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A new approach is proposed to stochastic noise diagnostics. The approach is 
based on the use of nonlinear distributed filters (NDF's), which represent either a 
real spatiotemporal physical process or a mathematical construction, specially 
adjusted and implemented using software. Solitons, i.e., nonlinear solitary waves, 
are proposed as NDF. Mathematically, the NDF can be constructed using exactly 
solvable models of nonlinear physics. The above–said is illustrated in examples of 

stochastic Korteweg–de Vries (KDV), sine Gordon (SG), and nonlinear Schr o××

dinger (NS) equations. 
 

INTRODUCTION 
 
The common practice frequently requires decoding of 

signals of complicated nature, including irregular 
stochastic signals. The wide variety of such signals occur 
naturally. In particular, monitoring of the Earth's surface 
and its air and water basins deals with the physical 
characteristics such as temperature, humidity, pressure, 
concentration of a given impurity, intensity of sounding 
radiation, and so on, all of which are represented at a 
fixed spatial point as a time series of a complicated and 
irregular form, caused by the fluctuation nature of 
studied objects or stochastic interaction of the objects 
with their environment. This poses a variety of problems 
connected with decoding of randomly fluctuating signals 
(see, e.g., Refs. 1–4 as well as references therein). As far 
as the signal probabilistic properties are a priori 
unknown, one accepts statistical hypotheses to record 
them and then to extract the useful information. These 
hypotheses allow one to judge with some probability 
(depending on a hypothesis chosen) about the signal 
characteristics and useful information carried by them. 
The modern approach to the solution of this problem 
incorporates the estimation theory5,6 and digital methods 
of signal processing based on spectral signal 
representation.6  

Among the above–indicated problems, of particular 
importance are the problem of identification of Gaussian 
noise and that concerning the additive mixture of the 
deterministic signal f(t) and Gaussian noise αα(t). Their 
importance stems from the widespread conditions favoring 
the formation of Gaussian noise statistics (as dictated by 
the familiar mathematical central limit theorem) as well 
as from the current practice of signal shaping. In the 
present paper, we use conventional statistical approaches 
to show the possibility of exact identification of some 
widespread noise models, including Gaussian noise 
statistics, as well as the possibility, in principle, to solve 
exactly the problem of discriminating between arbitrary 
Gaussian noise and arbitrary deterministic signal in 
additive mixture.  

Chosen as filtering and identifying elements are 
nonlinear distributed systems (see Refs. 7 and 8) such as 
solitary nonlinear waves, i.e., solitons. The above–said is 
illustrated in examples of single–soliton solutions to the 
stochastically perturbed KDV, SG, and NSE equations. It 
should be noted that many–soliton solutions can be used 
analogously.7 Preparatory to discussion, we emphasize that the 

practical implementation of nonlinear distributed filters 
(NDF's) based on nonlinear dynamic systems with distributed 
parameters can proceed in two different directions. In the first 
case, a filter is represented by a certain mathematical 
construction and is implemented as a special software product 
or subject–oriented processor. Exact single–soliton or N–
soliton solutions for the above–enumerated stochastic 
equations can form the mathematical construction in this 
case.* In the second case, the filter is realized as a physical 
device whose particular module imitates dynamics described by 
the KDV, SG or NSE equations. The objective of the present 
paper is to investigate the first direction.  

 

GENERAL EQUATION FOR AN AVERAGE  
SIGNAL ENVELOPE 

 

The propagation of nonlinear solitary wave (soliton) in a 
stochastic medium, whose properties change in a random way 
over spatial and temporal coordinates, is accompanied by the 
soliton transformation. Its geometric and physical 
characteristics vary as functions of the specific features and 
properties of the stochastic medium itself. A soliton response 
to the medium impact thus serves as an indicator of the 
statistical properties of the medium.  

Rigorous single– and many– soliton solutions to a 
number of nonlinear stochastic equations were found by 
Russian and foreign scientists.9–11 In Ref. 12 it was 
emphasized that all these solutions represent a certain 
nonlinear function of a linear functional related to a random 
parameter that characterize the properties of the stochastic 
medium.  

