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The conditions of existence and quantitative manifestations of the effects caused 
by correlation between oncoming waves in laser detection and ranging through a 
turbulent atmosphere are studied in the paper as functions of turbulent strength, 
reflectivity and size of objects, and angular divergence of illuminating laser beam.  
Possible ways of their consideration and practical application to the development of as 
laser radar and lidar systems as new methods of sensing of the atmospheric turbulence 
are examined.  

 
1. INTRODUCTION 

 
The use of lasers for detection and ranging of objects 

in the atmosphere or through it generates a need for study 
of the stochastic nature of backscattered coherent optical 
waves.  Whereas the fluctuations of radar return signals in 
the radio wave range occur primarily due to the random 
nature of scattering by locatable objects, in the optical 
range the main factor engendering such fluctuations 
becomes stochastic wave scattering by the inhomogeneities 
of a medium located between a laser radar and a locatable 
object.  Due to proximity and intersection of direct and 
returned rays during their propagation through a randomly 
inhomogeneous medium whose parameters remain unchanged 
in many instances in the course of propagation of waves, 
correlated random wave fields may combine within a certain 
solid angle about the axis connecting an object and a laser 
radar. Analogous situation also arises in the image plane of a 
locatable object when one and the same telescope is used as 
transmitter and receiver. As a result, the spatial localization 
(focusing) of the mean energy flux of reflected wave caused by 
the random inhomogeneities of a medium located between a 
laser radar and a locatable object was found to occur. 

The effect of amplification of the mean intensity of the 
backscattered radiation was first found when solving the 
problem of diffraction of a spherical wave by a specular disc 
of finite size1 and by a point scatterer.2  Later on the other 
fundamentally new phenomena associated with the 
combination of correlated random fields were discovered.  
An enhancement of the mean intensity of the reflected wave 
field turned out to be accompanied by stronger intensity 
fluctuations,3 and the residual spatial correlation of these 
fluctuations took place.4  

Investigations performed at the Institute of 
Atmospheric Optics (see Refs. 1 and 4) are of fundamental 
importance for laser detection and ranging in random media.  
Since transceiving telescopes of laser radars generally form 
spatially bounded beams and locatable objects may have 
arbitrary size, shape, and surface reflectivity, the existence 
of the enhancement effects and their quantitative 
manifestation depend strongly on the above–indicated 
factors.  The influence of these factors was studied in detail 
in series of papers published by the scientists of the 
Institute and generalized in Ref. 5.  Here a special problem 
is the study of the enhancement effects in the image plane 
of a locatable object of a receiving telescope.6,7  

The present paper gives a review of the enhancement 
effects in the problems of laser detection and ranging 
through a turbulent atmosphere, studied at the Institute of 
Atmospheric Optics.  The emphasis is on the study of the 
conditions of existence of the enhancement effects as well as 
ways for their allowance for the development of laser radar 
systems and new methods of sounding of the atmospheric 
turbulence. 

 
2. FORMULATION AND METHODS FOR SOLVING  

THE PROBLEMS ON LASER DETECTION AND  
RANGING IN TURBULENT MEDIA 

 
Let U( x′, ρ′) be the field of laser radiation 

propagating along the ox′ axis.  In terms of the Green's 
function of a propagation medium, the field U( x′, ρ′) can 
be represented in the form 
 

U( x′, ρ′) = ⌡⌠ dt U
0
(t) G( x′, x

0
; ρ′, t) , (2.1) 

 

where U
0
(t) = U( x′, r′) x' = x0

 is the initial field, 

G( x′, x
0
; ρ′, t) = δ(ρ′ – t), δ(t) is the Dirac delta function, 

and ρ′ and t are the two–dimensional vectors. 
Let the reflection occur in the plane x′ = x. We 

introduce the function V(ρ′, r), characterizing a local 
reflectance.  Then the field on a reflecting surface is given 
by the formula8 

U 
R
0
(ρ) = ⌡⌠ dρ′U( x, ρ′) V(ρ′, r), (2.2) 

 

and using integral relation (2.1), for the field of a reflected 
wave in the plane x′ < x we obtain: 
 

U 
R( x′, ρ) = ⌡⌠ dr UR

0
( r) GR( x′, x; ρ, r) . (2.3) 

 

The Green's functions for the direct G and backward 
GR propagation satisfy the conjugate equations of parabolic 
type8 and due to this fact are related by the reciprocity 
relation: 
 

GR( x′, x; ρ, r) = G( x, x′; r, ρ). (2.4) 
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This enables one to reduce the problem of laser detection 
and ranging to that of the direct propagation.5,8  As a 
result, with the use of Eqs. (2.3), (2.4), (2.2), and (2.1), 
for the field of a reflected wave we have 
 

UR( x′, ρ) = ⌡⌠ d t d ρ′ d r U
0
(t) G( x, x

0
; ρ′, t) × 

 

× G( x, x′; r, ρ) V(r, ρ′) . (2.5) 
 

Equation (2.5) provides a basis for analyzing the 
moments of the reflected field of the order 2 n 
 
UR

2 n( x′, ρ
2 n) = UR( x′, ρ

1
) UR*( x′, ρ

2
) ×...× 

 

× UR( x′, ρ
2 n – 1

) UR*( x′, ρ
2 n)  (2.5′) 

 
and their statistical means or mutual coherence functions of 
the corresponding order 
 
