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A brief review is given of theoretical analysis of vibration–rotation spectra of 
nonrigid molecules. The work was done in the Laboratory of Theoretical Spectroscopy 
at the Institute of Atmospheric Optics of the Siberian Branch of the Russian Academy 
of Sciences. Particular emphasis is placed on H2X–type molecules with the large–

amplitude bending vibration and on H3X–type molecules with inversion. 

 

INTRODUCTION 
 
Method of molecular spectroscopy have found a wide 

utility in various areas of knowledge. Vibration–rotation 
(VR) molecular spectra reflect the structure of molecules 
and the pattern of intra– and intermolecular interactions. 
These spectra are extensively used in modern chemistry 
and molecular physics. The study of VR spectra is of 
great importance to the solution of a number of problems 
in astronomy, meteorology, atmospheric optics, etc. 

Nonrigid molecules have attracted close attention 
both from the theoretical and experimental standpoints. 
Interest in this type of molecules derives, on the one 
hand, from their role in nature (it will suffice to mention 
the H2O molecule largely responsible for the infrared 

absorption of solar radiation in the Earth's atmosphere) 
and from a number of interesting fundamental problems 
faced with in the studies of these molecular spectra, on 
the other. 

What molecules must be taken as nonrigid? Among 
these are generally the molecules for which 
approximations based on the solution of the harmonic 
oscillator and rigid rotator problems are liable to break 
down. From this standpoint, virtually all polyatomic 
molecules in the highly excited VR state must be taken as 
nonrigid. For a number of molecules, however, the 
approximations mentioned above fail even with low–lying 
VR states, which is related to one large–amplitude 
vibration or more within the molecule, or else to strong 
interactions between vibrational and rotational motions. 
Among these molecules are, first and foremost, light 
triatomic H2X–type molecules (H2O, CH2, H2S, etc.), 

wherein the H atoms are apt to execute vibrations, quasi–
linear molecules (HNNN, HNCO, HCHO ...), wherein 
the end atom (as a rule, the light hydrogen atom) is in 
large–amplitude motion relative to the linear (or "nearly" 
linear) configuration of the molecule, and H2S2, H2O2 

and N2H2 molecules, etc. 

In this regard the most familiar example is the 
ammonia molecule (NH3) wherein the nitrogen atom 

penetrates through a plane formed by the hydrogen 
atoms. As this takes place, the molecule turns from one 
configuration to another. Other representatives of this 
type of molecules are H3O

+, CH3
+ and SiH3 ... . 

A broad class of nonrigid molecules comprises 
molecules with internal rotation wherein one group of 
atoms is rotating relative to another CH3NH2, 

CH3OH ... ) molecules with ring puckering vibrations 

(O(CH2)3 ... ) . 

Finally, structural nonrigidity of the molecule is an 
intrinsic property of dimers and molecular complexes 
wherein individual molecules are virtually free to move 
relative to each other ((HF)2, (H2O)2, ...). In a number 

of molecules there occur different types of large–
amplitude vibrations. A case in point is the methanol 
molecule, CH3OH, wherein the CH3 group is rotating 

and the end H atom is moving relative to the symmetric 
configuration of the molecule. The intramolecular motions 
are determined by the form of the potential energy 
surface where the minimum is not distinct (for molecules 
with "floppy" bending vibrations, see Figure 1a) or there 
are several minima. The number of minima on the 
potential surface is determined by the number of possible 
molecular configurations realized in the course of a large–
amplitude vibration. By way of illustration Figure 1b 
presents the cross section of the potential surface of the 
molecule of the ammonia type along ρ–coordinate which 
describes the inversion.  

 
 a   b 
FIG. 1. Cross section of potential surface for nonrigid 
molecules of H2O–type (a) and for molecules with 

inversion of NH3–type (b) along the ρ–coordinate for 

large–amplitude vibration  
 

Our interest in nonrigid molecules is primarily due 
to the light H2X or H2X–type molecules found among the 

constituents of the Earth's atmosphere or its pollutants. 
Regular inquiries into the problems involved in the 
interpretation of spectra of those molecules began in the 
late 1970s due to strong support of academician 
V.E. Zuev. 

The paper gives a brief review of investigations 
conducted in the Laboratory of Theoretical Spectroscopy 
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at the Institute of Atmospheric Optics (IAO) of the 
Siberian Branch of the Russian Academy of Sciences.  

 
1. PROBLEMS INVOLVED IN INTERPRETATION OF 

NONRIGID MOLECULAR SPECTRA 
 
The most commonly used analysis of VR molecular 

spectra relies on the effective rotational Hamiltonian H 
with parameters (spectroscopic constants) chosen so as to 
provide the best fit to experimental data.1–7, 45, 46 The 
application of this kind of Hamiltonians to VR spectra of 
nonrigid molecules leads to the following problems: 

1. Spectroscopic constants depend crucially on 
quantum numbers associated with large–amplitude 
vibrations. Figure 2 depicts the behavior of experimental 
data4–7 for centrifugal distortion constants of H2O under 

excitation of a quantum number n = v2. The shaded region 

shows the location of the constants for typical semirigid 
molecules. The tunnel effect exhibited by molecules with 
inversion results in the fact that the rotational structure of 
the energy levels of individual split components tends to be 
different. This manifests itself in essentially different 
spectroscopic parameters relevant to symmetric (s) or 
antisymmetric (a) (relative to the inversion operation) 
components. The difference may be as great as the proper 
values of the constants. This is the case, for instance, with 
the ammonia molecule.8, 9 A dependence of this sort poses 
the following problem of practical importance: In what way 
can the information on the low–lying vibrational states be 
used to predict the rotational structure of the energy levels 
of the high–vibrational states?  

