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This paper describes the iteration method of compensation for wave–front (WF) 

distortions by means of intensity measurements at each iteration step in two parallel 
planes located close to the focal one. The algorithm for the above–indicated WF 
compensation has been constructed for a segmented adaptive mirror based on the 
physical model of image formation. Its mathematical interpretation is given. For small 
WF distortions, the algorithm is demonstrated to satisfy the convergence conditions. 
Examples of numerical simulation of the problem of compensation for WF distortion 
by the given method are presented. 

 
An optical system with an adaptive mirror consisting 

of n segments is considered. Let us introduce the vector 
ζi = (βi, γi), where βi and γi are the angular deflections of 

the ith segment from two perpendicular axes of the 
coordinate system affixed to this segment. 

Let us divide the exit pupil aperture into N 
subapertures corresponding to individual segments of the 
mirror. If we affix the local coordinates ξ and η to each 
subaperture corresponding to individual segment of the 
mirror, within the ith segment the aberration function will 
be linear and will take the form: 

 

W(ξi, ηi) = νi + βi ξi + γi ηi, (1) 
 

where νi is the parallel shift of the ith segment. Let us 

introduce the vector of spatial frequencies fk = (uk, νk), 

being so small that the vector λ R fk does not exceed the 

constructional gap between the segments (here λ is the 
wavelength, and R is the radius of the Gaussian sphere). In 
Ref. 1 it has been shown that at these frequencies for linear 
aberration function (1) the frequency response function of 
the whole exit pupil H(fk) is equal to the sum of frequency 

responses of individual segments and is independent of 
parallel shifts of segments νi: 
 

H(fk) = (1/n) ∑
i=1

n
 exp [i k λ R fk * ζi], (2) 

 

where the symbol * denotes the scalar product of vectors, 
and i denotes imaginary unity. This makes it possible to 
construct an algorithm for compensation for angular 
deflections βi, γi (problem of adjustment) and hence to set 

off the problem of adjustment from the problem of phasing 
(compensation for parallel shifts).  

Using the frequency response of an optical system with 
unknown aberration function (1) in the form of Eq. (2) and 
assuming that the optical system is spatially invariant, we 
represent the image formation in the frequency plane in the 
form2: 
 

J(fk) = H(fk) J0(fk), (3) 
 

where J(fk) and J0(fk) are the inverse two–dimensional 

Fourier transforms of the intensity distribution in the image 

and object planes. Owing to introduction of supplementary 
known aberrations δW(ξ, η), we determine the frequency 

response H+ different from H. Let us introduce the vector 
Δζi = (Δβi, Δγi), where Δβi and Δγi are the supplementary 

known deflections of the ith segment. Taking into account 
Eq. (2), we then derive: 
 

H+(fk) = (1/n) ∑
i=1

n
 exp [i k λ R fk * (ζi + Δ ζi)]. (2′) 

 

We construct the corresponding inverse transform J+ 

from the intensity distribution I+ in the parallel plane 
shifted from the initial plane by small distance along the 
optical axis. This is equivalent to introduction of the known 
wave aberration δW(ξ, η) (defocusing). Taking into account 
Eq. (3), we obtain 
 

J+(fk) = H+(fk) J0(fk). (3′) 
 

The relations (3) and (3′) enable us to write the identity 
 

H+(fk)/H(fk) = J+(fk) / J(fk) = Y(fk). (4) 
 

At low frequencies Eq. (4) is meaningful and 
determines the dependence of the frequency response 
function solely on the results of measurement Y(fk). 

This paper gives the solution to the problem of 
reconstruction of 2n–dimensional vector of unknown 
aberrations ζ = (ζ1, ζ2, ..., ζn) by the iteration method from 

nonlinear identity (4) based on measurements at each iteration 
step of the right–hand side at n frequencies fk (k = 1, ..., n). 

To understand the proposed solution algorithm, we address to 
a simple example. We consider a system with the known input 
action x and the output measurable parameter exp(z – x). 
Here x is referred to as a control. The problem is to find the 
unknown quantity z from the measurable parameter  
exp(z – x). We seek a solution by the method of successive 
approximations (simple iterations). If the measurable 
parameter is represented as the expansion 
 

exp (z – x) = 1 + (z – x) + Δ, 
 

and the designations xn = x, xn+1 = z + Δ are introduced, 

the iteration scheme 
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xn+1 = ϕ(xn) (5) 

 
can be obtained, where the function ϕ(x) = x + exp(z – x) – 1 
satisfies the convergence condition3  
 

⏐ϕ′(x)⏐ < 1 (6) 
 

for small z and x. By selecting x0 as the zero 

approximation, we obtain xn → z according to scheme (5). 

It should be noted that in calculation of the function 
given by Eq. (6) the term exp(z – x) is the result of 
measurement (system output) depending on the control x 
rather than of mathematical calculation. Therefore, we can 
state that in this method at each iteration step the control 
xn+1 is formed, which transfer the system to a new state 

when x → z. 
In the above methods, the question arises of whether 

the random measurement errors produce change in the 
solution z. The simple iteration method has an important 
advantage, namely, the calculational errors are not 
accumulated. The calculational error somewhat deteriorates 
the next approximation. 

