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We consider the shape distortions of narrow–band pulse signals during their 
propagation in an underwater acoustic channel. It is shown that this distortion is 
mainly determined by appearance of additional contribution to quadrature 
components. The contribution amplitude is connected with both a shape of emitted 
signal and channel parameters, namely, frequency dependence of attenuation. 
Additional contribution appearing in an underwater acoustic channel due to dispersion 
is detectable practically for all frequency ranges. The estimations of distortion value 
are presented for sea water as a function of distance and frequency. 

 

In order to obtain the most complete information 
about channel through which a signal propagates, one 
should provide the recording of the signal shape, since 
this shape carries information about distortions which the 
signal obtains in acoustic channel. Such a change in a 
signal shape is usually called dispersive distortions. Inside 
an underwater acoustic channel, the phase dispersion 
(frequency dependence of the sonic speed) is practically 
lacking, whereas the dispersion of attenuation is clearly 
pronounced. 

On examination of narrow–band signals, so–called 
"quasimonochromatic approximation" is usually used. 
Such an approximation reduces to the ignoring the 
dispersion. This approximation is based on the assumption 
that a signal keeps its shape if channel transfer function 
slightly depends on frequency within the signal band. In 
this paper we consider the influence of frequency 
dependence of transfer function modulus within signal 
band on its shape. 

Before proceeding to the shape variation, we first 
discuss the concept of signal shape. Signals used in 
underwater acoustics, waveguide engineering, and so on 
and considered as a time functions are, as a rule, of 
special type. Often, such signals are high–frequency 
oscillations with slowly changing characteristics, such as 
amplitude and phase (or frequency). These are precisely 
the slowly changing parameters, which carry information, 
i. e., can be used for information transfer. 

If spectral band of a signal is small in comparison 
with the carrier frequency, then the rate of variation of 
information parameters is small in comparison with the 
rate of variation of a signal as a time function (with 
carrier frequency). It is common practice to call these 
signals narrow–band ones. 

It is known that to describe such signals of general 
type, suffice is to specify two "slowly changing" real–
valued functions,1 for example, amplitude and phase. In 
this paper we will systematically follow the description of 
signals with using the quadrature components. In the case 
of narrow–band signals, more specifically, signals with 
finite spectrum, this description is equivalent to 
analytical signal,3 however, the real quadrature 
components are used here as a starting concepts, instead 
of envelope and phase. 

Thus, in our description a signal is characterized by 
two "slow" quadrature components modulating the carrier 
frequency cosine and sine: 

f( t) = a( t) cos ω0 t + b( t) sin ω0 t. (1) 
 

Any linear stationary wave channel can be generally 
described with its pulse response, that is, response to the δ–
pulse. In so doing, the propagation of a signal through such 
a channel is described with the Duhamel integral  
 

up( t) = ⌡⌠
–∞

t

 h( t – τ) u(τ) dτ . (2) 

 

Here h(t) is the pulse response,
 
u(t) is the input signal, 

while up(t) is the output one. The pulse responce is the 

Green function of the system, and its Fourier transform (as 
a response to a monochromatic signal) is the system transfer 
function (TF). 

In the case of stationary channel, the spectrum of echo 
signal is connected with the spectrum of sounding signal in 
the following way: 

 
Up(ω) = H(ω) U(ω) . (3) 

 
Let us represent both sounding and echo signals as a 

sum of quadrature components. As a sounding signal, we 
will consider narrow–band amplitude–modulated (AM) 
pulse (the general case is the sum of two such signals with 
relative phase shift of π/2). In the case of amplitude–
modulated signal, the amplitudes a(t) and b(t) in Eq. (1) is 
proportional to each other (it is the property typical of 
amplitude–modulated signals), and one of the quadratures 
may be vanished via appropriate choosing the phase. Hense, 
the sounding pulse we choose in the following form: 

 
U( t) = a( t) cos (ω0 t) , (4) 

 
omitting the initial phase. Here ω0 is the carrier frequency, 

a(t) is the amplitude being the slowly varying time 
function, whose spectrum A(ω) is concentrated near zero. In 
such a case, the spectrum of sounding signal has the 
following form:  

 
U(ω) = 1/2 [ A(ω – ω0) + A(ω + ω0)] (5) 
 

and is concentrated near the frequencies ± ω0. 
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Following the inverse Fourier transformation for echo 
signal as a time function in Eq. (2) and using Eq. (5), we 
derive 

 

up(t) = 1/2 ⌡⌠
–∞

∞

 
 exp (– i ω t) H(ω)[A(ω – ω0) + A(ω + ω0)] dω = 

= 1/2 ⌡⌠
–∞

∞

 
 exp (– i ω t) A(ω) [exp (– i ω0 t) H(ω + ω0) + 

+
 
exp ( i ω0 t) H(ω – ω0)] dω . (6) 