 

 
 

FIG. 2. Vibrational dependence of centrifugal distortion 
constants for H2O. The shaded region shows the 

permissible range of values for these parameters according 
to a conventional scheme. 
 

2. Nonrigid H2X–type molecules in highly excited 

rotational states (with high rotational quantum numbers J 
and K) exhibit abnormal behavior. This shows up in the 
divergence of the commonly used effective Hamiltonians. 
Thus, to fit the energy levels of H2O with Ka ≤ 15 the 

molecular Hamiltonian must incorporate terms which would 
normally correspond to tenth– and twelfth –order 
perturbation theory.4 This introduces large errors into the 
calculated positions of spectral lines. Figure 3 gives 
indication of the spectroscopic information available for 
H2O and depicts the behavior of the radius of convergence 

Rk (with respect to the quantum number K) depending on 

the vibrational state. A standard model of the Hamiltonian 

is useful but only for description of the convergence domain 
for that Hamiltonian (the shaded region). 

 

 
 

FIG. 3. The currently available data for the water 
molecule (shown by horizontal lines) and the behavior of 
the radius of convergence commonly employed for 
prediction of these data by means of the effective 
rotational Hamiltonian Hw.). The shaded region shows the 

convergence domain for this Hamiltonian. 
 

The issues outlined above are essential to the problems 
of atmospheric optics where use is made of spectroscopic 
data banks. The latter inevitably invoke theoretical 
predictions and synthetic spectra. Figure 4 furnishes an 
example of a comparison between positions of experimental 
spectral lines10 for H2O and those predicted by standard 

Hamiltonian models (shown as starred lines). The calculated 
values have been entered into much used spectral data banks 
known as HITRAH and GEISA. This means that limitations 
of currently existing theoretical models may introduce 
serious errors in the interpretation of atmospheric 
measurements. 

 

 
 

FIG. 4. Comparison of experimental absorption line 
positions for H2O reported in Ref. 10 with those listed in 

HITRAN and GEISA data banks. 
 
2. SEPARATION OF THE VIBRATIONAL VARIABLES  

AND THE EFFECTIVE HAMILTONIANS FOR  
NONRIGID MOLECULES 

 
From the above discussion it is apparent that the VR 

Hamiltonian H for a nonrigid molecule is generally 
dependent on the coordinate of a large–amplitude 
vibration designated as ρ to distinguish it from the 
coordinates qj for small–amplitude harmonic vibrations. 

Thus we have 
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H = H(qi, pj = – i ∂ / ∂qj; ρ, J
ρ

 = – i∂ / ∂ρ; Jx, Jy, Jz) . (2.1) 

 
In Eq. (2.1) J

α
 (α = x, y, z) are components of the 

angular momentum operator along the molecular axes 
system. An exact expression for the quantum–mechanical 
operator H (Hougen–Bunker–Johns (HBJ) Hamiltonian) 
was derived in Refs. 11, 12. 

The basic idea of the outlined approach is that (i) the 
transformation of H into the effective Hamiltonian Heff 

must account for all peculiarities of the potential molecular 
function even in zero–order approximation and (ii) no 
expansion in terms of the coordinate of the large–amplitude 
vibration ρ is performed. This means that in the 
transformation scheme  

 
H → H (2.2) 
 
a zero–order approximation Í0 incorporates, in addition to 

the harmonic vibration Hamiltonian Hsmall vib.
0 , the 

Hamiltonian Ílarge vib.
0  for a large–amplitude vibration, i.e. 

H0 = Hsmall vib.
0  + Ílarge vib.

0 , with 

 

Hsmall vib.
0  = 1/2 ∑

j

 ωj ( p2
j + q2

j); 

Ílarge vib.
0  = – μ(ρ) 

ä2

är2
 + V0(ρ) . (2.3) 

 
It is to be noted that should the Hamiltonian H 

exhibit poor convergence in the angular momentum 
operators, a zero–order approximation must involve a term 
for the most complete description of the intramolecular 
torsion–rotation interaction. By a torsion variable is meant 
any one variable that describes a nonrigid vibration. This 
point is considered at length in later sections. 

The transformation of Eq. (2.2) has been much studied 
for normal "semirigid" molecules and rested on the exact 
solution of the problem on a harmonic oscillator. For the 
Hamiltonian Ílarge vib.

0  the exact solution of the problem 

 
Ílarge vib.

0  ψn(ρ) = En ψn(ρ) (2.4) 

 
remains unknown. Because of this, realization of the scheme 
given by Eq. (2.2) calls for special mathematical methods. 
Contact transformations (CT) expressed in terms of 
superoperators derived in Refs. 13–15 are the tool best 
suited for the job. This representation allows CT to be 
performed for any zero–order approximation adopted. 
Following the general CT scheme13–15 the Hamiltonian H of 
Eq. (2.1) undergoes a series of CT to yield: 
 

H
~
 =

 
e– iS H eiS = ∑

n v

 Pvn H
(n) Pvn . (2.5) 

 
If the state for which the effective Hamiltonian is 

constructed is not resonant with other states the transformed 

Hamiltonian 
~
H must satisfy the requirement [

~
H, H0] = 0. This 

is equivalent to 
~
H being diagonal with respect to the principal 

vibrational numbers vj and n. The purpose that is served by 

the transformation of Eq. (2.5) is to eliminate from the 
original Hamiltonian all the terms Pv′n′

 H(n) Pvn linking the 

non–degenerate states (v′n′) and (vn). In Eq. (2.5) 
Pv n = | v><v| × Pn , | v> is the vibrational wave function that 

describes a small–amplitude vibration and Pn are projectors 

on the torsional states. The meaning of the projectors 
depends on whether the spectrum of H0 is non–degenerate 

or marked by degeneracies or quasi–degeneracies. Let us 
consider specific examples of derivation of effective 
Hamiltonians for different types of nonrigid molecules. 