ΓR

2 n( x′, ρ
2 n) = < UR

2 n( x′, ρ
2 n)>, (2.6) 

 
where 2 n denotes the change in the subscript from 1 to 2 n.  
Averaging in Eq. (2.6) is carried out on the assumption of 
statistical independence of the fluctuations of the 
parameters of a medium, initial field, and reflector, which 
may be random as well.  As a result, for x′ = x

0
 we have 

 

ΓR
2 n( x

0
, ρ

2 n) = ⌡⌠ ⌡⌠ ⌡⌠ < U
2 n(t2 n)> < V

2 n(ρ′
2 n, r2 n)> × 

 

× < G
~

2 n( x, x
0
; ρ′

2 n, t2 n; r2 n, ρ2 n) > d ρ′
2 n d t

2 n d r
2 n , (2.7) 

 

where  

G
~

2 n = Π
n

j = 1
 G
~
( x, x

0
; ρ′

2 j – 1
, t

2 j – 1
; r

2 j – 1
, ρ

2 j – 1
) × 

 

× G
~
*( x, x

0
; ρ′

2 j, t2 j; r2 j, ρ2 j) , (2.8) 
 

G
~
 = G( x, x

0
; ρ′, t) G( x, x

0
; r, ρ) is the laser radar Green's 

function (LRGF), which was first introduced in Ref. 9, 
 

U
2 n(t2 n) = Π

n

j = 1
U

0
(t

2 j – 1
) U*

0
(t

2 j ), (2.9) 

 

V
2 n(ρ ′

2 n,r2 n) = Π
n

j = 1
 V(ρ′

2 j – 1
, r

2 j – 1
 ) V*(ρ′

2 j,r2 j ) . (2.10) 

 

In the case of a coherent laser source the initial distribution 
of the field U

0
(t) across the radiating aperture is usually 

assumed to follow the form of the Gaussian beam with an 
effective radius of the output aperture a, a curvature of the 
phase front F, and an amplitude U

0
 in its center.  

Statistical moments of the initial field of partially coherent 
laser beams are assigned in a more complicated form.  In 
particular, for the function of mutual spatial coherence of 
the second order <U

2
> we have10: 

 

<U
2
(t

2
)> = U2

0
 exp 

⎩
⎨
⎧

⎭
⎬
⎫

 – 
t2
1
 + t2

2

2 a2  – i 
k

2 F (t2
1
 – t2

2
) – 

(t
1
 – t

2
)

4 a2
c

2

 ,  

(2.11) 

where ac is the effective radius of spatial coherence of 

radiation and k = 2π/λ is the wave number.  On the 
assumption of strong phase fluctuations of the source field 
the fourth moment <U

4
> is given by the formula 

 

<U
4
(t

4
)>

 
=
 
<U

2
(t

2
)> <U

2
(t

3
,t

4
)> , (2.12) 

 
if the coherence time of the source τ

s
 is less than the 

receiver averaging time τ
r
, or by the formula 

 
<U

4
(t

4
)> = <U

2
(t

2
)> <U

2
(t

3
,t

4
)> + <U

2
(t

1
,t

4
) U

2
*(t

2
,t

3
)> ,  

(2.13) 
 

if the inverse condition τs 
>~ τr is fulfilled.11,12 

The local reflectance in the case of specular targets is 
assigned as5 
 
V(ρ′, r) =

 
A(r) δ (ρ′ +,

–
  r) , (2.14) 

 

where A(r) =  exp { – r2 / 2 ar
2} , ar is the effective radius 

of a reflector, V
0
 is the amplitude factor, the minus sign 

corresponds to a flat mirror, and the plus sign – to a 
corner–cube reflector. 

In the case of a diffuse surface with random reflectance 
we have for <V

2
>12,13: 

 

<V
2
(ρ

2
′, r

2
)> = 

4p
k2 A(r

1
) A*(r

2
) δ(r

1
 – r

2
) δ(ρ

1
′ – r

1
) δ(ρ

2
′ – r

2
) ,  

(2.15) 
and the fourth moment <V

4
>, depending on the relation 

between the time of the receiver averaging τ
r
 and the 

correlation time of surface roughness fluctuations τ
c
, is 

represented as12,14  
 

<V
4
(ρ

4
′, r

4
)> = <V

2
(ρ

2
′, r2)><V

2
(ρ

3,4
′ , r

3,4
)>,   τ

c
 < τ

r
 , (2.16) 

 

<V
4
(ρ

4
′, r

4
)>

 
= < V

2
(ρ

2
′, r

2
)> < V

2
(ρ

3,4
′ , r

3,4
)> + 

+ <V
2
(ρ

1,4
′ , r

1,4
)> < V

2
(ρ

2,3
′ , r

2,3
)> ,   τ

c
 >~ τ

r
 . (2.17) 

 
Thus to calculate the reflected wave mutual coherence 

functions ΓR
2 n(x0

, ρ
2 n), it is necessary to know the statistical 

moments of the laser radar Green's function of the 
corresponding order.  Equations for them5,15,16 follow from the 
parabolic equation for the laser radar Green's function9 
 

2 i k 
∂ 

∼
G

∂ x′ + (Δ ρ′ + Δ ρ) 
∼
G + κ

2(ε
1
( x, ρ) + ε

1
( x′, ρ′)) 

∼
G = 0 (2.18) 

 

with the boundary condition 
∼
G(x

0
; x

0
; ρ′, t; r, ρ) = 

=  δ(ρ′ – t) × δ(r – ρ), obtained on the basis of reciprocity 
relation (2.4) (see Ref. 8). Therefore, the methods for 
solving the problems on laser detection and ranging using 
the functions of mutual coherence (2.7) are based mainly 
on one or other approximations when solving the 
equations for statistical moments of LRGF. Among them 
are the perturbation method17 or the asymptotic 
technique15,16 described in detail in Refs. 5 and 12. The 
approximation methods18–20 also can be used for solving 
these problems with due care since application of the 
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methods described, for example, in Refs. 19 and 20 to the 
solution of the problems on laser detection and ranging 
may yield incorrect results owing to violation of the 
reciprocity relation for the fields of direct and backward 
waves derived with the use of these approximations. 

