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Accuracy of assessment of the radial component of the wind velocity vector 

measured with a cw coherent lidar is analyzed in the paper as depending on the 
turbulence of atmospheric air flow as well as on the size of effective scattering volume. 
It is shown that in the case of large signal–to–noise ratio the increase of the 
scattering volume leads to decrease of the measurement error to a level determined by 
the turbulence intensity and by time of averaging the spectrum of photocurrent power. 

 

The advent of coherent Doppler lidars provides a 
considerable scope for study of atmospheric dynamics. At 
present there are a few types of such systems. In particular, 
for measuring wind velocity fields in the boundary layer of 
atmosphere a ground–based cw coherent CO2 lidar was 

created and repeatedly tested in field conditions.1–6 The 
registered lidar returns make it possible to estimate the radial 
component of the wind velocity vector. The use of conical scan 
of a laser beam makes it possible to determine the three 
components of wind velocity vector by fitting these 
estimations to sine function of azimuth angle by means of 
least–square procedure.2 Representativity of such 
measurements is mainly determined by random deviations of 
the estimations of radial wind velocity component. The 
random deviations of wind velocity estimations are determined 
mainly by two factors, namely, dynamic turbulence of the 
atmosphere and own noise of lidar receiving system.3 The last 
factor can be neglected for a high signal–to–noise ratio. 

In this paper the effect of turbulent fluctuations of wind 
velocity as well as a length of scattering volume on the error 
of measurement of radial component of wind velocity by a cw 
coherent lidar is analyzed. 

Let the source of a cw laser radiation with the 
wavelength λ = 10.6 μm be in the plane z′ = 0. Laser beam 
propagating along the z′ axis is focused in the plane z′ = R. 
Radiation is backscattered by aerosol particles drifting with 
the atmospheric air flow. The backscattered radiation is 
collected with the telescope and detected by a coherent 
technique. The current originated at the circuit of 
photodetector has a component js which contains an 

information on velocity of scattering particles. The component 
js is proportional to the complex amplitude of the 

backscattered wave field Us at the plane of photodetector 
 

js = BUs , (1) 
 

where B is the proportionality coefficient. 
By analogy with Ref. 7 we represent the scattered wave 

field at the moment t + t′ as  
 

Us(t + t′) = ∑
j=1

n
 qj exp [2 ik(zj + Vr(zj , t) t′)] , (2) 

 

where the summation is made over the wave fields scattered 
by separate particles, n is the number of particles in the 
effective scattering volume, the length Δz of which (along the 
laser beam axis) is determined by parameters of the  

transceiving system of the lidar; qj = q(zj) is the amplitude of 

the jth scattered wave; zj is the projection of the coordinate of 

jth particle on the z′ axis at the moment t; Vr is the projection 

of the velocity vector on the z′ axis (the radial component of 
wind velocity); and, k = 2π/λ is the wave number. Let us 
assume that in calculating the field Us we can neglect the 

fluctuations of the number of scattering particles, an 
inhomogeneity of optical properties of particles, and variations 
of refractive index along the propagation path. Then two 
factors are left only which will determine the random 
variations of the field Us , namely, the random location of 

scattering particles and turbulence of the air flow. Due to 
turbulence the velocity of flow Vr is a random variable of 

coordinates and time. Nevertheless, the velocity of each of the 
particles moving with the flow can be considered as an 
invariant during the duration of its stay in sensing volume. 
But the velocities of particles differ from one another in 
magnitude randomly. As a result, the distance between 
particles will change with time by a random way. This leads 
to fluctuations of amplitude and phase of the field Us . 

To analyze the statistical properties of scattered light, it 
is necessary to know the statistical moments of the field of 
different orders:  

 

Mmn = E [U ms  U*n
s ] = < U ms  U*n

s > , (3) 

 

where symbol E[...] denotes the ensemble averaging, bar 
denotes the averaging over the position of the particles 
zj ,and angular brackets denote the averaging through the 

turbulent variations of air flow velocity, m, n = 0, 1, 2, ... . 
Let the initial positions of scattering particles zj be of 

uniform probability distribution, and Vr be a stationary and 

statistically homogeneous random field with Gaussian 
distribution of probability density. 