 
A. Effective rotational Hamiltonian for H

2
X–type 

molecules 
 

For these molecules the spectrum of Hlarge vib.
0  = Hbend.

0  

is nondegenerate and Pn are determined by a simple relation 

of the form Pn = | n><n|, where |n> = |ψn>. Transformation 

(2.5) results in the effective rotational Hamiltonian H(n)
rot. for 

each of the vibrational states (v n) = (V) to give: 
 

H( V)
rot.  = E( V) + ∑

x y z

  {B( V)
α

J2
α

 
+
 
 

+  }1
4 τ

( V)
α β γ δ

 J
α 

J
β 

J
γ 

J
δ
 + θ( V)

α β γ δ ε η J
α Jβ 

J
γ 

J
δ 

J
ε 

Jη + ... . 

(2.6) 
 Eq. (2.6) has the same form as the one used for 
semirigid molecules, except that the relations linking the 
spectroscopic constants B, τ, ... with the potential and the 
inertia tensor are essentially different. For example, the 

formula for the major contribution of τ(n) (v –independent) 
to the constant τ(V) is of the form:16

 
 

τ( n)αβγδ=– 2∑
s k

 
B 

αβ
κ

(n s) B 

χδ
κ

(s n)

ω
κ
 + Ω

s n
 – 4 ∑

s ≠ n

 
Bα(n s) Bβ(s n)

Ω
s n

 δαβδχδ. (2.7) 

 

The most essential distinction between our approach 
and well–established concepts1–4 lies in the fact that the 

major contributions to B(n), τ(n), ... via the wave functions 
ψn(ρ) depend heavily on the quantum number n = ν2. For a 

group of the resonating bending–vibrational states (nν) and 
(mν′) the effective Hamiltonian takes the form:  

 

H[n, ν; m, ν′] = 
⎝
⎜
⎛

⎠
⎟
⎞H(n, ν) hn m

ν ν

H.C. H(m ν)
 , (2.8) 

 

where H.C. is the Hermitian conjugate part of the 

Hamiltonian. The form of the operators h
ν ν'
n m is determined 

by the concrete type of resonant interactions, albeit the 

dependence of h
ν ν'
n m on the rotation operators is similar to 

that adopted in the semirigid molecular model.17–19 The 
effective Hamiltonians H can be reduced to an empirically 

reproducible form 
~
H similarly to the semirigid molecular 

model.45, 46, 64 Thus, for the isolated vibrational state (V) 

the Hamiltonian 
~
H(V) is of the form 

 

{ }
~

( ) ( )
,

( ) 2 2 2 2 2V V i j V i j
z z xyW ij ijH H a J J b J J J= = +∑ ∑ . (2.9) 

 

B. Effective Hamiltonian for H
3
X–Type molecules  

with inversion 
 

For molecules of this type the potential function in the 

Schro⋅⋅dinger equation (2.4) has two minima separated by a 
barrier (Figure 1b). The eigenfunctions are either totally 
symmetric: |ψn+> = | n+>, or antisymmetric: |ψn–> = | n–>  
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with respect to the inversion operation. The energies of the 
low–lying inversion states are quasi–degenerate. The 
projectors Pn have the form: Pn = | n+> < n+| + | n–> < n–|. 

Not counting accidental resonances where the inversion mode 
is resonant with other vibrations, the generalized CT technique 
provides transformation of Hamiltonian H of Eq. (2.1) to the 

effective Hamiltonian H(n) for a pair of states20: 
 

H(n) = 
⎝
⎜
⎛

⎠
⎟
⎞Hn+ n+ Hn+ n– 

H.C. Hn– n–
 . (2.10) 

 

To put it differently, the Hamiltonian H(n) describes the 
rotational structure of the energy levels of the two quasi–
degenerate states ( n+, n–), n = 0, 1, ... . The expansion of the 
diagonal blocks Hn+n+ and Hn–n has the form of Eq. (2.6). In 

this case the formulas for B(n), τ(n) are still valid (here n = 0+, 
0–, 1+, ... ). The form of the operators Hnn′ was discussed in 

Ref. 21. In the special case of modest inversion level splitting, 
the nondiagonal part Hn+n– can be eliminated by means of 

further transformation20 so that the Hamiltonian H(n) breaks 

down into two pure rotational Hamiltonians H(n+) = Hn+n+ 

and H(n–) = Hn–n– . 
 

C. Effective Hamiltonian for CH
3
OH–type molecules  

with internal rotation 
 

For the methanol molecule CH3OH the potential 

function V0(ρ) is sinusoidal in shape with a period 2π/3. The 

wave function |ψnσ
> = | n, σ> is characterized by the principal 

torsion number n as well as by the index σ = 0, 1, – 1 
denoting symmetry or periodicity of the wave function. The 

projectors Pn have the form: Pn = ∑
r

 | n, σ> < n, σ|. The 

effective Hamiltonian for a set of the torsion sublevels | n, σ> 
assumes the matrix form: 
 

H(n) = 

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞H0 0 H0  1 H0 – 1 

 H 1 –1 H 1 – 1

H.C.  H – 1 – 1

 .  (2.11) 

 

3. DEPENDENCE OF SPECTROSCOPIC PARAMETERS 
ON VIBRATIONAL QUANTUM NUMBERS 
CORRESPONDING TO "SOFT' BENDING  
VIBRATIONS OR INVERSION MOTIONS 

 

Contrary to conventional formulas for the spectroscopic 
constants (SC) B, D, H adopted in the semirigid molecular 
model developed by Amat, Nielsen et al.1–4 the relations 
derived in this work to link SC ( Â(n), D(n), H(n) and Ê and l 
doublings, etc.) with the molecular force field and inertia 
tensor take into account possible subbarrier tunnelling of the 
X atom in the H3X–type molecules with inversion or 

linearization of the H2X–type molecules. These relations 

depend on the barrier height h via the wave functions ψn(ρ). 