 
3. CONDITIONS OF EXISTENCE AND REGIONS OF 
LOCALIZATION OF THE ENHANCEMENT EFFECTS 
IN THE PROBLEMS ON LASER DETECTION AND 

RANGING 
 
Let us consider the conditions of existence and regions 

of localization of the enhancement effects depending on the 
parameters of spatially bounded laser beam emitted by a 
transmitting telescope and size and reflectance of a locatable 
object for arbitrary intensity of atmospheric temperature 
micropulsations and path length.  

Before proceeding to an analysis of concrete results, 
we write down the general relationship12,16 between the 
even moments of the reflected UR

2 n and incident U
2 n fields, 

using Eqs. (2.1), (2.5′), and (2.8)–(2.10) for the case of 
backscattering of a spherical wave (U(t) = 2πδ(kt)) by a 
point (A(r) = 2π V

0
δ(kr)) reflector  

 

UR
2 n( x

0
, 0) = |U

0
|– 2 n |V

0
|2 n [U

2 n( x, 0)]2. (3.1) 
 

Equation (3.1) yields the relationship between the 
statistical moments of incident and reflected intensities for 
the case of spherical waves and a point scatterer 
 

<(I 
R( x

0
, 0))n> =  |U

0
|– 2 n |V

0
|2 n < I 

2 n( x, 0)> . (3.2) 
 

Analogously it can be shown that the mean intensity of 
a spherical wave reflected from an unbounded mirror 
(A(r) ≡ V

0
) is given by the expression 

 
 

< IR( x
0
, R)> = 

|U
0
|2 |V

0
|2 

4 k2  L2  [1 + BI, S( x, R)], (3.3) 

 

where L = x – x
0
, R  is the radius–vector of the observation 

point in the plane perpendicular to the direction of 
propagation, BI, S( x, R) is the correlation function of the 

intensity of a spherical wave on the forward propagation path, 
normalized to the square of the mean intensity.  Analogous 
expression which agrees to within the constant is also derived 
for a spherical wave scattered by a point reflector.2 

 

3.1. Enhancement of the mean intensity 
 

It follows from Eq. (3.3) that in the strictly backward 
direction (R = 0) the mean intensity of a reflected spherical 
wave increases as compared with the propagation in a 
homogeneous medium by the amount determined by the 
variance of the spherical wave intensity σ I, S

2  = BI, S(0), and 

this effect still retaines as the observation point is displaced at 
an angle θ ∼ rI / L, where rI is the scale of spatial correlation 

of the intensity fluctuations. 
As has already been noted in Introduction, for the case of 

spherical wave scattering by a specular disc in the regime of 
weak optical turbulence, with the parameter  
β
0
2 = 1.23 Cn

2k7/6 L11/6 being less than unity, backscatter 

amplification effect was studied in Ref. 1, and for the case of 
point reflector it was considered in Ref. 2. Here Cn

2 is the 

structure constant of the air refractive index fluctuations in 
the atmosphere. 

In general, the amount of enhancement depends 
essentially on the reflector size and the angular divergence of 

an incident laser beam.5,12,22 
 

For quantitative estimation of the mean intensity 
enhancement we introduce the factor N(R) = 
= <I 

R(x
0
, R)>/<I 

R(x
0
, R)>

incoh
, where <I 

R( x
0
, R)>

incoh
 

corresponds to the mean intensity of a reflected wave 
neglecting the correlation between the incident and 
backward wave fields.  For spatially unbounded plane 
(Ω = k a2

 / L >> 1) or spherical (Ω << 1) waves < I 
R>

incoh
 

coincides with the intensity in a homogeneous medium, and 
in this case N(R) characterizes absolute amplification of the 
mean intensity. 

Figure 1 shows the results of calculation of the 

normalized parameter N
∼
(R) = (N(R) – 1) / β

0
2 performed in 

Refs. 12 and 22 for the case of weak optical turbulence and 
arbitrary values of the diffraction parameters Ω and  
Ωr = k ar

2
 / L for a flat mirror, a corner–cube reflector, and a 

diffuse surface with random reflectivity. It is seen that the 
correlation between direct and backward waves leads to the 
decrease of the mean intensity of reflected radiation rather 
than to its increase, if a spatially bounded beam with finite 

diffraction size Ω
eff

 –,~ 1 (Ω 
eff
–1 = Ω–1 + Ω r

–1) is formed at the 

mirror.  In the case of the plane wave incidence on an 
unbounded mirror (Ωr >> 1) the amplification effect is absent, 

as is seen from the figure.   

In contrast to a flat mirror, at Ω
eff

 –~ 1 the mean 

intensity of radiation reflected from a corner cube reaches its 
maximum rather than decreases. When a spherical wave is 
scattered by an unbounded corner–cube reflector with Ωr >> 1, 

the amplification effect, in analogy with the case of a mirror, 
is determined by the intensity correlation function of a plane 
wave rather than of a spherical wave, and N(0) = 1 + β

0
2 (see 

Ref. 23). The mean intensity of reflected radiation also 
increases when a plane wave is incident on an unbounded 
corner–cube reflector.  In this case the amplification factor 
in the direction R = 0 is defined by the parameter 
N(0) = 1 + 1.56 β

0
2. 

