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The influence of dislocations of an independent reference beam wave front on the 
efficiency of compensation for thermal blooming occurring along a homogeneous 
horizontal path is considered in the paper. Some specific features of numerical simulation 
of adaptive optical systems (AOS) operating in the presence of dislocations in a reference 
wave are discussed. Correlation between oscillations of corrected beam parameters and 
periodically occurring dislocations in the reference wave has been found at exact phase 
conjugation. The oscillating regime has not been observed when simulating AOS with the 
Hartmann wave–front sensor and using modal algorithm of the phase estimation; in this 
case eliminating of the quadratic aberrations control from the adaptive contour 
significantly increases the efficiency of phase correction for thermal blooming. 

 
The problem on reducing the influence of thermal 

distortions1 at focusing high–power beams in the 
atmosphere by introducing forced formation of wave front 
(WF) at the emitting aperture of an optical system is one 
of the most interesting applications of the adaptive 
optics. Known methods of phase control can be divided 
into three groups: 1) a priori (program) control,2,3 
2) maximization of the focusing criterion,4 and 3) phase 
conjugation.5,6,7  

The present paper is devoted to the application of 
the phase conjugation (PhC) method to compensation for 
thermal blooming . This problem has been thoroughly 
discussed in a series of papers,5–12 and the results 
obtained in these papers are indicative of the fact that the 
phase conjugation technique in application to correction 
for nonlinear distortions of high–power beams has some 
specific features including various instabilities. For the 
case of homogeneous horizontal paths the instability 
appears as oscillations of the parameters of corrected and 
reference beams,7 whereas for vertical paths the small–
scale instability is developed8–12 more strongly. 

In the above–mentioned papers the wave front of 
reference radiation was assumed to be known at all points 
of the aperture of an adaptive system and can be 
measured and reproduced with an arbitrary accuracy by 
means of an ideal wave–front sensor and a corrector. At 
the same time, in Ref. 13 it was shown that at strong 
distortions of optical wave the singular points can occur, 
where the intensity is equal to zero, and the wave front 
has the singularities in the form of screw dislocations and 
can be represented by a multisheeted surface. This 
hypothesis has been confirmed in both laboratory14 and 
numerical experiments.15 As has been noted in the papers 
devoted to the problem on dislocations, their appearance 
can significantly affect the operation of adaptive optical 
systems. However, up to now the investigations are 
lacking, which could allow one to understand how an 
adaptive system works under such conditions. The 
purpose of our paper is the investigation of the influence 
of dislocations on the efficiency of phase conjugation 
when compensating for the nonstationary thermal 
blooming of cw radiation. 

 

MODEL OF PROPAGATION 
 
Propagation of a monochromatic linearly polarized 

paraxial beam an optically inhomogeneous medium is 
described by the parabolic wave equation for a slow 
component of its complex amplitude  
E = eEE exp(i ω t – i k z) (Ref. 16) 

 

2 i k 
∂ E
∂ z  = ∇2

⊥ E + k2(n2 – n2
0) E , (1) 

 

where k = 2π/λ is the wave number, ω = c/λ is the 
frequency of electromagnetic oscillations, λ is the 
wavelength, ∇2

⊥ = ∂2/∂x2 + ∂2/∂y2 is the transverse 

Laplacian, eE is the polarization vector of the electric  

field E, and n(x, y, z) is the refractive index. Boundary 
conditions for the complex amplitude are given as 
 

E(r, 0, t) = A(r) expiϕ(r, t), r = (x, y) , (2) 
 

where A(x, y) is the amplitude distribution in the beam 
cross section in the plane of emitting aperture, and ϕ is its 
phase. For a continuous Gaussian focused beam considered 
here we have 
 

A(r) = A0 exp 
⎝
⎛

⎠
⎞– 

r 2

2 a2
0
  ; ϕ(r, t) = 

k r2

2 f  + Φ(r, t) , (3) 

 

where a0 is the beam radius at the intensity level 1/e, f is 

the focal length, Φ(r, t) is the phase correction, A0 is the 

amplitude on the beam axis.  
The field of the refractive index in the high–power 

beam channel in the isobaric approximation is determined 
by temperature distribution in its cross section, described by 
the nonstationary equation of induced heat transfer for the 
temperature field T (Ref. 1) 
 

∂ T
∂ t  + V⊥ ∇⊥ T = 

α
ρ Cp

 W(r, z, t) ; (4) 

 

T(r, z, t = 0) = T0 , 
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where W = E E * 8π/c n0 is the beam intensity, 

V⊥ = (Vx , Vy) is the transverse component of wind 

velocity, α is the absorption coefficient, ρ is the density, 
and Cp is the specific heat at constant pressure.  