Numerical calculations of the rotational Bz = A and quartic Δ
κ
 

constants for Í2Î are demonstrated in Figures 5 a and b, 

respectively.16,23,24 It is readily apparent from the curves that 
the rotational and quartic constants do depend critically on 
the bending quantum number n = ν 2. Different slopes of the 

curves are attributed to the fact that different values of the 
parameter h governing the barrier height to the linear 
configuration are used in the potentials V0(ρ) adopted in the 

Schro⋅⋅dinger equation. To illustrate the behavior of the 

centrifugal constants for the nonrigid H2X–type molecules 

depending on the mass of the constituent atoms Figure 5c 
shows, as a case in point, the behavior of the quartic constant 
Δk for H2

16O, H2
18O, and D2

16Î, isotopes derived with the 

use of the same value of the potential V0(ρ). The curves make 

it clear that the heavier is the molecule, the weaker is the 
dependence of the centrifugal distortion parameters on the 
bending quantum number ν 2. Figure 5d presents calculated 

relationships for the rotational constant Âz of three nonrigid 

molecules H2O, NH2 and CH2. The barrier h to the linear 

configuration for CH2 is ∼ 900 cm
–1 (see Ref. 22). 

Bending vibration modes introduce special features in the 
formation rules for polyads of resonating vibrational states in 
H2X. Similar polyads occur in any one polyatomic molecule 

wherein there are certain relationships between fundamental 
vibration frequencies. Specifically, for H2O the polyads of 

resonating states form according to the rule 
2ν1 + 2ν3 + ν2 = p = 0 , 1, 2, ... , which follows immediately 

from the fulfilment of the relation ω1 ≅ ω3 ≅ 2 ω2. It has been 

pointed out in the literature that with H2O this rule is 

violated in some instances.28,29 The results of calculations of 
different resonance parameters for H2O (Fermi, Coriolis, etc.) 

are evidence for the existence of different resonances that bear 
no relation to the above conditions.30 Figure 6a, b shows 
relationships between the resonance parameters F0 and Fk for 

Fermi resonance and the vibrational state. It is evident that 
starting with some value of v2 the resonance parameters 

F0(n,.n + 3) and Fk(n,.n + 3), linking vibrational states from 

different polyads of resonating states, become comparable with 
the resonance parameters F0(n,.n + 2) and Fk(n,.n + 2), 

linking states from the same polyad. By this is meant that a 
solution of the inverse spectroscopic problem, i.e. 
determination of SC from experimental data, must take into 
account the effect of the new resonance interactions. 

The problem of evaluation of a relationship between SC 
and vibrational quantum number v2 in H2O also admits of an 

analytical solution found in Refs. 25–27. The dependence for 

SC C(n)
lm appearing in the reduced effective rotational 

Hamiltonian HW of Eq. (2.9) before the operators J2l
z  is 

described by the relation: 
 

C( n)
lm  = C(0)

lm  + (– 1)l ηm [ A( n) – A(0)] (Yn)
l , (3.1) 

 

where the parameters n determine different subsequences in 
HW , and A( n)

 –A(0)
 = γ( n) exp [a( n)] , Yn = W exp {a4 a( n)}. 

The functions γ(n) and a(n) may be expanded in a power 
series as: 
 

γ( n) = γ0 + γ1 n + ... ,  a( n) = a1 n + a2 n
2 + ... . 

 

The relationships arrived at differ from the series 
expansion used for typical molecules and make possible the 
description of the majority of SC for H2O in the (0, v2, 0) ( 

v2 = 0, 1, 2, 3, 4) states with an average accuracy of 2–5%. 

Interestingly, Eq. (3.1) has the advantage whereby the 

operator Δ H(n) describing to a first approximation the change 
in the rotational structure of the molecule with the excitation 
n may be written as 
 

Δ H(n) = [ A( n) – A(0)] × 
 

× 
⎩
⎨
⎧

⎭
⎬
⎫J 2z

1 + Yn J 2z

 + h1 
J 2 J 2z

1 + Yn J 2z

 + h2⎣
⎢
⎡

⎦
⎥
⎤J 2x y,

J 2z

1 + Yn J 2z

 , (3.2) 
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a 

 
b 

 
c 

 
d 

FIG. 5. Calculated (shown by open circles, squares and crosses) and experimental (shown by closed circles) relationships 
for rotational and quartic centrifugal distortion constants of H2O (a, b, and c) and NH2 and CH2 (d) 

 

 
a 

 
b 
 

 
FIG. 6. Calculated dependence of the F0 and Fk parameters of Fermi resonance on the vibrational state. The F0(n, m) and 

Fk(n, m) parametrers describe the interaction between the states with the quantum numbers n and m. 
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To calculate Δ H(n) we need only know six parameters: : γ0, η1, 

η2, a1, a4, and W. 