 

FIG. 1. Backscatter amplification factor N
∼
 = N

∼
(0) in the 

regime of weak fluctuations:  Ω = 10–3 (1), 10–1 (2), 
1 (3), 10 (4), and 103 (5);  corner–cube reflector (solid 
curve), Lambertian reflector (dashed curve), and flat 
mirror (dot–dash curve). 
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FIG. 2.  Amplification factor N
∼
(0)β

0
2 vs. the Fresnel number 

of a reflector (β
0
2 = 0.5) for spherical incident wave reflected 

from a  mirror (1) and corner–cube reflector (2);  rigorous 
calculation (solid curves) and calculation by the Gaussian 
model of A(r) (dashed curves). 

 

Consideration of diffraction by the edges of a 
reflector42,43 leads to more complicated pattern of the 
dependence of enhancement of backscattering on the 
diffraction parameters than that shown in Fig. 1 for the 
Gaussian model of reflectivity.  The example of calculation 

of the amplification factor N
∼
(0)β

0
2 with regard for 

diffraction by the edges of a reflector is shown in Fig. 2.  

As is seen, the behavior of N
∼
(Ωr) differs essentially from 

that shown in Fig. 1 (cf. curves in Fig. 2 with the 
corresponding curves for mirror and corner–cube reflector in 
Fig. 1).  For both flat mirror and corner–cube reflector the 
dependence is oscillating in character.  As is seen, along 
with the decrease of the mean intensity of a reflected wave 
for 1 < Ωr < 4, which is also described by the Gaussian 

model, the allowance for the diffraction by reflector edges 
leads to essential amplification of the mean intensity in the 
case of reflection from a mirror whose size satisfies the 
condition 5 < Ωr < 10. 

The enhancement of backscattering for a point reflector 
was experimentally confirmed for scattering of a divergent 
laser beam under conditions of artificial convective 
turbulence24,25 and on real atmospheric path.26  The intensity 
amplification for a spherical wave reflected from a mirror was 
not observed in Ref. 24.  Conceivably, this is due to the fact 
that after reduction of the aperture of a beam incident on a 
mirror in the experiment,24 the diffraction size of a reflecting 
segment of the mirror gives no way of observing the 
amplification effect (see Figs. 1 and 2).  Only recently more 
careful setting up of the experiment has made it possible to 
obtain the experimental data that confirm the existence of the 
amplification effect for the case of reflection from an infinite 
flat mirror on a real path in the atmosphere,27 as well as 
nonmonotonic character of the dependence of the amplification 
factor on the reflecting mirror size (see Fig. 1) in the 
laboratory experiments.28 

Let us consider the amplification of the mean intensity 
in the regime of strong optical turbulence, with the 
parameter β

0
2 exceeding unity.  In this case the regimes of 

plane and spherical waves and spatially–bounded beam are 
characterized by the conditions Ω >> β 

0
12/5,  Ω << β 

0
–12/5, 

and β 
0
–12/5 << Ω << β 

0
12/5, respectively.  The same 

conditions characterize an "infinite" reflector, a "point" 
scatterer, and a reflector of finite size:  Ωr >> β 

0
12/5,  

Ωr << β 
0
–12/5, and β 

0
–12/5 << Ωr << β 

0
12/5. 

Let us represent the mutual coherence function of a 
reflected wave in the form: 
 
ΓR

2
( x

0
, ρ

2
) = Γ(1)

2
( x

0
, ρ

2
) + Γ(2)

2
( x

0
, ρ

2
) , (3.4) 

 
where Γ(1)

2
 describes the coherence function of the field 

propagating along a direct path of doubled length without 
reflection, and Γ(2)

2
 is responsible for the correlation between 

direct and backward waves.  As follows from the analysis of 
corresponding asymptotic expressions for Γ(1)

2
 and Γ(2)

2
, given 

in Refs. 5 and 12, the amplification of the mean intensity in 
the regime of strong turbulence is pronounced only in the case 
of a spherical wave incidence on a reflector. Both terms in 
Eq. (3.4) become then comparable, and the mean 
intensity of reflected spherical wave is more than twice as 
large as the intensity on a direct path of doubled 
length.29  In this case the amplification factor N(0)  can 
be represented as 
 
N(0) = 2 + f(Ωr, β0

)β 
0
– 4/5, (3.5) 

 
where f(Ωr, β0

) is some function depending on the 

reflector size and the turbulence parameter β
0
.  For an 

infinite mirror and a point scatterer Eq. (3.5) assumes the 
form: 
 
N(0) = 2 + 2.74 β 

0
– 4/5 (3.6) 

 
and can be obtained immediately from Eq. (3.3) if for BI, S 

its representation for the regime of strong turbulence is used 
(see Ref. 12). 

In all the other cases, when Ω >∼  β 
0
–12/5, the 

amplification effect is insignificant and is of the order of 
β 

0
– 4/5 (see Refs. 5 and 12): 

 
N(R) = 1 + g(R, Ωr, β0

) β 
0
– 4/5 , 

 
where g(R, Ωr, β0

) is some function. 

The conditions of existence and the regions of 
localization of the backscatter amplification effect for  
β

0
2 >> 1 in the cases of a corner–cube reflector and a 

Lambertian surface5,12,16,23 do not differ essentially from 
those stated above. 