The technique of obtaining different–order moments of 
field Us is given in detail in Ref. 9. 

 

COHERENCE AND INTENSITY CORRELATION OF 
SCATTERED RADIATION 

 

Among the major temporal parameters describing the 
statistics of the field of the scattered wave is the coherence 
function 
 

Γ(τ) = < Us (t + τ) U*s (t) >  (4) 
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and intensity correlation function 
 

Kp(τ) = < ⏐Us (t + τ)⏐2 ⏐Us(t)⏐
2 > – < ⏐Us⏐

2 >2 . (5) 

 
Having substituted Eq. (1) into Eq. (4) and averaging we 
obtain7 
 

Γ(τ) = < ⏐Us⏐
2 > exp [2 iκ <Vr> τ – 2 κ2 σ2

r τ
2] , (6) 

 

where < ⏐Us⏐
2 > = (n/Δz) ⌡⌠

0

∞

 dz′ q2(z′) is the mean 

intensity of the scattered wave field; < Vr > and σr
2 are the 

mean value and the variance of the radial component of 
wind velocity, respectively. 

When deriving the formula for Kp(τ) on the basis of 

Eqs. (2) and (5) it is necessary to average the functional of 
the velocity difference Vr(z′) – Vr(z′′), whose probability 

distribution, as known from Ref. 8, generally is different 
from the Gaussian one. Nevertheless, for rough estimates 
the assumption on Gaussian distribution of this difference 
can be used and, as a result, for Kp one can obtain the 

formula 
 

Kp(τ) = < ⏐Us⏐
2 >2 ⌡⌠ ⌡⌠ 

0

∞

dz′ dz′′ Qs(z′) Qs(z′′) × 

 

× exp {– 4σ2
r κ

2[1 – κr(z′ – z′′)] τ2} , (7) 

 

where Qs(z′) = q2(z′)/⌡⌠
0

∞

 dz′ q2(z′) is the function 

describing the spatial resolution, κr(z′ – z′′) = <[Vr(z′) –

– <Vr>][Vr(z′′) – <Vr>]>/σ
2
r is the correlation coefficient 

of the radial component of wind velocity. 
In line with the Refs. 5 and 6 the function Qs(z') can 

be represented as 
 
Qs(z′) = {πκa2

0[(1 – z′/R)2 + z′2/(ka2
0)

2]}–1 , (8) 
 

where a0 is the initial radius of a laser beam in the plane 

z′ = 0. The expression for effective length of the sensing 
volume Δz which is defined by the formula  

Δz =⌡⌠
0

∞

 dz′ Qs(z′)/Qs(R) under condition ka0
2 . R is reduced 

to5,9 
 

Δz = 
λ
2 

R2

a2
0
 . (9) 

 

From whence it follows that the length of sensing volume 
depends on the focusing length of a beam R. 

Having determined the integral time of coherence τc 
and the integral temporal scale of intensity (power) 
correlation τp of scattered wave field as 
 

τc = ⌡⌠
0

∞

 dτ ⏐Γ(τ)⏐2 / < ⏐U2
s⏐ >2 (10) 

 

and 

 

τp = ⌡⌠
0

∞

 dτ Kp(τ)/< ⏐U2
s⏐ >2 , (11) 

 

from Eqs. (6), (10) and (7), (11) we obtain respectively 
 

τc = 
1

2 π
 

l
2σr

 (12) 

 

and 
 

τp = 
1

2 π
 

l
2σr

 ⌡⌠ ⌡⌠ 
0

∞ dz′ dz′′ Qs(z′) Qs(z′′)

1 – kr(z′ – z′′)
 . (13) 

 