One of the most fascinating manifestations of 
nonrigidity in the centrifugal distortion of molecules with 
inversion is the experimentally observable difference in the 
rotational structure associated with the symmetric (s) and 
antisymmetric (a) sublevels of a particular vibrational level. 
The relationships derived here for SC take into account (via 
Ψn(ρ)) the dependence of SC on the barrier height h and, in 

the limiting case h → ∞, tend to change to the relationships 
known from the literature for SC of normal semirigid 
molecules. The finiteness of the potential barrier and 
possibility of the X–atom tunnelling across the plane H3 

gives rise to new types of contributions to the centrifugal 
distortion that "suppress" conventional mechanisms 
responsible for the n–dependence of SC. Using the 
approach put forward here, these mechanisms can be 
considered in their own right by lowering h from ∞ to 0, 
which corresponds to a nominally continuous change from a 
semirigid molecule to a rigid one. 

The calculations performed for the NH3–type 

molecules23, 31, 32 do show the occurence of nonequivalence 
of rotational structures as h is lowered while the remaining 
parameters are fixed. 

Let us look at NH3. For this molecule the true value 

of h = hNH3
 ≅ 2 000 ñm– 1 and the curves closely 

approximate the experimental values of the difference  

Da – Ds. The nonequivalence is associated, in physical 
terms, with the fact that the parameters Bs and Ds undergo 
more dramatic changes in comparison with the slightly 

changing Ba and Da (Figure 8) as n rises in the (0, 0, 0, 0), 
(0, 1, 0, 0), (0, 2, 0, 0) and (0, 3, 0, 0) states. 

 

 
 

FIG. 7. The evolution of the differences ΔB = B s – B a 
and Δ D = D s – D a with lowering of the potential barrier 
h in the H3X–type molecule with inversion (closed circles 

and squares illustrate experimental differences for the 
ammonia molecule). 

 

The dominant mechanism responsible for maximum 
changes of Bs and Ds (see Figure 8) is delocalization of the 
N atom in potential wells for the s–states. The calculations 
of |ψn(ρ)|2 show that the probability of the N atom being 

separated from the plane Í3 by a distance of 0.1 Å is an 

order of magnitude higher for the (0, 1s, 0, 0) state than for 
the (0, 0s, 0, 0) state by virtue of the subbarrier tunnelling. 
For the first above–barrier (0, 2s, 0, 0) state this 

probability increases ten times extra and the configuration 
is most likely to be plane. In this regard such configuration 
may be termed a new "equilibrium" configuration. In the 
a–states that mechanism is inoperative, because the 
probability of the plane configuration is zero for all n = v2 

and h. In the n v2 states at n > 2, ψn(ρ) oscillates 

progressively faster, the contributions from different 
configurations to effective inertia moments are averaged and 
the parameters Bs and Ba are bound to come closer in 
magnitude (Figure 8), which is in line with findings of 
Ref. 8, 9. 

For D–parameters the major mechanism is 
decompensation of contributions from the interaction with 
the nearest levels. The contributions from the interaction 
with the upper (Dupper) and lower (Dlower) vibrational 

states of the same mode to the centrifugal distortion are 
opposite in sign. In the conventional theory of semirigid 
molecules (associated with h = ∞) Dupper = const (v + 1) 

and Dlower = const (–v), which results in compensation for 

v–dependence in the major contributions from 
Dupper + Dlower ≅ const. A decrease in h initiates much 

stronger perturbations of the subbarrier s–state 
(particularly the s–level next to the barrier) than the 
relevant a–states. This accounts for the behavior seen in Ds 
and Da which are at their maximum for v2 (Figure 9). 

 

 
FIG. 8. Theoretical dependence of the B and D 
parameters on the energy of the inversion states 

 

 
FIG. 9. The experimental (shown by open circles and 
squares) and calculated (shown by closed circles and 
squares) differences Δ B = Bs– Ba and ΔD = Ds – Da vs. 
the quantum number v2 for NH3. 



V.I. Starikov and Vl.G. Tyuterev Vol. 8, Nos. 1–2 /January–February 2095/ Atmos. Oceanic Opt. 99 
 

 

These deductions are confirmed by similar calculations 
for the Í3Î

+ ion wherein the distribution of inversion 

levels relative to the barrier is somewhar different from the 
one found for NH3 (see Refs. 33–36). In that instance the 

maximum difference in the rotational constants | B s – B a| 
is observed for the ν2 state, whereas the maximum 

difference | D s – D a| occurs for the ground inversion state. 
 

4. GENERATING FUNCTIONS FOR EFFECTIVE 
ROTATIONAL HAMILTONIAN OF H

2
O–TYPE  

NONRIGID MOLECULES 
 

The theory of generating functions has been developed 
because of the need for a highly accurate description and 
prediction of excited rotational states of the water molecule. 
For the ground molecular state the rotational energy levels 
derived from experimental data involve the rotational 
quantum numbers J ≤ 35, Ka ≤ 20 (see Ref. 37). While this 

information has been known since 1976, it was not until 
recently when an adequate theoretical treatment of a complete 
set of the revelant data made its appearance. First and 
foremost this is due to the fact that fitting of the rotational 
energy levels by means of standard rotational Hamiltonians 
loses its physical meaning starting with some value of the 
quantum number K in excess of the radius of convergence for 
this Hamiltonian. The effective rotational Hamiltonian Hrot in 

terms of the generating functions F and χ is of the form 
 

Hrot = F(J 2, Jz) +1/2 {(J 2+ + J 2–)χ( J 2, Jz) +χ (J 2, Jz)( J 2+ J 2–)} 
 (4.1) 
which is equivalent to  
 

H [ J]rot  
=F [ J](Jz)+1/2 {(J 2++J 2–)χ [J](J 2z)+χ [J]( Jz)( J 2++J 2–)}. 

for fixed J. 
The functions F and χ are referred to as generating 

functions for the standard Watson Hamiltonian HW 

(Eq. (2.9)), for their expansion into a Taylor series in the 
convergence domain results in expansion of Hrot whose form is 

identical to Hw of Eq. (2.9) and the expansion coefficients 

reproduce the values of SC for the Hamiltonian Hw . 