 
3.2. Enhancement of the intensity fluctuations 

 
Correlation between waves that propagate in forward 

and backward directions through the same 
inhomogeneities of a medium also results in the 
amplification of the intensity fluctuations of reflected 
field.3 The amount of amplification of the intensity 
fluctuations varies within wide limits depending on the 
parameters of initial laser beam, size and type of 
reflector, and strength of optical turbulence β

0
2. Let us 

consider first the regime of weak optical turbulence.17 
Shown in Fig. 3 are the results of calculations of 

relative variance of the axial intensity of a collimated 
beam reflected from a mirror for β

0
2 < 1.  It is seen that 

the intensity fluctuations are minimum when the mirror 
size is comparable with the radius of the first Fresnel 

zone (Ωr –
~  1) and maximum in the case of reflection 

from an "infinite" mirror. 
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FIG. 3.  Relative variance of the weak intensity 
fluctuations of a collimated beam reflected strictly 
backward,  Ωr = 103 (1), 10 (2), 10–3 (3), 1 (4), and  

10–1 (5). 
After reflection from a corner cube, a preferred 

direction (optical axis) occurs, and the intensity variance of 
a plane wave reflected from an unbounded reflector σ I, R

2  

decreases from 5.23β
0
2 to 3.56β

0
2 as the observation point is 

displaced off the axis at a distance R >> λL, while after 
reflection from a flat mirror σ I, R

2  is independent of the 

position of a reception point. 
In the regime of strong turbulence, the increase of the 

relative variance of the intensity is maximum in the case of 
scattering by a point reflector.  As compared with the one–
way propagation along a path, when the saturation level of 
the relative intensity fluctuations with β

0
2 → ∞ equals unity, 

this level is several times higher15,16: 
 

σ I, R
2  = 

5 + 46.6 β 
0
– 4/5

1 + 2.74 β 
0
– 4/5 + o(β 

0
– 8/5),  Ω << β 

0
– 12/5, (3.7) 

σ I, R
2  = 

3 + 14.6 β 
0
– 4/5

1 + 0.86 β 
0
– 4/5 + o(β 

0
– 8/5),  Ω >> β 

0
12/5 . (3.8) 

 

When the condition Ωr << β 
0
– 12/5 is violated, the 

effect of amplification of the intensity fluctuations becomes 
negligible.5,16 

Let us now turn to scattering by a diffuse surface.  In 
this case we should take into account that the receiver can 
both follow the fast random variations of the reflected 
radiation field due to varying reflectivity of a diffuse 
surface, if the correlation time of the surface roughness 
τ
c
 > τ

r
, and smooth them out, when the relation τ

c
 << τ

r
 is 

fulfilled.  Making use of appropriate models for the fourth 
moment of the function V(ρ ′

4, r4) given by Eq. (2.17), for 

the relative variance of the weak intensity fluctuations of a 
spherical wave reflected from a diffuse surface for τ

c
 << τ

r
 

we find5,12 

σ I, R
2 (R)

 
= 2σ 

I, g

2

 + 2 BI, g( R) . (3.9) 
 

In Eq. (3.9) the function BI, g( R) coincides with the 

intensity correlation function of an incoherent source in the 
turbulent atmosphere12 emitting backward from the 
reflector plane, σ I, g

2  = BI, g(0). 

It follows from Eq. (3.9) that in the directions close to 

backward (⏐R⏐ >∼  λL) the amplification of the intensity 

fluctuations occurs.  Actually, σ I, R
2 (0) = 4σ I, g

2  whereas for 

⏐R⏐ >> λL    σ I, R
2  = 2σ I, g

2
 .  In the case of a point 

reflector, the relative fluctuations of the reflected spherical 
wave intensity are maximum.  The increase of the size of a 
diffuse surface results in their decrease.  In particular, from 
Eq. (3.9) we have 
 

σ I, R
2 (0) = 1.6β

0
2 + o(β

0
4) ,   Ωr << 1 , 

σ I, R
2 (0)= 0.68β

0
2 + o(β

0
4) ,   Ωr = 1 , 

σ I, R
2  ∼ Ω

  r
– 7/6β

0
2 ,    Ωr >> 1 , (3.10) 

 

whence it appears that in the limit Ωr → ∞ the intensity of 

reflected radiation does not fluctuate. 
The analogous results are also obtained in the case of a 

plane wave incident on a diffuse surface.5,12 
In the regime of strong optical turbulence when 

spherical and plane waves are reflected from a diffuse 
surface of small transverse size Ωr << β 

0
– 12/5, the relative 

intensity variance is described, in analogy with the case of a 
mirror, by formulas (3.7) and (3.8).  For a diffuse disc of 
finite size we have5,12 
 

σ I, R
2 (0) = 5.48β 

0
– 4/5 + o(β 

0
– 8/5) ,   Ω << 1 , (3.11) 

σ I, R
2 (0) = 2.6β 

0
– 4/5 + o(β 

0
– 8/5) ,   Ω >> 1 . (3.12) 

 
It follows from Eqs. (3.11) and (3.12) that with the 

increase of optical turbulence strength (β0 → ∞), the relative 

variance of radiation, reflected from a surface of finite size 
tends to zero for τ

c
 <<  τ

r
. This means that diffuse surface 

illuminated by a coherent light can be considered as a source 
of incoherent spherical waves, whose intensities are added at a 
point of reception.  In this case, as shown in Refs. 30 and 12,  
the relative variance of the strong intensity fluctuations has no 
nonzero saturation level. 