 

Let us represent TF in exponential form: H(ω) = 
= exp(–μ(ω) + iϕ(ω)). Taking into account the conjugation 

conditions H(–ω) = H*(ω), which follow from real–valued 
nature of pulse response and properties of the Fourier 
transformation, we may bring Eq. (6) to the form:  

 

up( t) = 1/2 ⌡⌠
–∞

∞

 
 exp (– i χ t) A(χ) {exp[(– i ω0t) – i ϕ (ω0 + χ) – 

– μ(ω0 + χ)] + exp[ i ω0 t
 + i ϕ (ω0 – χ) – μ (ω0 – χ)]} dχ . (7) 

 

In this form, integrating over frequency is performed 
within spectral band of the sounding pulse amplitude and χ 
is, in fact, the deviation of frequency from the carrier one; 
in other words, χ < ω0 for narrow–band signal. Write the 

echo signal as a sum of quadrature components taking into 
account that echo signal has a delay time. Separating out 
the delay time, we obtain as a result: 
 

up( t) = a1( t) cos (ω0 t – ϕ0) + b1( t) sin (ω0 t – ϕ0) . (8) 
 

Here ϕ0 is the phase of TF at a carrier frequency; from 

Eq. (7) we obtain exact formulas for a1 and b1, which 

express them in terms of spectrum of the sounding pulse 
amplitude:  

a1( t) = 1/2 ⌡⌠ 
 exp [– i χ ( t – τ)] A(χ) [exp [– μ (ω0 + χ) – 

– i ϕ+(χ)] + exp [– μ (ω0 – χ) + i ϕ–(χ)]]
 
dχ , 

b1( t) = 1/2 i ⌡⌠ 
 exp [– i χ ( t – τ)] A(χ) [exp [– μ (ω0 + χ) – 

– i ϕ+(χ)]– exp [– μ (ω0 – χ) + i ϕ–(χ)]] dχ .  
 

Here τ = dϕ(ω0)/dω0 is the group delay and 

ϕ±(χ) = Φ(ω0 ± χ) – Φ(ω0) ± χτ is the remainder of TF 

phase after subtracting the constant and linear over χ terms. 
Denote the expressions in square brackets by Z and V and 
rewrite previous expression in more compact form:  

 

a1( t) = 1/2 ⌡⌠ 
 exp [– i χ ( t – τ)] A(χ) Z(χ) dχ ,  (9) 

b1( t) = 1/2 ⌡⌠ 
 exp [– i χ ( t – τ)] A(χ) V(χ) dχ . (9a) 

 

In the dispersionless case, when there are no 
distortions, but only time and phase shift, V = 0 and Z = 1. 
The distortions appear at Z ≠ const and V ≠ 0. Let us 
analyze explicit expressions for Z and V and reveal the 
essential factors and their behavior depending on the signal 
bandwidth. 

We can draw on the smallness of distortions of a 
narrow–band signal and write the expansion of Z and V in 
terms of χ discarding the high–order powers of χ. Derived 
expressions have the form: 
 

Z(χ) = exp (– μ0) (1 – iγ ϕ" χ3/22) , (10) 

V(χ) =
 
exp (– μ0) ( iγ χ – ϕ" χ2/22) , (10a) 

 

There 
 

γ = 
dμ(ω)

dω
ω=ω0

,    ϕ" = 
dτ(ω)
dω

ω=ω0

,   μ0 = μ(ω0).  

 

The quantity γ has a dimension of time. Being the 
derivative of imaginary part of TF phase, this quantity is 
thereby the imaginary part of the group delay and 
determines the tilt of amplitude–frequency characteristic of 
channel (AFCh). The quantity ϕ" is the first term in ϕ(χ) 
expansion and, in fact, the second derivative of TF phase at 
the point ω0. If γ and ϕ" are equal to zero, then b1 = 0 and 

a1 = e–μ0a(t – τ), that is, output signal is the exact copy of 

emitted one, delayed for the time τ and attenuated by factor 
of e–μ0. 

If these quantities are not equal to zero, but small in 
value, then inphase component in Eq. (9) gains addition 
proportional to the cube of bandwidth. Since the integration 
interval in Eqs. (9) and (9a) is determined by A(ω), that is, 
the bandwidth of sounding signal, and the additional term 
in Z follows the χ3 dependence, we can assume that this 
addition decreases as cubed bandwidth with decreasing 
bandwidth. 

Ignoring the second and higher powers of χ, we obtain 
explicit expressions for quadrature components of a signal 
passed through the channel 

 

a1 ( t) = e–μ0 a( t – τ) , (11) 

b1 ( t) = e–μ0 γ 
da(t – τ)

dt  . (11a) 

 

Thus, in the case of small distortions, the principal 
distortion of a narrow–band signal shape is connected with 
appearance of additional quadrature component. The 
appearance of the second quadrature component results in 
appearance of additional phase modulation in a signal. To 
make visible the phase modulation, we may use the phase 
diagram. 

