium at the axis of refraction channel ε
2
, can 

appear in non–contact metrology of intense optical 
radiation,5–7 calorimetric spectroscopy of substances,8,9 and 
adaptive correction of distortions of intense optical 
radiation.10  

In recent years the optical methods have been widely 
used when sounding the refraction channels. The refraction 
channel is generally sounded by radiation along the optical 
axis.1–7 In this case the refraction channel is considered 
either as the nonaberrational lenticular medium1,2,5–7 or as 
the medium with small aberrations.11 However, such a 
scheme of measurement is not always realized in practice. 
This is connected both with the need for overcoming large 
technical difficulties concerning the input and output of 
sounding radiation in the channel of intense optical 
radiation and out of it and with strong influence of 
aberrations of the refraction channel on the measured 
characteristics of sounding radiation. 

To overcome the above–mentioned difficulties the 
methods of side sounding of refraction channels are 
used.12,13 This scheme was used for measuring the 
concentration and rate of motion of an absorbing matter 
from the variation of intensity of sounding radiation behind 
the point diaphragm (method of thermolens) or the position 
of center of gravity of a sounding laser beam (mirage–
effect). This paper describes the theoretical study of the 
structure of a sounding pulse of optical radiation passing 
through the refraction channel perpendicular to its optical 
axis. 

Without limiting the commonness of statement of the 
problem we consider the following geometric diagram of a 
meter. Let the beam source of sounding optical radiation be in 
the origin of coordinates and emit in the positive direction of 
the axis OX. The field of the sounding radiation source in the 
plane x = 0 is given as the Gaussian beam 
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where E
0
 is the initial amplitude of the sounding radiation; 

a
0
 is the initial radius of a sounding beam; R

0
 is the radius 

of curvature of the wave front in the center of emitting 
aperture; k = 2π/λ; λ is the wavelength of sounding 
radiation in vacuum; ρ = {y, z} is the coordinate transverse 
to the direction of propagation of sounding radiation. 

We consider the case of a cylindrical refraction channel 
with an arbitrary profile of variation of dielectric constant of 
the medium ε

2
(x, ρ) in the limited region close to the optical 

axis of the channel, from x
1
 to x

2
 (⏐x

1
 – x

2
⏐ g d

c
 n x

0
) and 

with the optical axis parallel to the axis OY and intersecting 
the axis OX at the point x = x

0
 and the axis OZ at the point 

z = z
0
. The field from the source of sounding radiation (1) 

close to the channel (x g x
0
) is of the form:
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where  
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To find the sounding radiation field at x > x
0
, that is, 

passed through the refraction channel, we use the Huygen–
–Kirchhoff formula: 
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Since the scales of variation of the refraction channel 
parameters along its optical axis (OY axis) are large as 
compared with the sounding radiation beam radius, then the 
values of dielectric constant of the medium can be  
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considered independent of the coordinate y. In this case the 
second–order mutual–coherence function of the sounding 
radiation beam is written as 
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Having substituted (2) into (3) we calculate the 

integrals over the variables y′ and y′′ 
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where a(x
0
) = a

0
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 is the 

sounding radiation beam radius at the input of refraction 

channel; a
y
(x) = a

0
 (1 – μ)2 + Ω 

–2
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 is the ranning radius 

of the sounding radiation beam along the axis OY; 
S
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the running curvature of the wave front of sounding 
radiation along the axis OY; μ = x/R

0
 is the parameter of 

the beam initial focussing; and, Ω
0
 = κ a

0
2/x is the Fresnel 

number of transmitting aperture. 
Representing the remainder of dielectric constants of 

the medium in (4) as the Taylor expansion, that is possible 
when fulfilling the conditions a
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and having limited by two terms of the expansion (5), one 
can calculate the integrals over z′ and z′′ in Eq. (4). As a 
result, for the second–order mutual–coherence function of 
the sounding radiation beam passed through the refraction 
channel we obtain the simple analytical expression: 
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where 
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shift of coordinate of the gravity center of a sounding beam. 
Analysis of the second–order mutual–coherence 