At small variations of the medium temperature the 
connection between the temperature and the refractive index 

can be considered linear: n – n0 ≈ n
′

T(T0)(T – T0). 

Assuming n0 ≈ 1, after substitution in Eq. (1), we have 
 

2 i k 
∂ E
∂ z  = ∇2

⊥ E + 2 k2 n
′

T (T – T0) E . (5) 

 

Thus, the nonstationary thermal blooming is described 
by the set of equations (4) and (5) together with the 
boundary conditions (3). 

Both the reflected (or scattered) radiation and 
radiation from an independent source can serve as the 
reference wave in AOS. Here we consider only the case of 
an independent coherent reference beam, being propagated 
toward the corrected one along the same path. Such an AOS 
has been created, for example, in the laboratory 
experiment.9 Behavior of complex amplitude, 
U = eU U exp(i ω t + i k z), of the reference beam along the 

path is described by the wave equation 
 

– 2 i k 
∂ U
∂ z  = ∇2

⊥ U + 2 k2 n
′

T (T – T0) U . (6) 

 

Boundary conditions are set so that in the absence of 
distortions the complex amplitudes of the high–power and 
reference beams are conjugated in the plane z = 0. For this 
purpose their complex amplitudes must be conjugated also 
in the plane z = f, i.e., 
 

U(r, f) = E*
0(r, f) , (7) 

 

where E0(r, f) is the solution of Eq. (5) at T ≡ T0 with the 

boundary conditions (3) at Φ ≡ 0. 
For numerical solution of equations describing the 

propagation of reference and high–power beams we used the 
splitting method7,17,18 with a symmetrized splitting operator. 
In this case all the fields are represented on a three–
dimensional grid with the dimensionality (N⊥, N⊥, Nz) 
 

E
I, J

(z
K
) = E(x

I
, y

J
, z

K
) = E(r

I, J
, z

K
) ; (8) 

 

x
I
 = h⊥ (I – I0); I = 1, 2, ... , N⊥ ; 

 

y
J 
= h⊥ (J – J0); J = 1, 2, ... , N⊥ ; 

 

z
K
 = hz ( )K – 

1
2 ; K = 1, 2, ... , Nz , 

 

where (I0, J0) are the values of indices corresponding to the 

origin of the coordinates, and (h⊥, h⊥, hz) are the distances 

between the nodes of the grid. The results of calculations 
given below were obtained at N⊥ = 64, h⊥ = a0/8, Nz = 16, 

and hz = f/16. 

 
PHASE CONJUGATION METHOD 

 
The phase conjugation method is a special case of a 

more general method of wave front inversion (WFI) based 
on invertibility of electrodynamics equations. As applied to 
the used mathematical model, the invertibility of the 
propagation equation means that if the complex amplitudes 

E and U are conjugated in the plane z = 0, then they are 
conjugated in the focal plane z = f, and vice versa: 
 

E(r, 0) = U*(r, 0) ⇔ E(r, f) = U*(r, f) . (9) 
 

Owing to the technical problems occurring in the 
wave amplitude control, in AOS one usually restricts 
oneself to the phase control, that is, uses the phase 
conjugation method 
 

Arg (E(r, z = 0)) = Arg (U*(r, z = 0)) – Arg (U(r, z = 0)) . (10) 
 

If the distributions of amplitude modules of the reference 
and corrected fields are close 
 

A(r) = ⏐E(r, 0)⏐ ≈ ⏐U(r, 0)⏐ (11) 
 

(or they differ by a constant factor), then one can look 
forward to high efficiency of such a purely phase control. 
The boundary condition for a corrected beam takes the form 
 

E(r, 0) = A(r) exp (– i Arg (U(r, 0))) (12) 
 

or  
E(r, 0) = A(r) exp (– i arg (U(r, 0))) . (13) 
 

Mathematical formulation of the PhC method (12) has two 
peculiarities. First, the argument of the complex number is 
determined accurate to 2πm, m = ± 1, ± 2, ... ; second, the 
argument of zero complex number is undefined. 

