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Based on an analysis of a system of cumulants of random values, analytical 
expressions are derived for characteristic functions and distribution densities, which 
describe signals in a channel of a Hartmann sensor. Likelihood ratio equation has been 
solved and an expression is obtained for statistically optimum estimate of local tilts 
measured with a sensor of Hartmann type. 

 

1. INTRODUCTION 
 

The Hartmann sensor is a basic element of an 
adaptive optical system of phase conjugation. A 
quadrantal (with four sensitive elements) photodetector 
included in it is commonly used as a receiver of optical 
radiation. After processing of output electrical signals of 
these photodetectors, signals are obtained proportional to 
local phase–front tilts. In this case the reconstruction of 
the phase on the optical system aperture becomes 
possible.1,2 Many papers devoted to synthesis of phase 
reconstruction algorithms from the results of 
measurements with Hartmann–type sensors3,4 a priori 
assume existence of statistically optimum estimates  

V
^

 = 
∂S(x, y)

∂x
 and U

^

 = 
∂S(x, y)

∂y
 , where S(x, y) is the 

phase distribution on the optical system aperture. 
However, no consideration has been given to the approach 
to retrieval of such optimum estimates under conditions 
of the Poisson noise. It should be noted that the 
application of known approaches based on the Gaussian 
approximation for the noise is incorrect in this case, 
because it is a priori known that a light flux with the 
intensity Ii of the order I/M 2 (where M is the number 

of subapertures of a sensor) is incident on each quadrantal 
photodetector of the Hartmann sensor. Thus, we cannot 
say about "strong" signal, for which the Gaussian 
approximation can be applied. It is known5 that detection 
of an optical field with the help of a photosensitive 
surface is connected with the observation of an electron 
flow during a certain time interval. Fundamental 
properties of photodetection are that probability of 
electron detachment from the photosensitive surface of a 
detector is described by the Poisson distribution: 
 

P( k) = 
λk

k! exp (– λ) , (1) 

 

where λ is the parameter of distribution.  
It is known that the density of distribution of a sum of 

the arbitrary number L of the Poisson random variables is 
the Poisson random variable as well, with the parameter 
Lλ. This is explained by the properties of the Poisson 
discrete process. However, taking into account the 
preceding, not only summation of signals from separate 
sensitive elements, but also their subtraction are done in a 
Hartmann sensor when obtaining the signals proportional to 
U and V. It is obvious that the difference between the 
Poisson random variables disobeys the Poisson law. 

Thus, a problem of calculating an analytical expression 
for a distribution density of the Poisson random variable 
difference in the form convenient for analysis and synthesis 

of optimum decision rules for estimation of U
^

 and V
^

 is 
topical. 

In this paper, we have obtained relations for the 
characteristic function of the difference between two 
Poisson random variables and written analytical relations 
for corresponding distribution densities with the use of 
mathematical apparatus of cumulant analysis. We have also 
obtained the expression for optimum estimates of U and V. 

 

2. DERIVATION OF BASIC RELATIONS FOR  

PLANE PHASE FRONT 

 

Let us consider the problem of recording of an optical 
field with a quadrantal photodetector of a Hartmann sensor 
in the following formulation. Because we say about random 
variables, the basic results obtained can be easily extended 
to random processes.  

Let a light flux of low intensity focused with a lens be 
incident on a quadrantal photodetector. With phase–front tilt, 
the summation–difference signal processing is performed for 
calculating its value. In this case after summation and 
subtraction, signals can be written in the form 
 
U = ( u

1
 + m

1
 + u

2
 + m

2
 ) – ( u

3
 + m

3
 + u

4
 + m

4
 ) ,

V = ( u
1
 + m

1
 + u

3
 + m

3
 ) – ( u

2
 + m

2
 + u

4
 + m

4
 ),  (2) 

 
where mi is the additive Poisson noise with the parameter 

λ, and ui is the valid Poisson signal corresponding to the 

ith quadrant of the photodetector. Because ui and mi obey 

the Poisson law, hereafter it is expedient to consider 
Eq. (2) in the form 
 

nx = ( n
1
 + n

2
 ) – ( n

3
 + n

4
 ) ,

ny = ( n
1
 + n

3
 ) – ( n

2
 + n

4
 ).  (3) 

 

Here ni = mi + ui is the Poisson random variable with the 

parameter λ. 
Because the sum of two Poisson variables with the 

parameter λ is the Poisson variable with the parameter 2λ, 
we take the following designations: 
 
n

1
 + n

2
 = N

1
 , n

1
 + n

3
 = N

3
 ,

n
3
 + n

4
 = N

2
 , n

2
 + n

4
 = N

4
,

 (4) 
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where Nj is the Poisson random variable with the 

parameter 2λ. 
Expectations of nx and ny are equal to 

 