When comparing Eqs. (12) and (13) it is clear that τp > τc . 
This is a consequence of the non–Gaussian statistics of the 
wave field scattered by aerosol particles suspended in a 
turbulent flow (⏐ Γ(τ) ⏐2 ≠ Kp(τ) at τ ≠ 0).7 When the size 

of the scattering volume Δz is much larger than the outer 
scale of turbulence LV (Δz . LV), in Eq. (13) we can take 

kr ≈ 0. As a result, we have: τp ≈ τc , that is, in this case the 

process under study is of Gaussian statistics.  
As a rule, in practice the opposite condition Δz n LV 

is realized. Then, setting in Eq. (13) 1 – kr(z′ – z′′) = 

= 0.92εT
2/3 ⏐ z′ – z′′ ⏐2/3/σr

2 (Ref. 10), where εT is the 

dissipation rate of turbulent energy and using Eq. (8) under 
condition R n ka2

0, we obtain 
 

τp = τc 1.4 σr (εT Δz)–1/3 . (14) 
 

At σr = 1 m/s and λ = 10.6 μm the coherence time τc 

equals 1.5 μs. If εT = 10–2 m2/s3 and Δz = 10 m, then, 

according to Eq. (14), τp is three times greater than τc. 
The estimates of radial component of flow velocity VD 

and Doppler frequency shift fD are related by the simple 

equation  
 

VD = 
λ
2 fD . (15) 

 

The Doppler frequency shift can be determined from the 
power spectrum of photocurrent W(t, f). 
 

POWER SPECTRUM OF PHOTOCURRENT 
 

Let us use the finite Fourier transform and represent, 
taking into account Eq. (1), the measured (averaged) power 
spectrum of photocurrent as 
 

W(t, f) = 
⏐B⏐2

m ts
 ∑
j=1

m

 ⏐ ⌡⌠
–ts/2

ts/2

 dt′ Us(tj + t′) e–2πift′⏐2 , (16) 

 

where m is the number of isolated spectra (unsmoothed 
estimates) measured during the integral time t0 , ts is the 

time for measuring a single spectrum (respectively, 
t0 = mts), and tj = t + [j – (m + 1) / 2]ts . The time ts for 
measuring a single spectrum will be considered as far 
exceeding the time of power correlation of the receiving 
signal τp (ts . τp). 

Due to setting the Gaussian distribution of probability 
density for radial velocity, the expression for ensemble 
averaged spectrum from Eqs. (2) and (16) takes a form  
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E[W(f)] = P
–

 
λ
2 

1

2π σr

 exp 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

– 
( )λ

2 f – <Vr>
2

2 σ2
r

 , (17) 

 

where P
–

 = ⏐ B ⏐2 < ⏐ Us ⏐
2 > is the mean photocurrent 

power. 
When sounding a wind velocity in the atmospheric 

boundary layer by a ground–based Doppler lidar, as usual, 
the measurement time t0 is within the range of ∼1–50 ms 

(Ref. 2), that is, far shorter than the correlation time of 
wind velocity fluctuations τV ∼ 5–20 s.10 That is why when 

deriving the formulas for spectrum moments of higher orders 
from Eq. (16), the velocity Vr can be considered as time–

independent (the approximation of "frozen turbulence"). 
Taking into account the inequalities ts . τp and 

τV . t0 we can obtain from the Eqs. (2), (16), and (17) the 

next formula for the square of relative error of the spectrum 
estimate ε2

w = E[W 2]/(E[W])2 – 1 at the frequency 

f = (2/λ)< Vr >, 
 

ε2
w = (A – 1) + 

1
m A , (18) 

 

where 
 

A = ⌡⌠ ⌡⌠ 
0

∞

dz′ dz′′ Qs(z′) Qs(z′′) / 1 – kr
2(z′ – z′′) . 

