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Vanishing of the wave amplitude accompanied by the appearance of phase 
dislocations in these points violates the signal continuity in phase measuring and 
adaptive optical systems and makes them inoperative. The well–known descriptions 
of wave process either admit of appearance of singular phase points and become 
ineffective or ignore these points and have limited area of application. All this is a 
manifestation of complication of the same physical reality. A solution to this 
problem is likely to be found by representation of the wave function in terms of the 
components with regular phase. In this paper, we consider the minimal–phase 
components of an analytic signal. 

 

1. INTRODUCTION 
 
Let U(r, t), r{x, y, z} be the real function 

approximating a light wave, which propagates through an 
inhomogeneous medium along the z axis, and the 
following representation be necessary for this function: 
U = A(r, t) cos Φ(r, t), where A is the amplitude, and Φ is 
the phase of the wave. 

A salient feature of this function is that its phase 
may be written in the form Φ = ϕ(r, t) + kz + ωt, with 
the values of k and ω being such that the Fourier 
transforms of cos kz and cos ωt oscillation modes do not 
intersect the Fourier transforms of the functions 
A(r, t) cos ϕ(r, t) and A(r, t) sin ϕ(r, t) in corresponding 
arguments and occur at much higher frequencies. Such 
properties of a light wave may be most naturally 
expressed if U(r, t) is the entire exponential function of 
each variable. The theorem proved in Ref. 1 allows this 
approximation to be as accurate as is wished if  
 

lim
p→∞

 sup 
log M(p)

log p  = 0 , 

 
where  
 

M(p) = max ⏐U ′x(r, t)⏐ for ⏐x⏐ < p . 

 
In doing so the physical properties, namely, 
monochromaticity and parabolic nature, are extended to 
the wave approximation U(r, t). Such an approximation 
is no longer the exact solution to the wave equation. 
However, there is no need for it, since the notions of the 
amplitude and phase do not follow from this equation, 
but exist only in connection with their measurements or 
definition. 

The Hilbert transform is the sole linear operator allowing 
noncontradictory definition of the amplitude and phase of 
wave process to be given.2 This transform exists for square 
integrable functions, limited functions, and functions 

satisfying the Hlo
⋅⋅

der boundary condition. It follows from the 
properties of Hilbert transform under the above–mentioned 
assumptions about a wave model that  

 

H
t
 U(r, t) = H

z
 U(r, t) =

def

 V(r, t) = A(r, t) sinΦ(r, t) . (1) 

 
Here, the symbol H denotes the operators of Hilbert 

transform over the variables t and z. Let us introduce the 
complex wave function as an analytic signal (AS). Keeping 
in mind expression (1), we derive 
 

W(r, t) =
def

 U(r, t) + i V(r, t) = A(r, t) exp i [ϕ(r, t) + kz + ωt ]. (2) 
 
The analytic signal may be introduced for slant cross 
sections z = z

0
 + x cosθ or t = t

0
 + x/ν as well. In this 

case Hilbert transform is taken over the variable x. The 
parabolic and monochromatic nature of a wave makes it 
possible to choose the angle θ between the z axis and the 
image plane close to π/2 and the rate of scanning v in the 
plane z = const large enough. Then A(r, t) and ϕ(r, t) in 
slant and normal cross sections will be indistinguishable. 
In this sense the amplitude and phase defined by AS are 
invariant under a change of coordinate over which the 
Hilbert transform is taken. Hence, they are unique. 

The dispersion relations can be derived3 for the 
logarithm of analytic signal W(r, t). One of them has the 
form: 
 

ϕ(x, x–) = H
x

 ln A(x, x–) + l(x, x–) + 2∑
n

 

 arctan 
x – x

n
(x–)

h
n
(x–)

 . (3) 

 

Here the symbol –x
 
⊂ {r, t} denotes all variables except x, 

l(x, –x) is the arbitrary function of –x linear in x, x
n
 and η

n
 are 

the real and imaginary coordinates of the zeros of the function 

W(x, –x) in the complex half–plane x + iη, η > 0. 
In the domain where the Fermat principle in its 

weak statement is valid, out of a set of phases possible 
for a given intensity and defined by expression (3), only 
stationary phase realizes, that is, the first derivative of 
phase should vanish. A phase addition, dependent on the 

coordinates of the zeros of the analytic signal W(x, –x), 
may be variable. For stationarity of expression (3), it is 
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essential that some nonidentical sets of the zeros of the 

function W(x + iη, –x
0
), η > 0, yield the same phase. 