These circumstances provide the possibility to derive 
closed exact equations for averages of the form <Φ(z + ω(t))>, 
with Φ(z) being a certain deterministic function of the 

variable z and ω(t) = ⌡⌠
0

t

 α(τ)dτ being the linear functional of 

the random process α(t), or to formulate a general method of 
calculating the averages <Φ> for arbitrary random processes.  

 

* This statement is in fact much  more general, since 

the mathematical construction for NDF may be taken to be 
any rigorous solution of partial differential equation, 
provided it exhibits the required functional dependence, as 
well as simply a mathematically suitable construction of a 
desired form. 
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In the case of Gaussian fluctuations α(t), the behavior 
of the average in the space of generalized variables obeys 
the diffusion equation with "time"–dependent diffusion 
coefficient12,13 
 

∂ <Φ>
∂ t  = D(t) 

∂2 <Φ>

∂ z2  , (1) 

 

where the variable diffusion coefficient D(t) is closely 
related to the autocorrelation function of the process α  
 

D(t) = ⌡⌠
0

t

 <α(t) α(τ)> d τ ≡ ⌡⌠
0

t

 K(t, τ) d τ. (2) 

 

Angular brackets denote the ensemble averages over 
α(t) realization. In the derivation of Eqs. (1) and (2) we set 
<α(t)> = 0 for convenience. The initial conditions for t = 0 
become <Φ>⏐

t = 0
 = Φ(z). 

Expressions (1) and (2) indicate that the structure of 
<Φ(z + w(t))> serves as a test system to identify the noise 
with Gaussian statistics, by virtue of the fact that the 
evolution of the average <Φ> is governed by diffusion 
equation (1) solely for the Gaussian noise. Thus monitoring 
the behavior of the average envelope <Φ(z + w(t))> in t and 
z space, we can (1) provide an insight into whether or not 
the noise α(t) has Gaussian statistics, (2) reconstruct the 
autocorrelation function of the process (most readily for 
stationary noise case), and (3) elucidate whether or not the 
process α(t) is classified with the ergodic random processes. 
The third opportunity stems from the fact that expressions 
(1) and (2) are rigorous in the statistical sense provided 
that ensemble averaging over α realization is defined. 
However, in practice the noise statistics is analyzed using 
averages over characteristic times. In so doing, for 
comparison of theoretical results with experiment, extra 
assumptions must be made about the relations between the 
statistical averages (over the probability measure) and time 
averages. For ergodic random processes these averages are 
known to coincide.  

Let us discuss briefly test systems in the form of 
soliton solutions to nonlinear stochastic equations. 

As shown in Ref. 9, the rigorous solution to the 
stochastic KDV equation 
 

u
t
 + 6 u u

x
 + u

x x x
 = β(t) (3) 

 

has the form  

u(x, t) = ν(t) – 2 k
2
 sech2

⎣
⎢
⎡

⎦
⎥
⎤

k(x – x
0
) – 4 k

3
 t + 6 k ⌡⌠

0

t

 ν(t) d t , (4) 

 

where β(t) is the Gaussian noise, ν(t) = ⌡⌠
0

t

 β(τ)dτ, k is the 

parameter of spectral problem, and x
0
 is the soliton location 

at initial time t = 0. Wadati9 studied the evolution of the 
average soliton envelope <u(x, t)> under the impact of 
Gaussian white noise β(t), with <β(t)> = 0 and correlation 
function <β(t + τ ) β(t)> = 2Dδ(τ). He demonstrated that 
the evolution is governed by the diffusion equation of the 
form (1) with D(t) ∼ t2. The solution (4) is a particular 
case of the above–considered structure Φ(z + ω(t)) with 
Φ(z) = sech2z, z = k(x – x

0
) – 4k3t, and α(t) ≡ ν(t). In 

Ref. 10 the examples are given of exactly solvable stochastic 
SG and NS equations: 
 

u
x t

 = (1 + α(t)) sin u; (5) 

i u
t
 + i α(t) u

x
 + u

x x
 + 2u ⏐u⏐2 = ε(t) u, (6) 

 

where ε(t) is a stochastic function. Analogously, the 
solutions to these equations are specified functions of either 

the linear functional ω(t) = ⌡⌠
0

t

 α(τ)dτ for SG equation (5) or 

functionals ω(t) and W(t) = ⌡⌠
0

t

 ε(τ)dτ for NS equation (6). 