 

When the length of scattering volume is large 
(Δz . LV) we can assume, that the ratio Δz/LV → ∞ holds 

and take kr ≈ 0 in Eq. (18). As a result, we obtain the 

formula εw ≈ 1/ m describing the error of measurement of 

spectrum of Gaussian random process.11 In this case, the 
increase of the number of degrees of freedom nd = 2m 

enables one to perform the averaging of measurement error 
of W(f) to the wanted magnitude. In a general way the 
increase of nd can reduce the error εw only down to the 

level determined by the ratio Δz/LV . Thus, with increasing 

the ratio Δz/LV and the number of degrees of freedom nd 

the error in spectrum estimate decreases and, hence, the 
accuracy of determining the mean velocity < Vr > increases. 

 
ESTIMATE OF RADIAL COMPONENT OF WIND 

VELOCITY 
 

Of all the known methods of determining the Doppler 
frequency shift from measured spectrum W(t, f) we use the 
formula for the first–order random moment of frequency 
 

fD(t) = 
1

P(t) ⌡⌠
–∞

+∞

 df f W(t, f) , (19) 

 

where 
 

P(t) = ⌡⌠
–∞

+∞

 df W(t, f) (20) 

 

is a measured power of photocurrent. Having substituted 
Eq. (16) into Eq. (20) we can obtain 
 

P(t) = ⏐B⏐2 t–1
0  ⌡⌠

–t0/2

t0/2

 dt′ ⏐Us(t + t′)⏐2 . (21) 

 

Taking into account the condition t0 . τp for the 

relative variance of measured photocurrent power σP
2 = 

= E [P2] / (E [P])2 – 1 from Eqs. (21), (7), and (11) we have 
 

σ2
P = 2τp / t0 . (22) 

 

For τp = 2.5 μs and t0 = 50 ms the value σP equals 0.01. 

Thus, in Eq. (19) within negligible error we can put 
 

P ≈ E[P] ≡ P
–

 . (23) 
 

From Eqs. (2), (15), (16), and (19), in view of Eq. (23), 
we have unbiased estimate of velocity 
 

E[VD] = <Vr> . (24) 
 

For the variance of estimate of the mean radial 
component of wind velocity σD

2  = E [ VD
2  ] – < Vr >

2 from 

Eqs. (2), (15), (16), and (19) after rearrangement, taking 
into account the conditions τV . t0 and ts . τp , we obtain 

 

σ 2
D = σ2

r ⌡⌠ ⌡⌠ 
0

∞

dz′ dz′′ Qs(z′) Qs(z′′) kr(z′ – z′′) + 

+ 
λ σr

8 π t0
 ⌡⌠ ⌡⌠ 

0

∞

dz′ dz′′ Qs(z′) Qs(z′′) ⎣
⎡

⎦
⎤1 + kr(z' – z")

1 – kr(z' – z")
 . (25) 

 

The first term in the right–hand part of Eq. (25) 
represents the variance of radial component of wind velocity 
averaged along laser beam axis  
 

V
–

D = ⌡⌠
0

∞

 dz′ Qs(z′) Vr(z′) . (26) 

 

The second term in Eq. (25) σa
2 owes its origin to 

imperfect averaging the photocurrent power fluctuations due 
to finiteness of the spectrum measurement time t0. This term 

can be considered as a measure of statistical uncertainty 

(rms error) in measuring the parameter V
–

D  
 

σ2
a = E[(VD – V

–
D)2] . (27) 

 

In the limiting case Δz/LV → ∞ , setting in Eq. (25) kr ≈ 0, 

we obtain12 
 

σ2
a = λ σr / (8 π t0) . (28) 

 

To estimate the rms error σa in the case Δz n LV , we 

use the formula 
 

σa = σr 0.2 λ(εT Δz)–1/3 t–1
0  , (29) 

 

which is obtained as a result of the use in second term of 
Eq. (25) the approximations 1 + κr(z′ – z′′) ≈ 2 and  

1 – kr(z′ – z′′) ≈ 0.92 εT
2/3 ⏐ z′ – z′′ ⏐2/3/σr

2 and integrating 

it with respect to variables z′ and z′′. For λ = 10.6 μm, 
σr = 1 m/s, εT = 10–2 m2/s3, t0 = 50 ms, and Δz = 10 m,  
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according to Eq. (29), σa ≈ 0.01 m/s. This value is less than 

the resolution of the measured velocity ∼ λ/(2ts) 

(ts = 50 μs) by one order of magnitude and it can be 

neglected. Thus, we can put VD ≈ V
–

D. 