We use the idea of solution of this model example 
when solving the problem of adjustment. The  
2n–dimensional vector of angular deflections of WF, caused 
by controllable deflections of segments, is denoted as 
ζ y = (ζ 1

y, ζ 2
y, ..., ζ n

y). The total WF by compensating 

control of the segments is determined by the difference 
between the vectors ζ – ζ y. Taking into account control 
deflections (2) and (2′), we derive 
 

H(fk, ζ – ζ y) = (1/n) ∑
i=1

n
 exp [i k λ R fk * (ζi – ζ yi)], (7) 

 

H+(fk, ζ – ζ y + Δ ζ) = 

= (1/n) ∑
i=1

n
 exp [i k λ R fk * (ζi – ζ yi + Δ ζi)]. (7′) 

 
We first assume that the image source is a point one; 

then, considering that J0(fk) = 1, we derive 
 

H+(fk, ζ – ζ y + Δ ζ) = J+(fk, ζ – ζ y + Δ ζ). (8) 
 

Representing the exponent by the Maclaurin formula 
 
exp [i k λ R fk * (ζi – ζ yi)] = 1 + i k λ R fk * (ζi – ζ yi) + Δ, 
 

the function H+ can be written as 
 

H+(fk, ζ – ζ y + Δ ζ) = (1 / n) ∑
i=1

n
 exp [i k λ R fk * Δ ζi] × 

×(1 + i k λ R fk * (ζi – ζ yi) + Δ) = H+(fk, Δ ζ) + 

+ ∑
i=1

n
 aki (fk) * (ζi – ζ yi) + Δ1, 

 

where  
aki (fk) = i k (1/n) fk exp [i k λ R fk * Δ ζi]. (9) 
 

It then follows that  

∑
i=1

n
 aki (fk) * (ζi – ζ yi) = H+(fk, ζ – ζy

 + Δζ) – H+(fk, Δ ζ) – Δ1. (10) 

 

Let us introduce the vector of length 2n: 
 

b(fk, ζ – ζ 
y) = H+(fk, ζ – ζ y + Δ ζ) – H+(fk, Δ ζ) = 

= J+(fk,
 ζ – ζ y + Δ ζ) – H+(fk, Δ ζ), (11) 

 

determined by the measurement J+ and the known function 

H+(fk, Δζ). We also introduce the real matrix A of order 

2n×2n with elements aki. Then, denoting the matrix inverse to 

A by A–1, Eq. (10) may be represented in the matrix form 
 

A–1 * b(ζ – ζ y) + ζ y = ζ – A–1 Δ1 . (12) 
 

Assuming ζn = ζ y and ζn+1 = ζ + A–1 Δ1, we obtain the 

iteration scheme ζn+1 = ϕ(ζn), where the vector 
 

ϕ(ζn) = A–1 [b(ζ – ζn) + A ζn]. 
 

The vector ϕ(ζn) has the matrix of the derivatives 
 

ϕ′(ζn)= A–1 [b′(ζ – ζn) + A], (13) 
 

and the problem reduces to the study of the matrix  
[b′(ζ – ζn) + A]. A sufficient condition of convergence is 

that the norm of the matrix of derivatives is less than unity3  
 

||ϕ′|| < 1. (14) 
 

Considering the definitions of b and A, we find 
 

[b′(ζ – ζn) + A] = fk exp [i k λ R fk * Δ ζ] × 

× (1 – exp [i k λ R fk * (ζ – ζn)]). (15) 
 

From comparison of Eq. (15) with Eq. (10) it is 
evident that the matrix elements of derivatives of the vector  
[b′(ζ – ζn) + A ζn] are obtained from the elements of the 

matrix A by multiplying into the factor 
 

1 – exp [i k λ R fk * (ζ – ζn)]. (16) 
 

Imposing the restrictions on the values of frequencies 
fk and aberrations ζ, one can make the factors entering into 

formula (16) rather small so that the matrix of derivatives 
given by Eq. (15) satisfies inequality (14) for the given 
matrix A–1, thereby providing convergence of the iterative 
algorithm ζn+1 = ϕ(ζn) for automatic adjustment of an 

optical system to the image of a point source. 
Now we consider the case when the radiation source is 

arbitrary. The image formation in the frequency plane with 
allowance for control from Eq. (4) is described by the 
model 
 

H+(fk, ζ – ζ y + Δ ζ) = H(fk, ζ – ζ y) 
J+(fk, ζ – ζ y + Δ ζ)

J(fk, ζ – ζ y)

 . (17) 
 

Let us expand H(fk, ζ – ζy) in the Maclaurin series. 

Omitting the intermediate calculations, we derive 
 
H(fk, ζ – ζ y) = H(fk, 0) + i k λ R fk ζav + Δ2, 
 

where H(fk,0) is the response function for zero deflections 

of WF (optical system without aberrations), and 

ζav = (1/n) ∑
i=1

n
 (ζi – ζ yi) is the average tilt of WF 

determined by the moments of the ith order of the intensity 
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distribution. Assuming the right–hand side of Eq. (13) to 
be equal to 
 

H(J+/J) ≈ (H(fk, 0) + i k λ R fk ζav) (J
+/J), 

 

we introduce the error Δ = Δ2(J
+/J) in measuring the 

function H+. For small aberrations, we may introduce such an 
error into measurement when determining the vector ζ from 

H+ by the iteration method. 
Numerical simulation at x0 = 0 of different aberrations of 

WF has indicated that the control xn reproduces the vector of 

unknown deflections ζ, and as n → ∞, xn → ζ, while the 

increment Δxn → 0, that is, low spatial frequencies carry 

information sufficient for solving the problem of compensation 
 

for angular aberrations. The algorithm has good convergence. 
In this case, it should be noted that the measurement vector Y 
and hence the algorithm are invariant to the type of the 
intensity distribution of the radiation source. Thus, we obtain 
the system of automatic adjustment of a segmented mirror to 
an arbitrary radiation source. 
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