Bass et al.11 presented a review of some rigorously solvable 
models for the nonlinear wave theory. For all models, the 
solution for the wave amplitude typically has the structure 
Φ(z + ω(t)), where ω(t) is the definite integral of the 
random process, and z is a variable statistically independent 
of the process α. Therefore, all these solutions, after 
statistical averaging, for Gaussian fluctuations α(t) reduce 
to that of the linear diffusion equation with variable 
diffusion coefficient D(t); thus they can be used as test 
systems to verify whether or not the investigated noise is 
Gaussian. 

Also, the studies mentioned above indicate that a 
soliton suffers transformation due to interaction with 
stochastic medium fluctuations. On the average, a soliton 
broadens but, being exactly integrable, preserves its area. 
At long times, the solution of diffusion equation (1) 
approaches asymptotically a self–similar mode, when the 
average <Φ> is described by a Gaussian curve independently 
of the form of the initial condition. It should be noted that 
the amplitude and width of the Gaussian profile are related 
to the autocorrelation function of noise α(t). For example, 
for stationary noise α its autocorrelation function and 
Gaussian pulse train width are related simply as7  
 

K(t) = 2 
d

d t ( )h(t) 
d h(t)
d t . 

 
Thus, the shape and character of broadening of soliton 

average envelope serve as statistically exact identifiers of 
Gaussian noise statistics. In addition, with the Gaussian 
noise statistics, when the problem is to find the shape of the 
autocorrelation function, the character of soliton broadening 
may provide information about the salient features of the 
spectral function of noise (Fourier transform of the 
autocorrelation function). Whether the soliton broadening is 
slow or fast is directly related to the presence of "low–
frequency" or resonance modes in the fluctuation 
spectrum.12,14 While the formers accelerate the soliton 
broadening, the resonance fluctuation modes, in contrast, 
effectively decelerate the broadening (with the broadening 
rate being inversely proportional to the square of the 
fluctuation spectrum Q factor). 

Let us now turn to the case of non–Gaussian process 
α(t) with memory (see, e.g., Ref. 15). This means that the 
probability distributions obey the generalized Fokker–
Planck equations  

 

∂ Q
∂ t  = L

∧

 Q, (7) 

where Q(α, t ⏐Σ, T) ≡
 
Q(α, t ⏐α

1
, t

1
; …; α

n
, t

n
) is the 

conditional probability density, that is, the product 
Q(α, t ⏐Σ, T)dΣ  (dΣ = dα

1
,  …, dα

n
) gives the probability 

that the random process α(t) takes the value α at time t 
provided that at times t

1
,  …, t

n
 other than t the parameters 

of the process fell within the intervals 
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(α
1
, α

1
 + dα

1
), …, (α

n
, α

n
 + dα

n
), respectively. The operator 

L
∧

 (often called kinetic or generating operator) is given in 
differential form as 
 

L
∧

 = ∑
n=1

∞

 
(– 1)n

n!  
∂n

∂ αn Λn
(α, t ⏐ Σ, T). (8) 

 

The kinetic coefficients Λ
n
(α, t⏐Σ, T) are conditional 

averages defined as  

Λ
n
(α, t ⏐ Σ, T) = lim

τ→0

 ⌡⌠ [(α – η)n Q(α, t ⏐ η, t – τ; Σ, T) / τ]d η. 

 

In the limiting case of Markovian processes the kinetic 
coefficients Λ

n
 depend only upon the states of the process α 

at time t, so that Λ
n
(α, t ⏐ Σ, T) ≡ Λ

n
(α, t). Averaging of 

the function Φ(z + ω(t)) reduces in general to calculation of 
the characteristic function χ(k, t) of the process w(t) 
 

<Φ(x + ω(t))> = 
1
2π ⌡⌠

–∞

∞

 d k Φ(k) eiκx χ(k, t) , (9) 

χ(k, t) = <exp (i k ω(t))>, 
 

where Φ(k) is the Fourier transform of the function Φ(z). 
Following the same argument as in Ref. 15 (p. 27), it is 
easy to show that the characteristic function χ can be 
determined from the solution of partial differential equation 
or integro–differential equation (the specific type of the 
equation depends upon the structure of the kinetic operator 

L
∧

 of the stochastic process α) for a certain auxiliary 
function R = R(t, k, α) 
 

∂ R
∂ t  = i k α R + L

∧

 R (10) 

related to the characteristic function χ by the simple 
integral dependence 
 

χ(k, t) = ⌡⌠
(α)

 R(k, t, α) d α. (11) 

 

The initial conditions for the function R in Eq. (10) 
are as follows: R(k, 0, α) = δ(α). 