If in the case of numerical simulation of AOS the 
corrected field is determined through the principal value of 
the argument of the reference wave complex amplitude (13) 
then the first peculiarity is inessential. However, in 
simulating the wave–front corrector to calculate the 
approximation of the required surface we need for 
untruncated phase while the principal value of the argument 
is limited by the range [– π, π]. To obtain the untruncated 
phase, the operation of phase joining should be performed. 
It is common practice in this case to calculate the phase 
differences and then the problem on the function 
reconstruction is solved on the basis of the values of its first 
differences in two directions. At numerical simulation the 
phase difference at two adjacent nodes of the grid is 
determined as follows: 
 

Δx
I, J = Arg (UI+1, J) – Arg (UI, J) = arg (UI+1, J) + 2π mI+1, J – 

 

– arg
 
(UI, J) – 2π mI, J = arg (UI+1, J) – arg (UI, J) + 2π kx

I, J , 
 

⏐kx
I, J⏐

 
≤ 1 (14) 

 

and similarly for Δ y
I, J . The values of k x

I, J , k y
I, J ∈ {–1, 0, 1} 

are determined from the conditions |Δ x
I, J| ≤ π and |Δ y

I, J| ≤ π 

(Ref. 15). Similarly the phase differences can be determined as 
 

Δx
I, J = arg (UI+1, J U*

I, J) ; (15) 
 

Δy
I, J = arg (UI, J+1 U*

I, J) .  
 

The problem on reconstructing untruncated phase from its 
differences calculated from the complex amplitude at the 
nodes of the reference grid is mathematically equivalent to the 
problem on phase reconstruction from phase differences 
obtained from the data of an interferometer sensor or 
estimated by the local phase tilt measured using a Hartmann 
sensor. Since the number of differences is twice as large as the 
number of points, where the phase value must be obtained, 
such a problem is excessive and some additional conditions are 
usually fomulated, namely, minimizing of squared 
discrepancy19 
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∑
I, J

 [(φI+1, J – φI, J) – Δx
I, J]

2
 + [(φI, J+1 – φI, J) – Δy

I, J]
2

 → min (16) 

 
or minimizing of integral variance of the estimation error20 
 

< ∑
I, J

 (φI+1, J – φ
∧

I, J)
2> → min . (17) 

 
Here the statistical averaging is denoted by angular brackets, 

φI, J is the sought estimate of the phase, and φ
∧

I, J is its exact 

value. In both cases the problem is reduced to the solution of 
a set of linear equations of the following form: 
 
φI+1, J+ φI–1, J + φI, J+1 + φI, J–1 – 4 φI, J= Δx

I, J + Δy
I, J – Δx

I–1, J – 

 
– Δy

I, J–1 . (18) 

 
When the differences are set on a uniform grid, we can 
use for solution of this problem the method of discrete 
Fourier transform (DFT) and the fast Fourier transform 
(FFT) algorithm21,22 if the number of grid nodes satisfies 
appropriate requirements. Solution of the set of 
equations (18) reconstructs the argument of complex 
amplitude accurate to a constant  
 
Arg(UI, J) = φI, J + C ; (19) 

 

UI, J
 = ⏐UI, J⏐ exp [i (φI, J + C)] 

 
and exactly corresponds to the initial values of differences 
 
φI+1, J – φI, J = Δx

I, J, φI, J+1 – φI, J = Δy
I, J , (20) 

 
if the field U has no zero values in the region considered. 

 
SCREW DISLOCATIONS OF THE WAVE FRONT 

 
At the points where the complex amplitude (CA) of an 

optical wave is exactly equal to zero, its argument is 
uncertain. If the point under consideration is the intersection 
of lines, where the real and imaginary parts of CA change 
sign, this point is the center of screw dislocation of the wave 
front. The existence of such dislocations was predicted 
theoretically13 and supported by the results of laboratory14 
and numerical15 experiments. 