function of the sounding radiation field (6) shows that 
passing through a limited region with a varying value of 
dielectric constant of the medium results in the additional, 
as compared with propagation in a homogeneous medium, 
curvature of wave–front of sounding radiation along the 
axis OZ (the axis perpendicular to the direction of 
propagation of the sounding radiation beam and optical axis 
of refraction channel). The wave–front deformation, in its 
turn, causes additional change of the radius value of the 
sounding radiation beam along the axis OZ, which increases 
as it propagates in the homogeneous medium after 
intersecting the refraction channel. The characteristics of a 
sounding beam in the direction of the axis OY (parallel to 
the optical axis) do not differ from the corresponding 
characteristics of the beam propagating through the free 
space. The above–mentioned effects manifest themselves only 

at 
∂2ε(x′, z)

∂ z2   
z=0

 ≠ 0, that is, in this case the refraction 

channel possesses the qualities of a cylindrical lens. If 
∂ε(x′, z)

∂ z   
z=0

 ≠ 0, then except the phenomena mentioned, 

there appears an additional wave–front tilt and connected 
with it shift of center of gravity of a sounding beam, that is 
similar to the action of an optical wedge. 
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For a wide beam, in a diffraction sense (Ω
0
 . 1), 

when the change of characteristics of the sounding beam 
because of diffraction effect can be neglected, the running 
values of the radius and curvature of the beam wave front 
of sounding radiation along the axis OZ are equal, 
respectively 
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It should be noted that for a sounding beam focused  

at a point close to the optical axis of the refraction channel 
(R
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 = x

0
), its influence is minimum: a
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occurs. In the case of a collimated beam (R
0
 = ∞, that is, 

μ = 0) the parameters of a sounding beam have the 
following form: 
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For the sounding beam focused at a point of observation 
(R

0
 = x) the influence of the refraction channel will be 

described by the formulas: 
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From Eqs. (7) and (9) the conclusion should be drawn that 
for measuring the parameters of refraction channels by the 
thermolens method8,9 consisting in the recording of the 
sounding radiation intensity through a point diaphragm on 
the beam optical axis, either a collimated sounding beam at 
(x – x

0
) . R
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, when a useful signal is proportional to 
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or the sounding beam, focused at a point of observation at 
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2, when 
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can be used. The method of the mirage–effect8,9,12,13 based 
on the measurement of the shift of coordinate of the center 
of gravity of a sounding beam 
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depends weakly on the sounding beam parameters. As one 
can see from the above–mentioned expression, the 
sensitivity of these methods increases with the growth in x. 
In contrast to this the method of image overfocussing, 
consisting in recording of the wave–front deformation, is 
applicable when (x – x

0
) <

~

  R
c
. From Eqs. (8) and (10) it 

follows that under these conditions for the collimated beam 
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, and for the focused one S

z
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R
c
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)2. It 

has been known5–7 that the change of the wave–front 
curvature causes the shift of the plane of a sharp image 
relative to the focal plane of lens (overfocussing) by the 
value 
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where F
L
 is the focal length of the receiving lens. 

Consequently, in the considered case of the wide collimated 
beam (8) 
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and for a beam focused at an observation point (10) 
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that is, when measuring the shift of plane of sharp image, 
the use of a collimated beam should be preferable.  

If the refraction channel has the axiosymmetrical 
Gaussian profile of dielectric constant variation 
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it appears that the linear shift of the coordinate of center of 
gravity of the sounding beam equals 
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where Φ(1) = 0.8427; and the focal length of the refraction 
channel is determined as follows: 
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Then for the refraction channel with d
c
 = 10–2 m and 

ε
2
 = 10–5 at the focal length of the receiving lens 

F
L
 = 10 m the value of the parameter R

c
 will be about 

several hundred meters and the shift of the sharp image 
plane will be about some tens of centimeters. Measurements 
of overfocussing Δ of such a value can be performed with 
high precision. When using the expansion (5) it is not 
difficult to show that the influence of aberrations can be 
neglected if 
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The estimates indicate, for the near axial region of the 
refraction channel of the Gaussian profile of dielectric 
constant of the medium, the aberration distortions are few 
in number for all conditions realized in practice. 

Thus, it appears that at side sounding of the refraction 
channels the deformation of wave front of the sounding 
beam is sufficiently large to ensure the acceptable accuracy 
of measurement of the refraction channel parameters. 
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