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A numerical algorithm is considered for inverting the particle shadow correlation 
function based on the Hankel transformation and the Fourier–Bessel series expansion 
of the particle size distribution function. The stability of the inverse problem solution 
is studied based on an analysis of its conditionality and results of numerical 
experiments. The algorithm is applicable to solving the problems of aerosol 
microstructure diagnostics for single and multiple scattering in the small-angle 
approximation. 

 
The problem of inverting the shadow correlation 

function (SCF) of particles1–3 holds a central position in 
the problem of optical microstructure diagnostics of a 
coarse–dispersed medium taking into account the multiple 
scattering. The SCF of particles is unambiguously connected 
with spatial–angular characteristics of the multiply 
scattered radiation that can be used for its finding. The 
dependence of SCF of a polydispersed ensemble of spherical 
scatterers ϕ(ξ) on the microstructure of a medium is 
described by the expression 

 

ϕ(ξ) = ⌡⌠
ξ

1

 G(ξ/η) f(η) dη, (1) 

 

where ξ ∈ [0, 1]. The transformation (1) is written in the 
dimensionless coordinates. Its kernel has the form  

 

G(t) = 
⎩⎪
⎨
⎪⎧2

π [arccos t – t 1 – t2 ] , t ≤ 1,

0, t > 1 ,
 (2) 

 

and the function f(η) has the meaning of the normalized 
density of particle distribution over size of their geometric 
cross section. 

A technique for solving integral equation (1) using the 
finite–difference regularizing algorithm was described in 
Ref. 1. Problems of reconstructing the microstructure of a 
dispersed medium f(η) were considered in Ref. 4 on the 
basis of analytical transformation of SCF ϕ(ξ). 

This paper considers a "hybrid" algorithm for 
reconstructing the function f(η) from Eq. (1). This 
algorithm includes the integral transformation of SCF ϕ(ξ) 
and inversion of the matrix equation for determining the 
coefficients of the Fourier–Bessel series expansion of the 
function f(η). 

Using the zero–order Hankel transformation of SCF ϕ(ξ) 
 

x(ω) = ⌡⌠
0

1

 ξ J
0
(ωξ) ϕ(ξ) dξ, (3) 

 

transition from integral equation (1) to the equation 

2 ⌡⌠
0

1

 J 2
1 
(ωη/2) f(η) dη = H(ω), (4) 

 

with the right–hand side H(ω) = ω2x(ω), is made at the 
first stage of solving the inverse problem. Let us represent 
the function ηf(η) in the form of expansion in terms of the 

complete system of functions {J
0
(αi η)}, orthogonal in the 

interval (0, 1) with weight η:  
 

η f(η) = ∑
i=1

∞

 bi J0
(αi η),  0 < η < 1 . (5) 

 

Here αi are the zeros of the Bessel function J
0
(x): 

J
0
(αi) = 0, i

 
= 1, 2, ... .  

To determine the coefficients bi, let us substitute series 

(5) into Eq. (4). As a result, we obtain the following 
equation: 
 

∑
i=1

∞

 Ai(ω) bi = H(ω) (6) 

in unknowns bi (i
 
= 1, 2, ...) with the coefficients 

 

Ai(ω) = 2⌡⌠
0

1

 J
0
(αi η) J 

2
1
(ωη/2) 

dη
η  . (7) 

 

The integrand in Eq. (7) decreases quickly as η 
increases. This makes it possible to replace the finite upper 
limit of integration in Eq. (7) by infinite one without great 
loss in accuracy. Then the coefficients Ai(ω) take a very 

simple form
 
 

 

Ai(ω) = G(αi/ω) , (8) 
 

where the function G(t) is determined by Eq. (2). It 
follows from the properties of the function G(t) that 
G(αi/ω) = 0 for ω ≤ αi. This makes it possible to select 

such readings ωj that the matrix Ai(ωj) takes the triangle 
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form, and the solution of Eq. (6) becomes trivial. It is 
necessary to select the readings ωj from the condition 
 

αj < ωj ≤ αj+1
,  j = 1, 2, … . (9) 

 

The function G(t) decreases monotonically, its range 
of variation 1 ≥ G(t) ≥ 0 for t ∈ [0, 1], so the diagonal 
elements of the matrix Ai(ωj) reach their maxima at 
 

ωj = αj+1
,  j = 1, 2, … . (10) 

 

With such a selection of the readings ωj, Eq. (6) transforms 

to the infinite system of linear equations 
 

∑
i=1

∞

 Aji bi = Hj,   j = 1, 2, … (11) 

 

with the lower triangle matrix whose elements are 
Aji = G(αi/αj+1

), j = 1, 2, ..., i = 1, 2, ..., j, and the 

right–hand side Hj = α2
j+1

 x(αj+1
), j = 1, 2, ... , where αj 

are the roots of the equation J
0
(z) = 0. 