However, it is impossible in view of the uniqueness of the 
entire function representation by its zeros. Hence, the 
phase given by expression (3) is stationary if and only if 
there are no zeros in the upper half–plane. 

It follows from the Weierstrass preliminary theorem 
(Ref. 4, p. 113) that in the domain in which an analytic 
function of complex variables is holomorphic, its zeros 
move along continual trajectories. Hence, the zeros of an 
entire function, before their appearance inside a domain, 
should appear on its boundary. In this case the line  
–x = –x

0
 is such a boundary; as it takes place, x may be 

changed for z or t. 
What this means is vanishing of the field intensities 

precedes the appearance of runs–on of the phase that are 
different from linear functions and uncorrelated with the 
logarithm of the amplitude of the Hilbert transform. It is 
also well known that weak statement of the Fermat 
principle admits of presence of caustics (see Ref. 5, 
p. 809), with the domain of the first caustics being 
coincident with the origin of the region of strong 
fluctuations in the light wave intensity.6 

It is evident from the foregoing that such a physical 
phenomenon as light wave propagation has fixed 
complexity threshold above which its representation 
contains singular points. 

 
2. MODELING OF THE PHASE DISLOCATIONS OF  

THE WAVE FUNCTION 
 
The appearance of phase dislocations of a light wave 

propagating through a randomly inhomogeneous medium 
was studied in quasimonochromatic and parabolic 
approximations. To this end, the known numerical model 
described in Refs. 7 and 8 was used. In this model, the 
method of splitting and fast Fourier transform by the 
Singleton algorithm were used for solving the wave 
equation. A wave and its angular spectrum were 
approximated by periodic functions entered in a computer 
in the form of two–dimensional matrices of their 
readings. Randomly inhomogeneous medium was modeled 
by the spectral power density of the field of refractive 
index of power–law type that is typical of the 
atmospheric turbulence. The propagation path was 6 km 
long, and the wavelength was 0.6328 μm. The magnitude 
of the wave fluctuations was characterized by Fried's 
coherence radius for both weak and strong intensity 
fluctuations. 

As seen from Fig. 1a, the phase dislocations appear 
at the points where the intensity reaches its maximum. 
These points correspond to zeros of the wave function or 
AS. Near these points, the phase varies spirally. Along 
the whole length of boundaries between white and black 
fragments in Fig. 1b, between two points of dislocation 
formation, the phase surface undergoes discontinuity of 
± 2π. Such a discontinuity cannot be removed with the 
use of translations of surface fragments. The dichotomy of 
maximum and minimum contour lines of the interference 
pattern, and appearance and disappearance of interference 
bands occur at points of dislocations (Figs. 1c and d). 
Contour lines of phase cosine and sine form a radial 
structure in the vicinity of dislocation points and 
converge to them (Figs. 1e and f). 

 

 
FIG. 1. Wave phase dislocations and structures created 
by them. Crosses denote zeros of the intensity and 
corresponding points of phase dislocations: wave 
intensity (a); wave phase (b); interference pattern for 
unit amplitude and carrier wave perpendicular to 
horizontal coordinate axis (c); interference pattern for 
unit amplitude and carrier wave perpendicular to 
vertical coordinate axis (d); contour lines of phase 
sine (e); and, contour lines of phase cosine (f). 

 
We have performed numerical experiment to compare 

the behavior of wave–function scintillations and angular 
spectrum with the number of phase dislocations appearing 
with increase in turbulence intensity. The presence of 
dislocation was determined through calculation of phase 
gradient between neighbouring points arranged in a closed 
contour drawn around the point of phase function under 
analysis. Dislocation occurred if the phase gradient was 
≥ 2π or ≤ – 2π. The phase was calculated as inverse 
tangent of the ratio between imaginary and real 
components of the wave function. We normalized the 
number of dislocations to the ratio between the number of 
counts of calculational grid to the number of counts in a 
circle where a dislocation was determined. The wave 
scintillation index was calculated as a normalized 
variance of wave intensity, while the angular spectrum 
scintillation index was calculated as a normalized 
variance of the square of the modulus of its Fourier 
transform. We normalized the variances to the mean 
square of the corresponding parameter. Estimates of all 
three parameters under investigation were averaged over 
nine experiments. 