Let us define the phase diagram as follows. The value 
a1(t) may be plotted on one of the axes of a rectangular 

coordinate system, and the value b1(t) may be plottes on 

another one. As it takes place, time plays the role of 
parameter corresponding to parametric representation of 
obtained curve. Amplitude–modulated pulse has a form of 
portion of a curve passing through the origin of coordinates 
in phase diagram. Occurrence of additional quadrature 
component, which is not proportional to the first one, 
results in forming the signal phase diagram as a closed loop. 
The loop shape depends on predominance of addends in 
Eq. (10a) and shape of emitted signal. So, if the signal 
distortion is connected with the variability of absorption 
coefficient, then the additional quadrature component has a 
form of time derivative of inphase component, and phase 
diagram is shaped like ellipse for sounding pulse close to 
rectangular. As it takes place, the ratio of lobe width to 
lobe length is proportional to 2γΔω. In the case of 
predominance of the second addend in Eq. (10a), the  
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additional quadrature component is proportional to the 
second derivative of initial pulse amplitude and the phase 
diagram has quite a different shape, it allows the visual 
distinction of such cases. 

The phase diagram is especially convenient, because 
it allows a pictorial representation of phase structure of a 
signal. In its turn, it enables us to record such small 
variations, which are not seen in the envelope. So, if in 
the phase diagram the loop width comprises 10% of loop 
length, then the second quadrature component totals, in 
respect of amplitude, about 5% of the first one, whereas 
the variation in the envelope comprises less than 1% in 
such a case. 

Inside an underwater acoustic channel, the 
absorption coefficient has a clearly pronounced frequency 
dependence: the coefficient grows as a squared frequency 
within wide frequency range. Here, we take into account 
only the attenuation caused by the absorption, while the 
scattering and so–called waveguide dispersion can lead to 
extra effects. In approximation under consideration, the 
additions to the attenuation factor, which are determined 
by these effects, are additive. Consider the values of 
distortions caused by absorption. To estimate these 
values, we will use the dependence presented in Ref. 3. 
Figure 1 shows the threshold distance, where the 
contribution due to absorption dispersion to the 
quadrature components is equal to 2 (curve 1) and 50% 
(2), as a function of frequency, for the ratio of signal 
bandwidth to carrier frequency df/f = 0.1. For 
comparison, curve 3 determines the distance, where 
attenuation due to absorption comprises 80 dB at given 
frequency. It seen from the figure that distance, where 
the signal distortions are measurable, occurs for all 
frequencies practically. We choose, by convention, the 
threshold of 2% as a threshold of observable distortions 
(starting from this value, the phase diagram is visually 
different from a portion of a straight line), and the 
threshold of 50% as a threshold of strong distortions, 
when used approximation becomes unsuitable. 
 

 
 

FIG. 1. 
 

We can summarize the above results as follows: AM 
pulse distortions during its propagation through linear 
channel mainly reduce to appearance of additional 
quadrature component reproducing the derivative of inphase 
component of initial pulse, whose amplitude is proportional 
to the tilt of channel amplitude–frequency characteristic. 
The phase diagram corresponding to such a case is shaped as 
a lobe, whose width is proportional to the steepness of pulse 
front and the tilt of amplitude–frequency characteristic of 
channel. In sea water, the distortions caused by the 
frequency dependence of absorption are measurable 
practically in all frequency ranges starting with some 
distance. 

On examination of attenuation dispersion, we use only 
the general properties of transfer function of any linear 
stationary channels, therefore, such distortions occur in all 
these channels: in radio engineering, radio physics, fiber 
optics, acoustics, coherent optics, and so on. 

Importance and measurability of discussed distortions 
in each of these physical systems need to be analyzed 
separately. It is essential as well to have a feasibility of 
coherent operation with a signal (with quadrature 
components). 

In the case of short–wave radio sounding of the 
ionosphere, the effect of attenuation dispersion was 
experimentally observed.4 This effect was found to be larger 
than theoretical estimations and calculations, which took 
into account only absorption. The distortions of modulus of 
transmission coefficient due to dispersion were observed in 
radio engineering lumped circuits as well, where calculated 
values agreed with measured ones. 

In the case of short–wave radio sounding, not the 
absorption, but inhomogeneous structure of reflection area 
contributes mainly to the frequency dependence of TF and, 
consequently, to the signal distortion. Occurrence of 
medium inhomogeneities leads to observed distortion values, 
which are larger than theoretically calculated distortions 
due to absorption. 

Analogous situation can take place in an underwater 
acoustic channel, hence the experimental check on 
distortions values is necessary for acoustic channel. Such 
distortions must be measurable even without regard for 
inhomogeneities and interference effects. 
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