The procedure adopted for derivation of the generating 

functions rests on the insertion of the operator h
~
(ρ, J) into the 

zero approximation H large vib.
0  = H bend.

0  to provide a most 

complete description of the bending–rotational molecular 
interaction. In doing so, one has to proceed as follows: 

1) For the Schro⋅⋅dinger equation  

′H 0
ben ψn(ρ) = En ψn(ρ),  ′H 0

ben = – B̂ 
∂2

∂r2
 + V0(ρ) , (4.2) 

 

where B̂ = 
1
π
 ⌡⌠

0

p

 μ(ρ) d ρ and the potential function V0(ρ) is 

chosen so that its form admits of an analytical solution of 
Eq. (4.2). The parameters of the potential function V0(ρ) 

are chosen so as to provide the best reproduction of the 
large–amplitude vibration frequency Ωn0 = En – E0. 

2) The inverse inertia tensors B
α
(ρ) (α=x, y, z) are 

modeled by the functions B
∼

α
(ρ)  

 

B
α
(ρ) → B

∼
α
(ρ) , (4.3) 

 

chosen so that their behavior is qualitatively the same both 

for ρ → π, 0, and B
∼

α
(ρ) and makes possible an analytical 

solution of the equation 
 

{′H 0
ben + h

∼
(ρ, J)} ψn(ρ, J 2, J 2z) = hn( J

2, J 2z) ψn(ρ, J 2, J 2z), (4.4) 
 

where  

h
∼
(ρ, J) = A

∼
(ρ) J 2z + B

∼
(ρ) J 2 , 

 

for the operator hn(J 2, J z
2) and functions ψn(ρ, J 2, J z

2). 

The operators hn and the functions ψn are 

parametrically dependent on the angular momentum 
operators J 2 è J z

2, such as in the Born–Oppenheimer 

equation the potential We and the electron wave functions 

ψe are parametrically dependent on the internuclear 

coordinate operator R. Equation (4.4) is not an eigenvalue 
equation; the only dynamical variable is ρ. The major 
contribution of the effective rotational Hamiltonian to be 
symbolized by F0 to the generating function F may be 

represented in terms of the operators h via the relation (the 
subscript n is dropped): 

 

F0 =
 h( J 2, J 2z) – h( J = 0) = E( J) + γ( J) G( J 2, J 2z) . 

 
The effective rotational Hamiltonian HG based on the 

generating function may be written as: 
 

HG = diag.HG + n.diag.HG , (4.5) 

where  
diag.HG = ∑

i^ 0

 γ( J)
i  G i , n.diag.HG = ∑

r + j≥ 0

 γr j J 2 r { G j, J 2x y}. 

 
Different operator forms for G(J 2, J z

2) are derived 

from the potential V0(ρ) for different representations of the 

functions f(ρ) and ô(ρ) 
 

V0(ρ) = C0 + C1 f(ρ) + C2 ô(ρ) , (4.6) 

 

with the model functions B
∼

α
(ρ) being built by means of the 

functions f(ρ) and ô(ρ). Thus for f(ρ) = 1/ρ2, ô(ρ) = ρ2 
the G operator may be written as39,40 

 

G = 
2

α( J) ( )1 + α( J) J2
z – 1  . (4.7) 

 

The functions E(J), γ(J), α(J) of Eqs. (4.5) and (4.7) admit 
of a series expansion in terms of the operator J 2. For 
instance, 
 

E( J) = E(0) + E(1) J 2 + E(2) J 4 + ... . (4.8) 
 

The series expansions generally exhibit good convergence. 
For f(ρ) = th α(ρ – ρe), ô(ρ) = f(ρ)2 the generating 

function F may be represented as38, 41 
 

F = μ( J)
1  G + 

μ( J)
2  G + μ( J)

3  G2 + ... 

1 + η( J)
1  G + η( J)

2  G2  . (4.9) 

 

The procedure used for the construction of the 
generating function admits of the generalization based on 



100  Atmos. Oceanic Opt. /January–February 1995/ Vol. 8, Nos. 1–2 V.I. Starikov and Vl.G. Tyuterev 
 
 

the insertion in the zeroth approximation of Eq. (4.2) of the 
following terms: 

 

W
∼

M(ρ, J) = ∑
i = 0

M

 w∼ ( J)
i (ρ) J2 i

z  , (4.10) 

 
which involve powers of the operator43 Jz

2. Specifically, for 

the potential V0(ρ) = 
C1

ρ2  + C1 ρ
2 the G operator may be 

expressed in terms of the J–dependent parameters α n
(J) as 

 

G(M) = 
2

α( J)
1

 
⎩
⎨
⎧

⎭
⎬
⎫

1 + ∑
n = 1

M

 α( J)
n  J2 n

z  – 1  , (4.11) 

 
This form of G(M) can be regarded as a generalization of 
the generating G function given by Eq. (4.7). A great 
number of examples offered in Refs. (38–44) demonstrate 
that the employment of the generating functions improves 
the quality of fitting of the experimental data by an order 
of magnitude (relative to the standard deviation χ) as 
compared to the polynomial Hamiltonian. In some 
instances the quality is improved by several fold as 
compared to the Pade–type Hamiltonian. A typical 
example is given in Tables I and II (Ref. 43) that list 
statistical characteristics and maximum uncertainties 
Δ Emax = max |Ecal – Eexp| incurred in the reproduction of 

experimental data on the water molecule. 
 
