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By means of physical optics method the formulas are obtained for extinction and 
scattering cross sections and efficiency factors for the case of normal incidence of a 
plane wave onto the base of a 2a×2b rectangular plate. An estimation of the relative 
error is obtained in the form of inequality, the right–hand side of which is a linear 
combination of two integrals being the functions of two diffraction parameters p = ka 
and q = kb. The error is shown to be less than 3% for the rectangular plate with the 
minimum size of the base ten times exceeding the wavelength. 

 

Light scattered field in the near zone for an 
atmospheric crystal with a given orientation is a number of 
beams of parallel rays reflected from it. The size of the cross 
sections of the beams many times exceeds the wavelengths 
of the visible and IR radiation. So the method of physical 
optics is more optimum in describing the scattered field for 
such beams in the far zone. Applicability limits of the 
method of physical optics for a model of a crystal in the 
form of a round plate were formulated in Ref. 1. Within the 
framework of the model, the cross sections of the beams at 
normal incidence of a plane wave onto the plate base have 
the form of a circle, i.e. they are characterized by one size. 
As to some shapes of real crystals, e.g. for hexagonal 
columns, the cross sections of the beams should be described 
by two dimensions taking into account that one of them can 
considerably exceed the other. In this paper we generalize 
the results obtained in Ref. 1 for the case when the cross 
sections of scattered beams have two dimensions. 

Let 2a and 2b be the dimensions of a rectangular plate 
along the Ox and Oy axes, respectively, d be its thickness. 
Let the plane wave E exp(i k z) be incident normally onto 
the plate base. Assume that the imaginary part, κ, of the 

complex refractive index n∼ = n + iκ equals zero, i.e. n∼ = n. 
In Ref. 1 it is shown that the latter assumption does not 
lead to any loss of generality. The amplitude of the electric 
component of the incident field E is assumed to have the 
form 
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In other words, the components E

1
 and E

2
 forming a 

wave with elliptical polarization in the general case make an 
angle ξ with the Ox and Oy axes in the Oxy coordinate 
plane. 

In the given formulation of the problem, we obtain 
formulas for the efficiency factors of extinction (Q

ext
) and 

scattering (Q
sca

) using the method of physical optics. Then 

we establish the applicability limits of the method by 
comparing local (Q

ext
) and integral (Q

sca
) characteristics of 

the scattered field. 
 

The electric component of the whole electromagnetic 
field is represented in the form 
E

t
 = E exp(i κ z) – A exp(i κ r)/i κ r .  (2) 

 
In the general case the amplitude A of the scattered field is 
a sum of two orthogonal components A

1
 and A

2
. In the 

framework of the method of physical optics they are defined 
by the following expressions: 
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The vectors υ
0
 and ϕ

0
 are unit vectors of the spherical 

coordinate system (r, υ, ϕ) in which the angle υ is counted 
from Oz axis and the angle ϕ – from Ox axis in Oxy plane. 
In other words, the unit vectors of the spherical and 
rectangular Cartesian coordinate system are connected by 
the relations 
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The angular function S(υ, ϕ) has the same structure as in 
the case of a round plate,1 i.e. 
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but here there is also a dependence on the azimuth angle ϕ 
because of a lack of symmetry axis in the geometry of the 
problem. Remind that the complex values T and R are defined 
as Fresnel coefficients of transmission and reflection for a 
plane wave normally incident onto a semitransparent layer of 
thickness d. The formulas for them are given, in particular, in 
Ref. 1. The functions F

1
(υ, ϕ) and F

2
(υ, ϕ) are scattering 

characteristics in the far zone for beams emerging from the 
plate along the forward and backward directions. They are 
defined as Fraunhofer integrals for phase functions over the 
upper and lower bases of the plate. The integration is 
conducted here analytically, what allows us to obtain the 
following expressions for the functions F

1
(υ, ϕ) and F

2
(υ, ϕ): 
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where p = κa, q = κb are the diffraction parameters; κ is 
the wave number. 

Analyzing the aforementioned expressions one easily 
reveals that F

1
(υ, ϕ) = F

2
(υ, ϕ). Let us introduce a new 

designation for these functions: F(υ, ϕ). As a result, for the 
angular function S(υ, ϕ) we have  
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To obtain the extinction cross section σ

ext
, we use the 

extinction formula2 for polarized fields 
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When υ = 0, it is easy to obtain from Eq. (4) that 
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As a result, the amplitude A of the scattered field is 
transformed to the form 
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Using Eq. (8) and taking into account that 
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we obtain the following expression for the extinction cross 
section 
 

σ
ext

 = 
8 p q
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In the given formulation of the problem the square of the 
geometrical shadow equals 4ab. As a result, the formula for 
the extinction efficiency factor is 
 
Q

ext
 = σ

ext
/4ab = 2(1 – Re(T)).  (11) 

 

Thus, the extinction efficiency factors for the 
rectangular and round plates are defined by one and the 
same relation (11). 