Having neglected in Eq. (25) by the second term and 
using the condition ka0

2 . R we obtain for σD
2  

 

σ 2
D = σ2

r 
1
Δz ⌡⌠

0

∞

 
dz′ κr(z′)

1 + (π / 2)2(z′/Δ z)2 . (30) 

 

It follows from Eq. (30) that with increasing Δz the 
variance σD

2  decreases monotonously. If we specify the outer 

scale of turbulence by the formula LV = ⌡⌠
0

∞

 dz′κr(z′) then 

under condition Δz . LV the denominator of the integrand 

in Eq. (30) can be taken as unity. As a result, we have 
 

σ 2
D = σ2

r LV / Δz . (31) 
 

The square of the spectrum width can be determined as 
the central second–order random moment of frequency 
 

Δf 2(t) = 
1

P(t) ⌡⌠
–∞

+∞

 df [f – fD(t)]2 W(t, f) . (32) 

 

This parameter being ensemble–averaged and scaled in 
accordance with Eq. (15), and expressed in terms of 
velocity as σs

2 = (λ/2)2E [Δf 2] is related to σr
2 and σD

2  by 

the simple equation 
 

σs
2 = σ2

r – σ 2
D , (33) 

 

where σD
2  is described by the formula (30). 

In the case of small scattering volume (Δz n LV), we 

can put in Eq. (30) κr(z′) = 1 – 0.92 εT
2/3 ⏐ z′ ⏐2/3/σr

2 and 

perform the integration with respect to variable z′. As a 
result, for effective spectrum width we have 
 

σs = 1.16 (εT Δz)1/3 . (34) 
 

For εT = 10–2 m2/s3 and Δz = 10 m it follows from 

Eq. (34) that σs = 0.54 m/s. Since with increasing Δz the 

parameter σD
2  tends to zero, as it is evident from Eq. (31), 

and σs tends to σr. 

Consider a rms deviation of the measured velocity VD 

from the real instantaneous velocity Vr at the moment t at 

the point z′ = R: ΔVD = <(VD – Vr(R))2>. Having used 

the formula (26) for VD and taking into account the 

condition ka0
2 . R it can be shown that ΔVD coincides with 

σs . Thus, if Doppler frequency shift is estimated by 

Eq. (19), the mean square of the effective spectrum width is 
defined as the variance of errors of measuring the 
instantaneous velocity Vr(R). It follows from formulas (30) 

and (33) that the accuracy of determining the mean velocity  

< Vr > increases with increasing the length of scattering 

volume. In contrast to this, the accuracy of measurement of 
instantaneous velocity at a point Vr(R) decreases as the 

sensing volume length increases. 
 

CONCLUSION 
 

In this paper the analysis of accuracy of measuring a 
wind velocity by a cw Doppler lidar is performed for the 
case of large signal–to–noise ratio (SNR). It is shown that 
the estimate of the velocity by the use of Eqs. (19) and (15) 
may be considered as the radial component of wind velocity 
averaged over sensing volume (located at the point z' = R 
along the laser beam axis) to a high accuracy. Therefore, 
random deviations of the velocity estimates VD from the 

mean radial component of wind velocity < Vr > are 

determined by the effect of large–scale turbulent vortexes 
of sizes l > Δz. At the same time, the error of measuring the 
instantaneous velocity at a point Vr(R) is determined by 

turbulent variations of air flow caused by small–scale 
vortexes l < Δz. Generally, under arbitrary signal–to–noise 
ratios, the error of estimate of wind velocity will depend, in 
addition, on the SNR, integral time of measurement t0, and 

the way of processing the signal received. 
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