TABLE I. Standard deviation χ of rotational energies of 

H2O reproduced with different forms of effective rotational 

Hamiltonian (J ≤ 10, and L is the number of variable 

parameters). 
 

Hamiltonian   Vibrational state 

model L (0, 0, 0) (0, 1, 0) (0, 2, 0) (0, 3, 0)

Polynomial HW 15 64 153 104 55 

Pade 
H [2/1; 1/1] 

15 10 35 – – 

Generating 
function HG 

 

15 

 

4 

 

10 

 

11 

 

3.4 

 

Note that fitting was performed up to sextic terms with 
 

χ = 
⎩
⎨
⎧

⎭
⎬
⎫

∑
i = 1

I

 [(Ecal
i  – Eexp

i ) / δi]
2  / ( I – L) , 

 
where δi is the experimental measurement error. In the 

case of unweighted data processing by means of least 
squares fitting the calculation accuracy is characterized 
by mean deviation σ determined by the formula 

σ = Σ / ( I – L), where Σ is the sum of squared 

ddeviations Σ = ∑
i = 1

I

 (Ecal
i  – Eexp

i )2 of the calculated data 

Ecal
i  from the experimental measurements Eexp

i  and I is the 

number of experimental energy levels. 
 

TABLE II. Statistical characteristics and maximum errors 
Δ Emax in description of experimental VR energy levels of 

water molecule43 (sampled data with L designating the 
number of variable parameters) 

 

Characteristics 
Vibrational (0, 0, 0) state, 

121 energy levels up to 
J, K≤10 

 Generating 
function HG 

Polynomial
HW 

Σ ñm– 2
 2.1⋅10– 3

 5.1⋅10– 1
 

σ, ñm– 1
 0.0045 0,071 

Δ Emax, ñm
– 1

 0.013 0.252 

Δ E = |Ecal – Eexp| < 0.010 96 % 16 % 

0.010 < Δ E < 0.015 4 % 7 % 

0.015 < Δ E < 0.050 – 15 % 

0.050 < Δ E < 0.300 – 42 % 

L 13 15 

 
5. THE STATE OF THE ART OF THE THEORY  
AND CALCULATIONS OF VR ENERGIES AND 
SPECTRA OF H

2
O IN THE INFRARED REGION 

 
Water vapor is a major absorbing species of infrared 

radiation in the atmosphere. In the most extensively 
employed spectroscopic data banks HITRAH and GEISA 
H2O is classified as molecule No.1 according to its 

significance for investigations into atmospheric optics. 
This has motivated a stable interest in the theoretical and 
experimental study of H2O spectra (see, for example, 

Refs. 4–7, 47–55 and references cited therein). By now 
the rotational structure of more than 120 bands for some 
ten isotopic species has been found experimentally at 
different values of pressure, optical thickness, 
temperature, and spectral resolution. In addition, 
transitions from superexcited rotational states have been 
measured in flame spectra with T = 3 000 Ê, which made 
possible experimental determination of pure rotational 
levels up to 11 000 cm–1 (Ref. 37), ten times as large as 
the energy of fundamental vibrations and very nearly 
equal to the energy of the potential barrier to the linear 
configuration of the molecule. Due to a large body of 
experimental evidence available and pronounced effects of 
nonrigidity, H2O has become something of a touchstone 

for a great number of models.38–43,48–55,62–63,65 We 
recognize the following historically established general 
avenues of inquiry into the theory of VR spectra of the 
H2O–type nonrigid molecules. 

A. Polynomial model. Starting with classical 
investigations of Amat, Nielsen and Watson et al.1–4,45,46 
a conventional theoretical model has been based on the 
effective Hamiltonian HW . For individual vibrational 

states, HW is pure rotational and has the form of a power 

series expansion of the rotational energy operators in 
terms of the operators of the angular momentum 
components J

α
 (Eq. (2.9)). Flaud and Camy–Peyret17,18 
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extended the model to the interacting resonant states by 
incorporating an explicit form of "resonant blocks" in the 
polynomial form. The majority of papers devoted to 
interpretation and fitting of H2O spectra rely on that 

model. 
As previously noted, the above model is of limited 

utility, the restriction being due to the radius of 
convergence of the power series expansion (see Figure 3). 
The quality of the calculations is degraded drastically as the 
quantum numbers Êà and v2 are increased. 

B. Rigid bender, semirigid bender, and nonrigid 
bender models. Because the approximations used in Model 
A were not adequately substantiated from the physical 
standpoint it was suggested that the idea of the effective 
rotational Hamiltonian be abandoned.47–55 Instead, Hoy, 
Bunker, Landsberg, et al.47–49 developed a set of more 
sophisticated models based on bending–rotation 
Hamiltonians. The best model of that series is the nonrigid 
bender (NRB) model that provides the Hamiltonian HNRB 

(see Ref. 47). The initial approximations are more correct in 
physical terms than those of Model A. Unfortunately, the 
complexity of Model A and the lack of efficient 
parametrization gave no way of approaching the 
experimental accuracy along this line. 

C. Calculations based on potential function in terms 
of ab initio potential surfaces and inverse spectroscopic 
problem.51–54 There are also "mixed" models known from 
the literature. They combine separate elements from 
Models A and B, and specifically, employ Radau 
coordinates for the bending–rotation part and 
phenomenological effective parameters of the (A)–type 
simultaneously.65 

Advantages: Physically substatiated consideration of 
intramolecular interactions; qualitative analysis of the entire 
set of vibrational states; concurrent allowance made for the 
vibration–rotation state distribution in different isotropic 
species. 