Increase of the size of a diffuse surface (Ωr >> β0
2) 

results in smoothing out of the strong intensity fluctuations 
of reflected radiation in accordance with the law described 
by Eq. (3.10) as in the case of weak intensity fluctuations. 

As the analysis has shown,5,12,16 under condition τ
c
 >∼  τ

r
, 

when a receiver have time to follow the signal fluctuations due 
to phase distortions engendered by a surface, the intensity 
variance of reflected field is defined by the formula12 
 

σ I, R
2 ( R) = 1 + 2σ I, R S

2 ( R) , (3.13) 
 

where σ I, R S
2  coincides with the intensity variance of  

reflected radiation for τ
c
 << τ

r
.  Thus the significant increase 

of the intensity fluctuation variance due to the amplification 
of the intensity fluctuations in accordance with formulas 
(3.13), (3.7), and (3.8) takes place for scattering by a "point" 
random reflector, whose transverse size satisfy the condition 
Ωr << b 

0
–12/5. The saturation level of σ I, R

2  with β
0
2 → ∞ in 

the case of spherical wave incident on such a reflector 
equals eleven, while in the case of an incident plane wave it 
equals seven. The increase of the size of a diffuse surface 
results in smoothing out of the intensity fluctuations of 

reflected radiation, and when the condition Ωr >∼  b 
0
–12/5 is 

satisfied, the relative variance of the intensity only slightly 
exceeds unity for any value of the turbulence parameter β

0
2 

(see Refs. 5, 12, and 16).   
In a number of particular cases the theoretical results 

concerning the intensity fluctuations of reflected radiation, 
presented in this section, are confirmed by the experimental 
results.25,31,32  
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4. RESIDUAL SCINTILLATIONS OF REFLECTED 
RADIATION RECEIVED BY A LARGE APERTURE 

 

Reception on a large receiving aperture is one way of 
decreasing the fluctuations of received radiation.  A 
telescope with an objective lens whose radius D far exceeds 
the intensity correlation radius rI (D >> rI) smoothes out 

practically completely scintillations in the images of stars and 
laser sources.33  Therefore, in measuring the intensity 
fluctuations of optical waves the condition D << rI must be 

satisfied. 
At the same time, as was first shown in Ref. 4, the 

fluctuations of the reflected radiation after its double 
passage through the same randomly inhomogeneous medium 
may not smooth out by a receiver of even arbitrary large 
size (D >> rI).   

Let a source of spherical wave and a scatterer of radius 
aR << rI spaced at the distance L be placed in a turbulent 

medium.  From Ref. 4  it follows that we can write the 
intensity correlation function of reflected wave in the source 
plane in the form 
 
BI, R(ρ

1
, ρ

2
) = σ I

2 + BI r(ρ1
) + BI r(ρ2

) + Br(ρ1
, ρ

2
) . (4.1) 

 
Here σ I

2 is the incident spherical wave intensity variance 

about the scatterer, BI r are the mutual intensity correlation 

functions of incident and returned waves at the observation 
points ρ

1
 and ρ

2
, and Br is the intensity correlation function 

of the returned spherical wave.  
It follows from Eq. (4.1) that the intensity 

fluctuations of reflected wave are inhomogeneous.  The 
variance of the intensity fluctuations of scattered field 
σ I, R

2 (ρ) = σ I
2 + 2BI r(ρ) + σ r

2 depends on the mutual 

correlation term BI r and is maximum in the strictly backward 

direction (ρ = 0).  
For infinite separation of the observation points  

ρ
1
 – ρ

2
 → ∞ the function BI, R(ρ

1
, ρ

2
) does not vanish and 

preserves nonzero residual correlation degree depending on the 
position of the observation points relative to the source 
(ρ = 0). For ⏐ρ

1
⏐, ⏐ρ

2
⏐ → ∞ the degree of residual 

correlation equals σ I
2/4, whereas for ⏐ρ

1
⏐ = 0 and 

⏐ρ
2
⏐ → ∞  it equals σ I

2/2.  

Residual correlation is due to random nature of the 
source equivalent to the scatterer and is determined by the 
fluctuations of the incident wave field that are correlated at 
any point of the observation plane after reflection from the 
point scatterer. This effect is independent of the scattering and 
observation angles, and as was shown in Ref. 17, arises at any 
parameters of laser beam incident on point scatterer.  Residual 
correlation also takes place when the observation plane and 
the source plane are separated.  In this case the degree of 
residual correlation is determined by mutual correlation 
between the intensities of the incident and returned waves 
passed through the paths of different length BI r(L1

, L
2
, ρ). 

The phenomenon of residual intensity correlation is of 
great practical importance.  It leads to qualitatively new 
results at reception of reflected radiation by large–aperture 
telescopes.  The calculations of smoothing function 
G(D) = σ p

2(D)/σ p
2(0), where σ p

2(D) and σ p
2(0) are 

respectively the relative fluctuations of a light flux 
transmitted through the objective of radius D and a point 
aperture, performed in Ref. 4 for D >> rI, yield 

 
G( D) = G1

 = 1/4 , 

when the transverse coordinates of the centers of 
transmitting and receiving apertures coincide, and for 

D > rI yield 

 
G( D) = G

2 = 1/2 , 

 
when the receiving aperture is displaced in the transverse 
plane at the distance l >> rI. 