An arbitrary finite number n of the coefficients 
bi(i = 1, ..., n) of series (6) is determined from the first n 

equations of system (11). Stability of this system can be 
characterized by the conditional number 
Pn = max⏐λi⏐/min⏐λi⏐, where λi are the eigenvalues of the 

matrix A. Since the matrix A is the lower triangle, its 
eigenvalues coincide with the diagonal elements, 
λi = G(αi/αi+1

). The ratios of successive zeros of the Bessel 

function (αi/αi+1
) form monotonically increasing sequence. 

So, due to the monotonic character of the function G(t), the 
expression for the conditional number has the form 
 

Pn = 
G(α

1
/α

2
)

G(αn/αn+1
)
 . (12) 

 

The results of calculation of the conditional numbers Pn by 

Eq. (12) are given in Table I for successive values of n. 
 

TABLE I. 
 

n 5 6 7 8 9 10 15 20 
Pn 5.1 6.7 8.2 11 12 13 26 33 

 

It follows from Table I that the conditional numbers 
Pn keep their low values, and the solution of system (11) is 

stable when the problem dimensionality n is finite and falls 
within the limits that satisfy the needs of practical 
calculations. 

The solution of system (11) is found by the recursion 
formulas 

 

b
1
= 

H
1

A
11

 ,  bi= 

Hi – ∑
j=1

i–1

 Aij bj

Aii
 ,  i = 2, 3, … . (13) 

 

Substituting the so–determined coefficients bi into 

series (5), we obtain the sought–after distribution f(η). 
Summation of series (5) is unstable towards errors in 

setting the coefficients bi, if the error in reconstructing 

the function f(η) is estimated in uniform metric. Stable  

techniques for summation of the Fourier series on the 
basis of the conception of regularization were described in 
Ref. 5. In the simplest case, the limited number of terms 
in expansion (5) consistent with the errors in determining 
the coefficients bi from the system of equations (11) 

serves this purpose. 
It should be noted that analogous procedure for 

reconstructing the distribution f(η) can be constructed 
based on expansion in terms of the other orthogonal 
systems of basis functions that are obtained from the 
system {J

0
(αiη)} in which αi are replaced by βi, the zeros 

of the Bessel function J
1
(x), or by γi, the roots of the 

equation 
 

q J
0
(x)

 
– x J

1
(x) = 0 . (14) 

 

Here, q is
 
an arbitrary real constant (Dini series6). 

Let us consider for illustration an example of 
inversion of the correlation function ϕ(ξ) by the Fourier–
Bessel series expansion in numerical experiment. In 
Fig. 1, the discrepancy ε(n)

ϕ
 = > ϕn – ϕ

δ
> /> ϕ

δ
> (curve 1) 

and the error ε(n)
f  = > fn – f

T
> /> f

T
> in reconstructing 

the distribution f(η) (curve 2) are shown as functions of 
the number of terms in series expansion (5) for a 10% 
relative error δ in the initial data ϕ(ξ). The model 
distribution f

T
(η) is shown in Fig. 2 (curve 1). It is seen 

from Fig. 1 (curve 1) that the satisfactory accuracy of 
reconstruction of the unimodal distribution f(η) is already 
reached with five terms of the series (ε(5)

f  = 0.14). In this 

case, the discrepancy ε(5)
ϕ

 is equal to 0.078. The minimal 

error in reconstructing f(η) is equal to 6.1% and is 
reached for n = 11. With further increase in the number 
of terms of series expansion (5), summation becomes 
unstable and leads to a sharp increase of the error ε(n)

f . 

The fact that when n varies within the limits 3 ≤ n ≤ 12, 
the discrepancy ε(n)

ϕ
 varies insignificantly and does not 

exceed the error of the initial data (ε(n)
ϕ

 < 10%) has 

engaged our attention. An example of distribution f(η) 
reconstructed for n = 11 and a 10% relative error in 
setting the function ϕ(ξ) is shown in Fig. 2 (curve 2). 

 

 
 

FIG. 1. Relative discrepancy ε(n)
ϕ

 (curve 1) and error ε(n)
f  

(curve 2) in reconstructing the distribution f(η) as functions 
of the number n of the terms of the Fourier–Bessel series 
expansion in model experiment with a 10% relative error in 
the initial data. 
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FIG. 2. Example of reconstructing f(η) in numerical 
experiment using the Fourier–Bessel series expansion for a 
10% relative error in the initial data: model (1) and result 
of inverting ϕ(ξ) (2), n = 11. 
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