Disadvantages: The calculations fail to approach the 
experimental accuracy, even though the overall picture is 
correct in a qualitative sense. For example, recent 
investigations55 conducted within the framework of the 
"global processing" of 120 vibrational states of 10 isotopic 
species with energies 0 ≤ Å ≤ 18 300 ñm– 1 up to Σ(vi) ≤ 6 and 

Jmax ≤ 10 have yielded a standard deviation of 0.24 cm–1, 

which gives an idea of the average computation accuracy. This 
does furnish solid data for the molecular geometry and force 
field and yet the resulting accuracy is inadequate for 
applications pertaining to atmospheric optics. 

D. Effective Hamiltonians with improved 
convergence. Here we recognize 

– phenomenological models using Hamiltonians of 
Pade form,57,59–63 Borel form,58 or the form of rational 
fractions, optimized according to the Ritz variational 
principle;56 

– models based on taking into account the specific 
character of bending–rotation interactions to yield 
generating functions.38–43 The salient features of these 
models have been discussed in earlier sections. 

Finally, let us review the current status of research 
into the problem of description of highly–excited rotational 
states of the water molecule. 

A. Rotational energies. Pure rotational energy levels 
for the ground molecular state up to 11 000 cm–1 (J ≤ 35, 
K à ≤ 20) were derived by Flaud and Camy–Peyret.37 They 

found that the effective polynomial Hamiltonian HW did 

not provide reasonable accuracy of the fit for the energy 

levels with K à ≥ 15, even though it did involve terms with 

very high powers of angular momentum operators. The 
application of new methods (RB and NRB techniques, Borel 
method, etc.) was inefficient in fitting the highly excited 
rotational energies at K à ≅ 20 with an accuracy comparable 

to that obtained experimentally. 
A substantial improvement in the quality of fitting 

those states was obtained in the Laboratory of Theoretical 
Spectroscopy at IAO. The very first applications of G 
functions in the form given by Eq. (4.7) with the terms up 
to G3 enabled us to describe all energy levels up to Kà ≤ 20 

with an accuracy better than 1 ñm– 1 (Refs. 39, 40). In 
fitting the calculated data on 428 energy levels up to J, 
K à ≤ 20 to the experimental evidence the use of 26 

parameters in the Hamiltonian HG of Eq. (4.5) and the 

generating functions F and χ in the form of Eq. (4.9) 
resulted in the value of the sum of squared deviations 
Σ = 1.43 ñm– 2, which corresponds to Δ Emax = 0.2 ñm– 1 

for J = 20 and σ = 0,06 ñm– 1. The values of Σ, σ, and χ 
defining the quality of data fitting are listed in Table I. The 
calculations based on the use of the reduced form of Pade–
approximant61 furnished the same result. An extended set of 
35 adjustable parameters in the Pade–approximant yields 
σ = 0.03 ñm– 1 and χ = 8.5 (Refs. 59, 60). Recent "mixed" 
model for the molecular Hamiltonian developed in Ref. 65 
has provided the same accuracy of the fit as the one 
reported in Refs. 59, 60 except for the energy levels with 
J = Kà = 19 and 20. 

The results of the most accurate calculations based on 
the use of G functions are discussed in Ref. 68. For 560 
experimental rotational levels of the ground state in H2O χ 

was found to be 2.1 up to J = 35. 
For comparison Table III includes energy levels with 

J, K à ≤ 20 calculated by different methods. 

 
TABLE III. Rotational energies of H2O up to J, K ≤ 20 

derived with different forms of effective rotational 
Hamiltonian. 
 

Hamiltonian 
characteristics 

Pade–type 
Hamiltonian

* Ref. 60 

Radau 
Hamiltonian

* Ref. 65 

G–
function 
Ref. 66 

χ 6.7 5.8 1.8 

ΔEmax (ñm
– 1) 0.16 0.347 0.034 

ΔEmax (ñm
–1, J = 20) 0.096 4.911 0.012 

σ 0.03  0.007 

L 35 39 37 

 

* Except for J = Ka = 19 and J = Ka = 20. 
 

B. The first and the second triads of resonant states. 
Until quite recently the energy levels, spectral line centers 
and intensities have been calculated from a conventional 
model for the effective Hamiltonian describing a polyad of 
resonating states.5–7 New FTS measurements for H2O 

between 2 000 and 6 600 cm–1 (the path length and pressure 

are 288 m and <~ 30 mbar respectively) have been performed 

by Keppler et al.10 The spectrum has been identified and 
processed by means of the G function. Several hundreds of 
new experimental absorption lines with high quantum 
numbers J and K have been revealed. 
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C. The nν2 states. Exploration of the series of bands 

ν2, 2ν2, ... is essential for a better insight into the 

intramolecular interactions, because the rigidity effects are 
dramatically enhanced as the "bending" mode is excited 
(Figure 3). "Global" calculations of rotational energies from 
the molecular potential55 fall short of the accuracy which is 
needed for atmospheric applications. Of interest, then, is 
the use of the G functions for this purpose. It has been 
shown in Refs. 38–43 that calculations along these lines 
improve the quality of prediction (in terms of χ) by a factor 
of 2 to 3 over the Pade–models and by an order of 
magnitude over the polynomial models. A concurrent 
processing of the rotational (0, v2, 0) energies of the 

(v2 = 0, 1, ... , 4) states with the use of the G functions is 

given in Ref. 42. The application of the G functions to 
fitting new experimental FTS data presented a means of 
identifying and processing all transitions associated with the 
4ν2 band (J ≤ 13, and Kà ≤ 5) with σ = 0.002

 
ñm– 1. 
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