Let us consider the vector field g = (gx , gy) defined as 

follows: 
 

gx(x, y)= lim
Δx→0

 
1

Δ x arg⎣
⎡

⎦
⎤U( )x+

Δx
2 , y  U* ( )x – 

Δx
2 ,y ; (21) 

 

gy(x, y)= lim
Δy→0

 
1

Δyarg ⎣
⎡

⎦
⎤U( )x,y+

Δ y
2 U*( )x, y– 

Δ y
2  . 

 
The field g(r) is, by definition, the gradient of the optical 
wave phase, and it is so if U(r) vanishes nowhere 
 
⏐U(r)⏐ ≠ 0 ⇒ g = ∇ Arg (U(r)) . (22) 
 

In presence of dislocations, the field g has singularities and 
ceases to be a purely potential field, and the contour integral  
 

⌡⌠
C

 Î  g d r = ± 2π (N
+
 – N

–
)  (23) 

 

is determined by the number of dislocations inside this contour 
and twisted in positive, N+, and negative, N–, directions.13,14 

In this case the phase difference expressed in terms of the 
contour integral 
 

φ(r2) – φ(r1) = ⌡⌠
r1

r2

 g d r  (24) 

 

depends on the path of integration, and the equation  
 

∇ φ = g (25) 
 

has no solution.  
It is well known that any vector field g can be 

represented as a sum of irrotational g1 and solenoidal g2 

components 
 

g = g1 + g2 , (26) 
 

the solenoidal component can be here excluded by the use of 
the divergence operator22,23,24 so that the solution of the 
Poisson equation 
 

∇2 φ = div g = div g1 (27) 
 

corresponds to the potential part of the reference field g 
 

∇ φ = g1 . (28) 
 

Since the set of linear equations (18) is the finite–
difference representation of the Poisson equation (27), the 
algorithm of reconstruction, solving the set of linear 
equations (18), filters the wave–front dislocations, thus 
smoothing out the estimate of the optical wave phase.  

A number of the results on numerical simulation of 
phase conjugation has been obtained based on the boundary 
condition of the exact phase conjugation 
 

EI, J(0) = AI, J exp [i arg (UI, J(0))] . (29) 
 

As a rule, dislocations do not fall accurately on the grid 
nodes, and the boundary condition (29) is correct. However, 
the corresponding analytical boundary condition 
 

E(r, 0) = A(r) exp [i arg (U(r, 0))] (30) 
 

is uncertain at the points where U(r, 0) = 0. When 
A(r) ≠ 0, at the same points the continuity of the field 
E(r, 0) breaks down, and it becomes nondifferentiable. 
Although the grid boundary condition (29) can also be 
considered to be a result of application of a corrector with 
the element size equal to the distance between the grid 
nodes, care must be exercised in the interpretation of the 
results of numerical experiment since the corresponding 
analytical boundary condition (30) is incorrect.  

To better understand how the specific boundary 
conditions of the type (29) work at the appearance of 
dislocations in the reference beam, we have performed a 
numerical experiment in which we have calculated 
diffraction of the beam with the Gaussian intensity profile 
under the boundary condition of the form 
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E(r, 0) = A(r) exp [i arg (x + i y))] . (31) 
 

As is evident from Ref. 13, the field 
 

U(r, z) = eiγ (Bx x + i By y) , (32) 
 

where γ, Bx , and By are real constants, satisfies the 

parabolic wave equation in vacuum and has its dislocation 
at the origin of coordinates. Thus, the boundary 
condition (31) describes the field with the dislocation at the 
point r = 0. In this case its intensity is different from zero 
everywhere. 

Figure 1 shows intensity distribution over the cross 
section of such a beam for different values of z′ = z/zd , 

where zd = ka2
0 is the diffraction length. At the center of the 

beam the intensity dip occurs reaching practically zero value 
at z' = 0.1. Similar effect is observed at compensation for 
thermal blooming when a dislocation appears in the 
reference beam. 

 

 
 

FIG. 1. Beam cross sections at the diffraction of a beam 
under boundary conditions (31) in vacuum. From left to 
right: z' = 0.03, z' = 0.06, and z' = 0.09. 