Thus based on general relations (9)–(11) derived for a 
wide class of random noise models, including non–
Markovian ones, it is possible to develop mathematical 
constructions for testing that noise. In particular, proposed 
are systems (including those constructed based on soliton 
solutions) for testing noise often encountered in 
applications, such as Pearson noise, Poisson noise, and the 
like (detailed results will be given in a separate paper). 

 

ADDITIVE MIXTURES OF DETERMINISTIC SIGNALS  
AND STOCHASTIC NOISE 

 
It is a common practice (or a customary assumption) 

that a receiver stochastic input signal is a sum of a 
certain deterministic function of time, f(t), and random 
noise, α(t). As shown in Ref. 7, once the process α(t) 
obeys the Gaussian statistics, the indicated mixture can 
be completely discriminated. This is done using nonlinear 
distributed filters as a discriminating system. Filters 
based on exact single– and many–soliton solutions of 
stochastically perturbed KDV equation (3) were 
thoroughly investigated. The idea of complete filtration 
relies on the fact that the noise and deterministic signal 
determine a pattern of the transport of a fixed substance 

in the space of generalized variables. Important is the fact 
that the deterministic component of the mixture is 
responsible for convective transport of the substance, 
while the stochastic component – for the transport by 
diffusion. As a result, the convective transport rate 
retrieves the shape and characteristics of deterministic 
signal, while the dynamics of diffusion is used to retrieve 
the noise characteristics. It should be also noted that the 
deterministic component contributes only to the 
convective transport.  

Mathematically, the distributed filter for discrimination 
of the additive mixture ξ(t) = f(t) + α(t) rests upon averaging 

of the functional Φ(z + ⌡⌠
0

t

 f(τ)dτ + ⌡⌠
0

t

 α(τ)dτ) over the 

trajectories of the stochastic process α(t). For Gaussian 
fluctuations α, the average is determined as a solution of 
the transfer equation of the form7  

 
∂ <Φ>

∂ t  + f(t) 
∂ <Φ>

∂ z  = D(t) 
∂2 <Φ>

∂ z2  (12) 

 
with the initial condition <Φ>⏐

t = 0
 = Φ(z). Structurally, 

most simple NDF's are obtained from single–soliton 
solution of SG equation (5) and NS equation (6) (they 
can be found in Ref. 10 in explicit form). When the 
function Φ(z) is represented by single–soliton solutions of 
Eqs. (5) and (6), analysis of Eq. (12) shows that the 
presence of the deterministic process f(t) in this mixture 
determines the trajectory of maximum soliton amplitude. 
The dynamics of soliton broadening is still characterized 
by the stochastic component α(t). 

Thus movement of soliton maximum amplitude along 
a certain trajectory indicates the presence of a regular 
process in the mixture (if the variable t is interpreted as 
time, as in KDV equation (3)) or some regular structure 
within a stochastic medium (when t is understood as a 
spatial coordinate as in Eqs. (5) and (6)). Hence, the 
soliton geometric characteristics: location of its 
maximum, width, and/or amplitude are highly vivid 
indicators of additive mixture of signal and noise 
components. 

 
CONCLUSION 

 
The general approach has been proposed to 

mathematical construction of nonlinear distributed filters 
to test various models of random noise. In the context of 
results (9)–(11), one can develop NDF's specialized for 
particular models of noise, like the diffusion equation (1) 
for the Gaussian noise. Analysis has shown that the 
NDF's on the basis of the soliton solutions provide highly 
convenient and vivid means for studying the probabilistic 
properties and characteristics of fluctuating media. It 
seems promising to use "soliton NDF" to segregate 
between additive mixtures of noise and a deterministic 
process in view of the fact that the latter contributes 
solely to the convective transport of the average <Φ>. 

The approach being developed is believed to provide 
the basis for future development of subject–oriented 
software and hardware intended for practical noise 
spectroscopy. 
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