Results of experiment are shown in Fig. 2. In the 
region of large Fried's coherence radii that corresponds to 
weak turbulence, the wave scintillation index varies 
linearly, dislocations are absent, and the angular 
spectrum scintillation index reaches maximum values. 
Saturation of the wave scintillation index and normalized 
number of dislocations at unity level takes place with 
increase in the turbulence intensity. The angular spectrum 
scintillation index saturates at unity level as well, but 
the dependence is reverse as compared with two other 
plots. 

As one would expect, the dislocation number 
saturates since dislocation density cannot be greater than 
unity. However, it is interesting that maximum density  
of dislocations is achieved together with saturation  
of scintillation indices of a wave and its angular 
spectrum. 
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FIG. 2. Estimates of scintillation indices of wave and its 
angular spectrum and normalized number of wave phase 
dislocations. Standard deviations are indicated as 
confidence intervals. These deviations are not indicated if 
their values are less than point size. 

 
It should be pointed out that the phase dislocations 

and, correspondingly, the zeros of the wave function 
appear when the wave scintillation index approaches 
unity, that is, at the origin of the region of strong 
fluctuations. 

 
3. MINIMAL–PHASE COMPONENTS OF  

THE WAVE FUNCTION 
 
Expression (3) relates the phase to the logarithm of 

the amplitude of the wave function or AS. However, the 
sum entering into the right–hand side of the expression 
hinders its use for determining the phase from the 
amplitude, since the location of zeros is usually unknown. 

The principle question arises: has the function 

W(x, –x) zeros in the complex half–plane of any variable, 
when the rest of variables take real values? It follows 
from the theorem proved in Ref. 3 (see p. 323) that when 

analytic signal W(x, –x) is limited, all its zeros except, 
maybe, a zero–density set can lie within angles that are 
as small as is wished, near the real axis. Total absence of 
zeros in the complex half–plane is favorable to the 
Hilbert relation between the phase and logarithm of the 
amplitude, or, alternatively, zeros must be located far 
from the region of interest on the x axis so the sum in the 
right–hand side of expression (3) reduces to constant. 
This corresponds to the local validity of the Fermat 
principle, for example, in a paraxial region. 

Rouche's theorem is most practical (see Ref. 4, 
p. 287). It follows from the theorem that if the wave 
function reduces to AS of both coordinates9 in the image 
plane and its zero order has the amplitude which is 
greater than the sum of the rest of components, this 
complex function has no zeros in the complex half–planes 
of both coordinates of the image plane. Needless to say 
that it has no real zeros as well. In this case, in 
accordance with expression (3), the phase is minimal and 
the wave function is minimal–phase one. 

If the modulus of the angular spectrum of the wave 
function has a pronounced global maximum, then this 
function may be represented in terms of four minimal–
phase components. To this end, we must locate the global 
maximum at the origin of coordinates. Then each 
quadrant of spectral plane with the origin of coordinates 
will contain two–dimensional minimal–phase AS. 

The amplitude of global maximum in the angular 
spectrum can be enhanced due to wave focusing and 
apodization as well as due to amplification of the zero 
order of the angular spectrum (Fig. 3) or suppression of 
its higher orders. 

 

 
 
FIG. 3. Phase dislocation suppression due to amplification 
of the zero order of a wave. Standard deviations are 
indicated as confidence intervals. These deviations are not 
indicated if their values are less than point size. Zero 
abscissas correspond to the case in which the zero order was 
not changed. 

 
Minimal–phase properties of the wave functions 

obtained by this way provide a possibility for inversion of 
transforms of the initial wave. 

As is seen from behavior of curves in Fig. 3, the 
energy of zero order is bound to be specified times larger 
than the energy of the rest portion of wave, in order that 
the dislocations disappear and the wave becomes 
minimal–phase one. This amount of increase does not 
depend on the intensity of wave fluctuations and the 
initial number of dislocations. 
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