 
PHASE CORRECTION FOR THERMAL BLOOMING 

 
We have conducted two types of numerical experiments 

on application of the phase conjugation method to correction 
for thermal blooming. In one experiment we used for the 
corrected beam the boundary condition of exact 
conjugation (30), and in the other case – the boundary 
condition (3). The phase correction Φ(r, t) was obtained as a 
result of simulation of the Hartmann sensor25 and subsequent 
modal estimation of the reference beam phase.26,27 

In both cases we have simulated a "high–speed" adaptive 
system, focusing the Ganssian beam on a target plane, at the 

distance f = 
1
10

 zd . At diffraction the intensity at focus of 

such an optical system in vacuum is 10 times as large as the 
axial intensity in the emitting aperture. In the focal plane we 
recorded the peak intensity Wmax and the radiant flux P 

through a circle of a radius af = a0 f/zd equal to the radius of 

the undistorted beam at the intensity level of 1/e. About 63% 
of the undistorted beam power is within this circle. 
Simultaneously we recorded the appearance and coordinates of 
dislocations of the reference beam wave front in the plane 
z = 0. For this purpose at each node of the grid within the 
circle of radius 2a0 we calculated the value 
 

ΣI, J = Δx
I, J + Δy

I+1, J – Δx
I, J+1 – Δy

I, J (33) 
 

corresponding to the integral (23) over the contour shaped 
by four adjacent nodes of the grid. For the majority of 
nodes ΣI, J ≅ 0 accurate to the errors of arithmetical 

operations. The nodes, for which ΣI, J ≅ ± 2π, correspond to 

the contours containing one or more dislocations. The case 
when ΣI, J > π, we consider to be indicative of a dislocation, 

to whose coordinates are assumed to be at the contour 
center (xd, yd) 
 

xd = h⊥ (I + 
1
2 – I0), yd = h⊥ (J + 

1
2 – J0) . (34) 

 

Of course, such a method does not permit detection of a 
pair of dislocations with different signs falling into the 
contour considered, but in this case they do not affect the 
solution of the propagation problem. 

Let us consider the results of simulation of the exact 
phase conjugation. Figure 2 presents the curves indicating 
the dependence of peak intensity Wmax and the coordinate 

of dislocation xd on the time t, normalized as follows7: 
 

t′ = 
t
τν

 , τν = 
2 a0

V  ; W′= W 
2 k2 α n'

T a
3
0

ρ Cp V⊥ n0
 ;  

 

P' = P 
2 k2 α n'

T a0

ρ Cp V⊥ n0
 ; x'

d = 
xd

a0
 (35) 

 

(below the primes at normalized values are omitted). The 
plots are given for two values of axial intensity of the 
initial beam: W0 = 16 and W0 = 24.  

At the beam intensity W0 = 16 (curve 1) the dislocations 

do not appear, and the beam parameters become stationary. 
With the increase of beam intensity up to 24 we observe the 
intensity fluctuations (curve 2) followed by periodic 
appearance of dislocations in the reference beam (curve 3). 
Dislocations appear close to the axis of the optical system and 
travel along the direction coinciding with the wind direction 
V = (Vx, 0), Vx > 0, until they go out from the zone  

x2
d + y2

d ≤ (2a0)
2 recorded. The increase of intensity to 32 

results in the fact that a new pair of dislocations appears 
before the preceding pair goes out from the zone. 

 

 
 

FIG. 2. Dynamics of the peak intensity Wmax(t) of a 
corrected beam in the focal plane at the beam initial 
intensity W0 = 16 (1), 24 (2), and the coordinate of the 
reference beam dislocation xd(t) at W0 = 24 (3). 

 

Figure 3 shows typical intensity distribution of a 
corrected beam in the cross section z = f/32. Two intensity 
dips, travelling leeward in the beam, correspond to two 
dislocations in the phase of the reference beam. 