To find the scattering cross section σ
sca

, we use the 

following formula2: 
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In the given formulation of the problem, the formula (12) 
permits a simplification. Taking into account that 
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we transform Eq. (12) to 
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Let us take into consideration a new function 
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where X = p sinυ cosϕ, Y = q sinυ sinϕ. Taking into account 
that F(υ, ϕ) = 4 abf(υ, ϕ) we define the angular function 
S(υ, ϕ) and the square of its module ⏐S(υ, ϕ)⏐2 by the 
following expressions: 
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The formula (13) with regard to Eq. (14) is transformed to 
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By changing the variable υ in one of the integrals it is easy to 
show that 
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Proceeding from scattering cross section to the scattering 
efficiency factor and taking into account Eq. (16) we finally 
obtain 
 

Q
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The formula (17) for the scattering efficiency factor has the 
same structure as in the case of a round plate1 and differs 
from it only by the form of the functions A and B which 
depend on the two diffraction parameters p and q in the 
given case. Remind that the functions A and B bear the 
information about the degree of scattered intensity 
localization near the directions of refracted beams emergence 
and reach limiting values 1 and 0, respectively,1 under 
unlimited growth of the cross–sectional size of the plate. 
Following general representations for the functions A and 
B, it is natural to assume that 
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The following identity is established in Ref. 1 for a 
nonabsorbing plate (κ = 0) 
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The relations (18) and (19) allow us to write the well–
known equality 
 

Q
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connecting the local and integral values of the angular 
function S(υ, ϕ) of a scattered field for a nonabsorbing 
particle. 

The functions A and B differ, although slightly, from 
1 and 0 for plates with large cross–sectional size. So in the 
general case the relation (20) is fulfilled approximately. It 
is easy to prove the following inequality for arbitrary 
diffraction parameters p and q (by analogy with Ref. 1): 
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Let us take into consideration the parameter 
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which will be taken as the relative error of the method of 
physical optics within the framework of which the relation 
for the angular function S(υ, ϕ) is obtained. Uniting (22) 
and the left–hand side of the inequality (21), we obtain the 
following inequality for the parameter Δ: 
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≤ 1 – A(p, q) + B(p, q),  (23) 
 
which coincides in its form with the analogous inequality 
obtained in Ref. 1 for a round plate. The integral 
expressions for the functions A and B permit simplifications. 
As a result of simple transformations, one can considerably 
restrict the domain of integration and write the final 
formulas for these functions in the form 
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Thus, the formula (23) in which the values of the 

integrals A and B depend on the two diffraction 
parameters defines applicability limits of the method of 
physical optics for the problems when the cross sections 
of the beams should be given by two linear dimensions. 

The values of integrals A and B for plates with 
square cross sections are depicted in Figs. 1a and 2a. The 
presented dependences of A and B on the diffraction 
parameter p qualitatively follow the analogous 
dependences obtained in Ref. 1 for a round plate. So 
approximately the same values as in Ref. 1 are obtained 
here for the relative error of the method of physical 
optics. In particular, the value of Δ does not exceed 0.1 
(10%) for diffraction parameter p > 10; Δ < 0.05 (5%) for 
p > 20; Δ < 0.02 (2%) for p > 50; Δ < 0.01 (1%) for 
p > 100. 

 

 
 

 
 

FIG. 1. Dependences of the values of integrals A on the 
diffraction parameter p for a square (a) and 
rectangular (b) plates. The diffraction parameter q for 
A(p, q) takes the values 5, 10, 20, and 40 (curves with 
larger values of A correspond to larger q). 
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FIG. 2. Dependences of the values of integrals B on the 
diffraction parameter p for a square (a) and a 
rectangular (b) plates. The diffraction parameter q for 
B(p, q) takes the values 5, 10, 20, and 40 (curves with 
smaller values of B correspond to larger q). 

 

The values of integrals A and B are depicted in 
Figs. 1b and 2b as a function of diffraction parameters p 
and q for rectangular plates. The curves have the same 
shape as in the case of square plates, but they are limited 
from above or below by different horizontal asymptotes 
whose values depend on the parameter q. In other words, 
by increasing only one of the diffraction parameters, one 
can always decrease the relative error of the method but 
only to a certain limit. The limiting value of the 
parameter Δ for q = const is found by the following 
formula 

 
Δ ≤ 1 – A(∞, q) + B(∞, q) , 
 
where A(∞, q) and B(∞, q) are asymptotic values for the 
curves A = A(p, q) and B = B(p, q) including the curves 
depicted in Figs. 1b and 2b. 

By analyzing the dependences represented in Figs. 1 
and 2 one can draw a conclusion that the maximum 
increase of values of functions A and B are within the 
variability of the argument p from 5 to 30. Analogous 
conclusion can be drawn for the argument q because the 
functions A and B are symmetric with respect to their 
arguments. As a result, the relative error of the method at 
p = 30 slightly decreases with the increase of p. On the 
other hand, this error is about 3% for a square plate with 
p = 30. Moreover, it becomes less for a rectangular plate 
whose minimum diffraction parameter is 30 (2b ≈ 9.6λ, 
where λ is the wavelength).  

Thus, the error of the method of physical optics does 
not exceed 3% for rectangular plates whose minimum size 
of the cross section ten times exceeds the wavelength. 
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