Thus, for reflectors of radius aR << rI the 

fluctuations of the scattered radiation flux do not smooth 
out by the receiving aperture of even arbitrary large size 
(D → ∞). As a result, the effect of residual turbulent 
scintillations occurs (see Ref. 4). This effect also arises 
when the element of area S of a smooth surface of a body 
forming the reflected field at the observation point 

satisfies the condition S << rI. The effect of residual 

turbulent scintillations is confirmed experimentally.34 
The phenomenon of residual scintillations can be 

used for lidar measurements35 of vertical profiles of the 
structure constant of refractive index Cn

2(H) or of the 

temperature structure constant Cn
2(H) in the atmosphere.  

Actually, as was first established in Refs. 35 and 36, 
depending on the diameter of the field diaphragm d0 
placed in the image plane of the aerosol scattering 
volume, we can distinguish three regimes of scintillations 
of the light flux through the receiving aperture of 
diameter D: 
 
σ p

2 = 1 + 2σ I
2 ,   d

0
 << λ Ft / D , (4.2) 

 

σ p
2 = σ I

2 ,   λ Ft / D << d
0
 << Ft λ L / L , (4.3) 

 

σ p
2 = 0 ,   Ft λL / L <<   d

0
 , (4.4) 

 
where Ft is the focal length of the receiving telescope.  

In regime (4.3), the variance of the fluctuations of 
scattered radiation flux σ p

2 coincides with the variance of 

the intensity fluctuations of a sounding beam σ I
2, and 

does not depend on the diameter D.  This regime is 
referred to as the regime of turbulent scintillations.35  
Physically by this regime we meant separation, with the 
use of field diaphragm, of the fluctuation component in 
the scattering volume image, caused by turbulent 
fluctuations of the refractive index on the direct path to 
the scattering volume. This regime allows us to increase 
the image brightness and signal–to–noise ratio, as 
compared to the conventional way of fluctuation 

separation (D
1
 << λL), by a factor of 

k = (Dd
0
L / D

1
a

s
Ft), where 2a

s
 is the transverse size of the 

sounded volume, by means of increasing the receiver aperture 
D on retention of the intensity fluctuation strength. 

Thus in regime (4.3) lidar measurements of the 
intensity fluctuations of laser radiation scattered by 
atmospheric aerosol at different altitudes H allow us to 
retrieve the vertical profiles of Cn

2(H) in the atmosphere 

in analogy with Ref. 4. 
The experiment performed in Ref. 35 confirms the 

feasibility of measuring the intensity fluctuations caused 
by random inhomogeneities on the direct path to the 
scattering volume, by means of reception of scattered 
radiation by the aperture whose size far exceeds the 
correlation length of the intensity fluctuations of the 
wave incident on a reflector. 
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5. AMPLIFICATION EFFECTS IN THE IMAGE PLANE  
OF A RECEIVING TELESCOPE 

 
When estimating the effectiveness of optical radar and 

lidar system operation in the atmosphere, one has to take into 
account both "geometric" factor of a transceiver and turbulent 
conditions of propagation of laser radiation on the path.  From 
Ref. 6 it follows that the condition of existence of the effects 
engendered by correlation between the oncoming waves behind 
the focusing lens can differ significantly from those occuring 
in the input plane.  Therefore, it is important to know how 
much the enhancement effect changes as the observation plane 
l is displaced along the axis of a receiving optical system. 

Figure 4 depicts the results of calculation of the factor  
 

N
∼
( l, R) = (<IR( l, R)> – IR

0
( l, R)) / (β2

0
 I2

0
( l,R))  

 
characterizing the deviation of the mean intensity of the 
reflected wave in a turbulent atmosphere <IR( l, R)> in the 
regime of weak optical turbulence from that in a homogeneous 
medium IR

0
( l, R), performed in Ref. 12 for different 

diffraction size of a source, a reflector, and a receiver at 
R = 0.  It is evident from Fig. 4 that in the vicinity of the 
plane of sharp image q = 1 + L / l* – L / Ft = 0 (conjugate 

plane) backscatter amplification effect disappears because 
of turbulent broadening of the intensity distribution.  In 
the case of a plane wave incident on a point reflector 

(dashed curve), the factor N
∼
( l, R) for Ωt = k at

2
 / L ≥ 1 

grows large near the focus as compared with the input 
plane of a telescope because of the long–range 
correlations,6,12 with at here being the effective radius of 
the telescope. 

The long–range correlation effect becomes more 
pronounced under conditions of strong optical turbulence  
(β

0
2 >> 1). Actually, when reflected plane wave (Ω >> β 

0
12) 

is focused by a lens whose size 2at satisfies the condition 
Ωt >> β 

0
12/5, then the mean intensity in the focus will 

increase more than twice as compared with the  doubled–
length path without reflection.6 
 

FIG. 4. Backscatter amplification effect vs. the longitudinal 
displacement of the image operation plane:  Ωt = 1 (1) and 

3 (2);  plane wave and unbounded mirror (solid curve), 
spherical wave and unbounded mirror (dot–dash curve), 
plane wave and point reflector (dashed curve), and 
spherical wave and point reflector (dotted curve). 

 

Thus whereas the amplification of the mean intensity 
of reflected plane wave is lacking in the input plane of a 

telescope for β
0
2 >> 1 (see section 3.1), it occurs in the focal 

plane of a lens. In contrast, focusing of a reflected spherical 

wave by a lens for which Ωt >> β 
0
–12/5 for β

0
2 > 1 leads to 

vanishing of more than double amplification of the mean 
intensity at the input plane of a telescope, described by 
Eq. (3.5), in the sharp image plane of a receiving lens,7 just 
as in the case of weak fluctuations (Fig. 4). 