To understand the mechanism of oscillations, shown in 
Fig. 2, the coordinate of the cross section zmax was recorded, 

at which the peak intensity of a corrected beam is maximum 
(the position of beam caustic). Figure 4 shows time 
dependence of the position of the beam caustic zmax and peak 

intensity in it. At the intensity W0 = 16 the beam caustic 

gradually shifts to the emitting aperture and its position is 
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stabilized at the point zmax ≈ 0.85f. At W0 = 24 the caustic 

shifts closer to the emitting aperture and its position oscillates 
near the point zmax ≈ 0.4f with the amplitude of the order of 

Δzmax ≈ 0.15f. At the same time, the intensity in the caustic 

strongly exceeds the initial intensity of the beam. The period 
of oscillations of the caustic position coincides with the period 
of the dislocation appearance.  

 

 
 

FIG. 3. Intensity distribution of a corrected beam in the 
cross section z = f/32 with the wave–front dislocations 
appearing in the reference beam, W0 = 24. The upper row: 

t = 0.50, 0.52, and 0.54; the lower row: t = 0.56, 0.58, and 
0.60. 

 

This effect can be interpreted as a manifestation of the 
positive feedback between the adaptive system and the 
thermal lens. At the initial stage of heating t ≤ τV the main 

contribution to distortions comes due to defocusing. Its 
compensation results in an additional focusing of a high–
power beam and its caustic shifts to the source. The caustic 
becomes narrower, and the beam intensity in it increases 
that leads to the temperature increase in the beam caustic 
and to strengthening of the defocusing effect of the thermal 
lens. This in turn results in a subsequent shift of the 
caustic, and so on. 

 

 
 

FIG. 4. Dynamics of the caustic position of a high–power 
beam, zmax(t), at W0 = 16 (1) and 24 (2), and peak 

intensity in the caustic for W0 = 24 (3). 
 

The thermal lens shift towards the emitting aperture 
decreases "the feedback coefficient". In the limiting case when 
the thermal lens strength is concentrated close to the AOS 
aperture and the additional focusing, contributed by the AOS, 
is compensated for by the defocusing thermal lens, we do not 
observe any subsequent increase in defocusing of the reference 
beam and in focusing of the high–power beam. 

If the distortions in the high–power beam caustic 
achieve the value sufficient for appearance of a dislocation 
in the reference beam, the information on the defocusing 
introduced by the thermal lens is erased without entering 
into the adaptive system, and the high–power beam 
focusing decreases whereas its caustic shifts towards the 
target. As a result, the thermal lens, being the cause of 
occurrence of dislocations, cools and some time later the 
lens is cooled down to the state when dislocations disappear 
and the feedback is restored. Then the whole cycle is 
repeated and the system develops into the oscillatory state 
typical for nonlinear systems with a feedback. 

At the next stage of the work, an AOS with the 
Hartmann sensor, consisting of 16 subapertures arranged in 
four rows, is simulated. Four corner subapertures are not 
taken into account, and local tilts are estimated only in 12 
subapertures (Fig. 5). The size of the sensor aperture D = 4a0 

corresponds to the beam diameter at the intensity level of 
1/e2. The reference beam coming to the sensor is assumed to 
be passed through a correcting and a focusing optical systems 
 

U(r, 0, t + Δ t) exp ( )i 
k r2

2 f  + i Φ(r, t)  . (36) 

 

The phase correction is determined as a sum of Zernike 
polynomials Zl 
 

Φ(r, 0) = 0 ; (37) 
 

Φ(r, t + Δ t) = Φ(r, t) + ΔΦ ; 
 

ΔΦ = ∑
l=2

15
 cl (t + Δ t) Zl ⎝

⎛
⎠
⎞r

2 a0
 

 

with the weighing factors cl obtained by the modal 

estimation of the phase25,26,27 on the circle inscribed in the 
sensor aperture. 

 

 
 

FIG. 5. Configuration of the wave–front sensor. 
 

Figure 6 shows the dynamics of the peak intensity in 
the focal plane on a target at three values of the initial 
beam intensity. In all the three cases we have no 
oscillations, i.e., the application of the Hartmann sensor 
with modal estimate damps the oscillations or, at least, 
increases the threshold of their appearance. Nevertheless, 
the dislocations in the reference beam could appear. It 
turned out that in the focus of the sensor subaperture, into 
which the dislocation falls, two focal spots are observed, 
each having the diffraction size (Fig. 7). In contrast to AOS 
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with the exact phase conjugation, the positions of 
dislocations are relatively stable. 