M[ n x ] = M[ N
1
 – N

2
 ] = M[ N

1
 ] – M[ N

2
 ] = 0 , (5) 

 

M[ ny ] = M[ N
3
 – N

4
 ] = M[ N

3
 ] – M[ N

4
 ] = 0 , (6) 

 

where M[.] is the symbol of expectation. 
The first moments after simple transformations in view 

of Eqs. (5) and (6) are written as 
 

M[ nx ny ] = M[( N
1
 – N

2
 ) ( N

3
 – N

4
 )] = 0 , (7) 

 

M[ nx nx ] = M[( N
1
 – N

2
 ) ( N

1
 – N

2
 )] = 4λ – k

1 
, (8) 

 

where k
1
 is the correlation coefficient of random variables Ni . 

Considering the nature of the Poisson noise, the 
correlation coefficient should be set equal to zero. 

Moments of higher order for random variables nx and 

ny are written in the form 
 

M[ nx
n
 ] = M[( N

1
 – N

2
)n] = M

⎣
⎡

⎦
⎤∑

k = 0

n

  ckn(– 1)k N 
n – k
1

 N 
k

2
= 

= ∑
k = 0

n

  ckn (– 1)k mn – k, k
1, 2  , (9) 

 

where m 
1, 2
n–k, k

 are the joint moments of random variables N
1
 

and N
2
 of the orders n – k and k.  

Hereafter to designate the order of moments and 
cumulants of variables, subscripts correspond to the moment 
order, whereas superscripts denote the corresponding 
variable. 

It is seen from Eq. (9) that all odd moments m x
2n+1

 of 

the random variable nx are equal to zero, whereas the joint 

moments m 
1, 2
n–k , k

 of random variables N
1
 and N

2
 involved 

in Eq. (10) cannot be set equal to zero in general for even 
moments m x

2n. 

It is known from the theory of cumulant analysis6 that 
in the case of two independent random variables N

1
 and N

2
 

all their joint cumulants are equal to zero, whereas this 
cannot be unambigously asserted for corresponding 
moments. So we take an advantage of this fact and consider 
a system of cumulants of the random variable nx . Unknown 

cumulants can be found on the basis of linearity and 
invariance properties6 from Eq. (9): 
 

χx
n = ∑

k = 0

n

  ckn (– 1)k χn – k, k
1, 2  , n = 0, 2 ... . (10) 

 

Here χx
n are the nth order cumulants of the random variable 

nx , and χn – k, k
1, 2  are the joint cumulants of random variables 

N
1
 and N

2
. 

Analysis of Eq. (10) shows that random variables nx 

are described solely by a system of even cumulants that are 
equal to 
 

χx
n = 4 λ , n = 0, 2, 4, ... . (11) 

 

With the use of Eq. (10) we write down the relation 
for the characteristic function of the sought–after 
distribution of the probability density taking into account 
that only even cumulants exist 

θ( i ν) = exp 
⎣
⎡

⎦
⎤∑

k = 1

∞

 
4 λ

(2 k)!( iν)2 k  . (12) 

 

By summing a series in brackets, we obtain 
 

θ( i ν) = exp {4 λ (cosh( i ν) – 1)} = exp {4 λ (cos ( ν) – 1)} . (13) 
 

Let us take the Fourier transform of Eq. (13) 
 

P( xn ) = ⌡⌠
– ∞

∞

 exp {4λ (cos ( ν) – 1) – i ν xn } d ν . (14) 

 
Considering a well–known series expansion of 

exponential function7
 
 

exp{± i z sin ( ν)} = ∑
n = – ∞

∞

 I 
n( z) exp {± i n ν}, (15) 

 

where In(z) is the modified Bessel function of the nth order, 

after simple transformation we obtain 
 

P( xn ) = exp {– 4 λ} ∑
n = – ∞

∞

 I 
n(4 λ) δ [ xn – n], (16) 

 

where δ(x) is the delta function. 
Because the random variable nx takes only discrete 

values, final expression for the sought–after density is 
written as 
 

P( n) = exp{– 4 λ} I 
n(4 λ). (17) 

 

It is seen that density (17) is normalized with the weight 
of unity. 

Let us consider physical meaning of the obtained 
results. First, zero odd distribution moments, as it 
follows from Eq. (11), indicate that the a priori density 
of signal distribution at the output from a quadrantal 
photodetector of the Hartmann sensor is symmetric. 
Existence of higher cumulants for fixed values of the 
parameter 4λ allows us to conclude that the obtained 
distribution differs from the Gaussian one. 