For quantitative estimation of an excess in the mean 
intensity of a reflected wave <I 

R( l, R)> over that of wave 
passing the one–way path of doubled length <I(1)( l, R)> 
(in accordance with Eq. ( 3.4)), we introduce the factor 

 
N( l, R) = <I 

R( l, R)> / <I(1)( l, R)> = 
 

= 1 + <I(2)( l, R)> / <I(1)( l, R)>. 
 

 
 

FIG. 5.  Amplification factor in the focus of a telescope 
for a Lambertian reflector, Ds = 50:   Ωt = 10–3 (1),  

10–1 (2), 1 (3), 10 (4), and 103 (5);  Ωr = 10–3 (solid 

curves) and 103 (dashed curves). 
 
Figure 5 shows the results of calculation of the 

amplification factor N = N(Ft, 0) of the mean intensity 

in the focus (l = Ft) of a telescope performed in Ref. 7 

for different diffraction size of a source,  a reflector, and 
an objective of a telescope.  The calculation was done for 
a diffuse reflector taking account of the terms of the 
order of β 

0
–4/5 (see Ref. 7).  The figure shows that the 

amplification takes place only in the case of close 
proximity of the size of the source and receiver apertures.  
It is maximum when a spatially bounded light beam 
(β 

0
–12/5 <<  Ω << β 

0
12/5) is incident on the reflector and 

increases with the increase of the reflecting surface size. 
This result becomes clear if we take into account the 

circumstance that the rays are coherent due to long–range 
correlations only in the region bounded by the size of the 
output aperture.7  Therefore, the receiver whose size is 
less than 2a collects not all coherent rays, whereas the 
use of the receiver of larger size results in relative 
decrease of the  contribution from the coherent 
component of scattered radiation <I(2)> as compared with 
the increased contribution from the incoherent component 
<I(1)>. 

As shown in Refs. 44 and 45, correlation of the 
oncoming waves can lead to increasing resolution of a 
telescope when viewing coherently illuminated objects 
through the turbulent atmosphere if transmitting and 
receiving apertures are adjusted.  We note that the 
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increase of telescope resolution takes place in the focal 
plane (l = Ft) rather than in conjugate one (l = l*). 

Depicted in Fig. 6 are the results of calculation of 
the intensity distribution of the images of a two–point 
object for different distances rs between the points. The 

distance rs is scaled to the coherence length of a plane wave 

in a turbulent atmosphere ρp = (L / 1.22 k β 
0
12/5)1/2, the 

distance in the plane transverse to the telescope optical 
axis, scaled to l/kat = ω

0
/2, is plotted on the abscissa.  It 

is seen from Fig. 6 that in the absence of correlation 
between incident and return waves the objects become 
unresolved both in focal and conjugate planes as the 
distance rs decreases. The correlation between oncoming 

waves gives rise to the narrow peaks in image intensity 
distribution of the two–point object in the focal plane, 
and coherently illuminated objects can be resolved by a 
telescope at such separations at which they are no longer 
resolved in incoherent light. 

Long–range correlations of a reflected field also 
manifest themselves through the intensity fluctuations of 
reflected radiation focused by a receiving lens.  In 
particular, the saturation level of the intensity 
fluctuations for a plane wave scattered by a point 
reflector was found to grow from the value σ I, R

2  = 3 in 

the plane of an input pupil of a lens up to the value σ I, R
2

(Ft, 0) = 5 in the lens focus.37 

 

 
a 
 

 
b 
 

FIG. 6. Intensity distribution of a two–point object 
image in the focal plane (solid curve) and in the 
conjugate plane (dashed curve), Ωt = Ω = 10, β

0
 = 50, 

and rs = 150 (a) and 50 (b). 
 

If the reflected spherical wave is focused, the level of 
the intensity variance saturation proves to be lower in the 
lens focus than in the input plane.37,38 

However, these changes are of local nature.  As the 
observation plane is displaced from the focus along the axis 
of an optical system (l ≠ Ft), the relative variance of the 

reflected radiation intensity acquires finally the same values as 
those observed in the lens plane.5,12,38  The amount of the 
intensity fluctuation amplification (reduction) was found to 
depend on the receiving lens size.  The amplification of the 
strong intensity fluctuations as well as of the mean intensity 
for β

0
2 >> 1 (Fig. 5) becomes pronounced only in the case of 

identical size of the source and receiver apertures. 
Along with the image intensity fluctuations, jitter in the 

locatable object image as a whole takes place in the plane l.  
These random image displacements are generally 
characterized by the variance of random shifts of the image 
energy centroid ρt in the plane l:  σ t

2 = <ρt
2> – <ρt>

2. 

Variance of the shifts of image of a locatable target σ I, R
2  

was considered in Ref. 39 where it was shown that under 
conditions of weak optical turbulence in the case of reflection 
of a plane wave from an unbounded mirror the variance of the 
jitter in the image could exceed that for a plane wave source 
on a one–way path by a factor of four (the effect of variance 
quadrupling), whereas the image of a large corner–cube 
reflector did not shifted (displacement compensation effect). 

Investigations into the jitter in the image on ranging 
paths in general case of a finite reflector illuminated by a 
spatially bounded laser beam for arbitrary strength of the 
optical turbulence were performed in Refs. 11, 14, 40, and 41 
and were summarized in Refs. 5 and 12. 
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