 

 
 

FIG. 6. Dynamics of peak intensity Wmax(t) in the AOS 

focus with the Hartmann sensor at W0 = 16 (1), 32 (2), 
and 64 (3). 

 
 

FIG. 7. Dynamics of the intensity distribution in the 
subaperture focus of the Hartmann sensor with dislocation 
appearing in the reference beam. 

 
Since the phase correction is now determined by the 

weighted sum of the Zernike polynomials, it becomes 
possible to control directly the aberration spectrum of the 
phase correction. The above considerations enable us to 
assume that the positive feedback between the adaptive 
system and the thermal lens is closed mainly by the control 
of squared aberrations. Furthermore such a feedback affects 
negatively the correction efficiency. Besides, it is known 
that at thermal blooming the optimal focal length is 
longer17 than in vacuum while the adaptive correction 
decreases the focal length of the system, compensating for 
the thermal lens effect. 

The first step that we can propose for decreasing the 
harmful influence of this effect is the complete exclusion of 
the focusing control 

 

ΔΦ = ∑
l=2

15
 (1 – δl, 4)cl (t + Δt) Zl ⎝

⎛
⎠
⎞r

2 a0
,  

 

δlm = {  0, l ≠ m ,
1, l = m .  (38) 

 

It turned out that the exclusion of the control over 
astigmatism  
 

ΔΦ = ∑
l=2

15
 (1 – δl, 4) (1 – δl, 5) (1 – δl, 6) cl Zl (39) 

provides for an additional increase in the correction 
efficiency. Since in addition to squared aberrations the tilt 
and coma also contribute greatly, the correction by Eq. (39) 
results mainly in a better beam pointing and straightening 
of a characteristic "sickle" owing to coma. 

Figure 8 shows the steady state values of the 
parameters of a corrected beam depending on the initial 
intensity when correcting by the formula (37) (curve 1) and 
by formula (39) (curve 2), that is, without control over the 
total beam focusing and astigmatism. Curve 3 in this figure 
corresponds to the exact phase conjugation (the boundary 
condition (29)), and curve 4 corresponds to the system 
without a correction. The data for the exact phase 
conjugation are obtained by averaging over time 
corresponding instantaneous values. 

 

 
 

 
 

FIG. 8. Dependence of the peak intensity Wmax (a) and 
radiant flux at the target P(b) on the beam initial 
intensity W0 for different versions of AOS: AOS with the 

Hartmann sensor (37) (1), AOS with the Hartmann 
sensor (39) (2), exact PhC (3), and without a 
correction (4). 

 

It is known that the efficiency of correction by the 
formula (37) is somewhat lower than the efficiency of the 
exact phase conjugation while the correction by the 
formula (39) (without control over squared aberrations) is 
more effective than the exact phase conjugation starting 
from the power, at which the dislocations and oscillatory 
state occur (W0 ≈ 20–24). Together with the optimization 

of the beam initial intensity the correction by the 
formula (39) gives more than twofold gain in the peak 
intensity in the focal plane as compared to the system 
without a correction and approximately 1.5–fold gain as 
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compared to the exact phase conjugation, whereas the gain 
in power P is 3– and 1.5–fold, respectively. 

Of course, the exclusion of control over squared 
aberrations will give the gain not in all situations. For the 
beams with the nongaussian profile of intensity and for 
vertical paths or for beam scanning the results may be 
different. In particular, for the vertical paths the small–
scale instability is more typical and for suppressing it one 
must exclude the small–scale part of the reference beam 
phase.8 

CONCLUSION 
 
We have considered the problem on compensation for 

nonstationary thermal blooming by the phase conjugation 
method. Analysis of the numerical experiment has shown that 
the appearance of sustained free oscillation in the adaptive 
system is connected with the occurrence of dislocations in the 
reference beam. 

The use of a Hartmann sensor with low spatial resolution 
and modal estimation of the phase results in smoothing of the 
phase estimate and damps the AOS oscillations.  

Adaptive compensation for defocusing and astigmatism 
results in the shift of the beam caustic towards the source and 
in the appearance of strong thermal lens. Exclusion of the 
square aberrations control weakens this effect and increases 
the efficiency of correction for thermal blooming along a 
homogeneous path. 
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