 
3. CASE OF A PHASE–FRONT TILT 

(A POSTERIORI DISTRIBUTION DENSITY) 
 

It is obvious that in the presence of the phase–front 
tilt, the Airy circle on the quadrantal photodetector is 
shifted; as it takes place, the parameters λ and μ of the 
Poisson distributions of the random variables N

1
 and N

2
 

are no longer equal: 
 
λ ≠ μ . (18) 
 

In this case 
 
M[ nx ] = M [N

1
 – N

2
 ] = M [ N

1
 ] – M [ N

2
 ] = λ – μ . (19) 

 
Equation (10) is valid for a system of cumulants of 

the random variable nx in the general case. All joint 

cumulants are equal to zero as well. The odd cumulants 
χ x

2n+1
 are equal to λ – μ, and the even cumulants χ x

2n are 

equal to λ + μ. It is connected with the fact that (–1)k in 
Eq. (10) gives only positive factors for even k and 
alternating ones for odd k. Thus the characteristic 
function of such a distribution is written in the form: 
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θ( i ν) = exp 

⎩
⎨
⎧

⎭
⎬
⎫

∑
k = 1

∞

 
l + μ
(2k)! ( i ν)

 2k + ∑
k = 1

∞

 
l – μ

(2k + 1)! (iν)
 2k + 1 . (20) 

 

Taking into account the expansion of the functions cos ν 
and sin ν in a power series, we write down 
 

θ( i ν) = exp [(λ + μ) (cos ν – 1) + i(λ – μ) sin ν] . (21) 
 

Using the known relations for the Bessel function,7 we 
reduce Eq. (21) to the form 
 

θ( i ν) = exp{ – (λ + μ)} ∑
m = – ∞

∞

    ∑
n = – ∞

∞

 I 
m 

(λ + μ) J 
n 
(λ – μ) × 

× exp{ i( n – m) ν} . (22) 
 

To derive the analytical expression for the distribution 
density of random variable nx, we take the Fourier 

transform of Eq. (22) 
 

P(x) = exp { – (λ + μ)} ∑
n = – ∞

∞

    ∑
m = – ∞

∞

   I 
m 

(λ + μ) J 
n 
(λ – μ) × 

× ⌡⌠
– ∞

∞

 exp { i( n – m) ν – i ν x} d ν. (23) 

 

As a result, we obtain 
 

P( x) = exp {– (λ + μ)} ∑
n = – ∞

∞

    ∑
m = – ∞

∞

   I 
m 

(λ + μ) J 
n 
(λ – μ) × 

× δ{ x – ( n – m)} . (24) 
 

For fixed values of the random variable nx (precisely this 

case is of interest for us) based on physical formulation of 
the problem, we have  

P( k) = exp {– (λ + μ)} ∑
n = – ∞

∞

 I 
n 
(λ + μ) J 

n – k 
(λ – μ) (25) 

 

at n – m =k . 
Let us consider some properties of Eq. (25). To do this, 

we use the series expansion of the modified Bessel function  
 

I 
n 
(λ + μ) = ∑

l = 0

∞

 
(λ + μ) l

l !  J 
n + l (λ + μ) . (26) 

Then 

P(k) = exp{–(λ + μ)} ∑
l = 0

∞

 
(λ + μ) l

l ! Jn–l (λ + μ) Jn–k 
(λ – μ). (27) 

 

Applying the Neumann addition theorem  
 

Jm( U – V) = ∑
p = 0

∞

  J 
m + p 

( U ) J 
p 
( V ) , (28) 

 

at m + p = n + l ( p = n – k, m = l – k), U = λ + μ, and  
V = λ – μ, we derive the final expression 
 

P( k) = exp { – (λ + μ)} ∑
l = 0

∞

 
(λ + μ) l

l !  Jl + k
 (2 μ) . (29) 

 

It is obvious that 

lim
μ → 0

P(k) = lim
μ → 0⎣

⎡
⎦
⎤exp{– (λ – μ)} ∑

l = 0

∞

 
(λ + μ) l

l !  Jl + k
 (2 μ) = 

= 
λ l

l ! exp(– λ) (30) 

because Jl+k(0) = 0 only at l = – k. 

Thus without a signal in a channel of the quadrantal 
photodetector of the Hartmann sensor, only the Poisson 
signal is at its output (mixture of the Poisson signal and 
Poisson noise). 

Similarly we can obtain 
 

lim
μ → λ

P( k) = lim
μ → λ

 
⎣
⎡

⎦
⎤exp{– (λ + μ)} ∑

l = 0

∞

 
(λ + μ) l

l !  Jl + k
 (2 μ) = 

 

= exp{ – 2 λ} In (2 λ) . (31) 

 
Expressions (30) and (31) allow us to prove the 

reliability of obtained results. Thus, the Poisson distribution 
follows from Eq. (29). Considering Eq. (29), we can make a 
conclusion that because of nonzero odd cumulants, the 
distribution density is asymmetric. In this case, the density 
maximum will occur in the region of expectation  
mx = λ – μ, but will differ from it in general. As μ → 0, 

density degenerates into the Poisson one, and as μ → λ we 
obtain the distribution density of the difference between 
two Poisson values with identical distribution parameters, 
corresponding to the case of the plane phase front incident 
on a subaperture of the Hartmann sensor. 

 

4. CALCULATION OF THE LIKELIHOOD RATIO 

LOGARITHM 

 

To obtain optimum estimate of λ – μ, it is necessary 
to calculate the likelihood ratio logarithm. Let us convert 
the density obtained (Eq. (29)) with the use of the theorem 
on the Bessel function multiplication7 
 

∑
k = 0

∞

 
( – 1)k ( y2 – 1)k ( z/2)k

k!  Jn + k
 = 

Jn( y z)

y 
n  . (32) 

 

Let us set y = i λ/μ . Then we derive: 
 

P( n) = exp{– (λ + μ)} ∑
l = 0

∞

 
(λ + μ) l

l !  Jl + n (2 μ) =  

 

= exp{– (λ + μ)} 
Jn( )i 2 λμ

( )i λ/μ
n  = 

exp{– (λ + μ)} In ( )2 λμ

(λ/μ)n/2 . (33) 

 
The multidimensional distribution density, because of 

independence of different readings, is written in the form 
 

P( n
1 
, ... , nN) = 

i = 1

N

Π  
exp { – (λ + μ)} Ini

 ( )2 λμ

(λ/μ)ni/2  . (34) 

 
We obtain the optimum estimate of λ – μ by way of 
solution of the equation of the following form: 
 

∂ ln Λ( n
1 
, ... , nN)

∂ μ
 = 0 , (35) 

where 

Λ( n
1 
, ... , nN) = 

i = 1

N

Π  exp { – (λ + μ)} Ini
 ( )2 λμ

i = 1

N

Π  exp { – 2λ} Ini
 (2λ)(λ/μ)ni/2

. (36) 
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Taking into account that λ << 0 and μ <<  0, we can write the 
Bessel functions in the form7 
 

In( z) = ( z/2)n/ n! . (37) 
 

Then substituting Eqs. (36) and (37) into Eq. (35), after 
simple transformation we can obtain 
 

(λ ^– μ) = ∑
i = 1

N

 ni 
ln μ – ln λ

N  . (38) 

 

Thus Eq. (38) specifies the optimum algorithm for 
signal processing in a channel of the Hartmann sensor. 

Equation (38) can be represented as the recursion 
relation 
 

(λ ^– μ)j = 
ln μj – ln λj

j  ∑
i = 1

j

 ni ,

(λ ^– μ)j + 1
 = 

(λ – μ)j j

j + 1  + 
ln ^μj – ln ^λj + 1

j + 1  nj + 1 
 .

 (39) 

 

Estimates of the parameters μj and λj can be obtained 

by known methods because they are properly the Poisson 
variables. 

 
CONCLUSION 

 
Thus as a result of the performed analytical analysis, 

expression (38) for optimum estimate of a signal at the 
output from a channel of the Hartmann sensor has been 
derived. Analysis of Eq. (38) shows that data processing 
algorithm being implemented at present and involving the 
simple summation of the photoelectron counts is essentially 
quasi–optimum. This being the case, it gives slightly 
overestimated values of tilts. The distribution density of a 
 

signal at the output from a channel of the Hartmann sensor 
is symmetric and unimodal in the case of the plane phase 
front; however, it differs essentially from Gaussian 
distribution for nonzero higher cumulants. In the presence 
of a phase–front tilt, the distribution density remains 
unimodal; however, it shifts along the x axis, and optimum 
estimate of the phase front should be found in this case 
from Eq. (38). The derived expressions for the characteristic 
functions given by Eqs. (13) and (22) also can be used for 
an analysis of performance of adaptive optical systems of 
phase conjugation. In conclusion, it should be specially 
emphasized that suggested approach is optimum only for 
weak signals when both signal and noise are well 
approximated by the Poisson distributions. However, in the 
case of deviation of the noise and signal distribution 
densities from the Poisson ones, derivation of analogous 
expressions for optimum estimates is possible on the basis of 
suggested approach to an analysis of cumulants of 
corresponding random variables and processes. 
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