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Problem is solved of representing transmission functions by exponential series 
based on orthogonal exponential functions. Expansion coefficients are calculated from 
absorption coefficients by a direct technique. This model provides high accuracy 
calculation of transmission functions using only a few terms in the series. 

 

One of concerns in climatological radiative transfer 
treatments is the development of economical parametrical  
model of transmission function in absorption bands of 
atmospheric gases. Of wide recent use, in this regard, has 
been the approximation of transmission functions by 
exponential series,1–11 which seems to be attractive for a 
number of reasons6: 1) using this, the transmission becomes 
a multiplicative function of absorbing mass and thus can be 
computed more efficiently, 2) that substantially simplifies 
treatment of radiative transfer in a scattering medium,12 and 
3) the use of exponential series allows attainment of higher 
accuracy than when using special line models, since there is 
no need for specifying dependence of the transmission 
function upon the absorbing mass. 

Among different methods of expanding the 
transmission functions in exponential series, the most 
interesting is that based on direct line–by–line (LBL) 
computations3,4,10,11 and not requiring a preliminary model 
representation of the absorption spectra. This normally 
assumes the use of so–called K–function procedure which is 
well described elsewhere.1–11 A thorough description is 
given in Ref. 11, in contrast to earlier, intuitive 
computational schemes like that in Ref. 10. Essentially, the 
algorithm11 starts with the transmission function 
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where k(ν) is the absorption coefficient at frequency ν and 
U is the absorbing mass; which, through double Laplace 
transform, and by introducing new, scaled to 1, frequency g 
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is finally reduced to 
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 exp {– κ(g) U} dg , (4) 

 

where κ(g) is the function inverse to (2). Because of 
transformation (1) through (4) the quickly oscillating function 
k(ν) converts into monotonic one, κ(g) (see Figs. 1 and 2). 
 

 
 

FIG. 1. H
2
O absorption spectrum calculated line–by–line 

using HITRAN–91 spectral line parameter values16 for 
midlatitude summer atmosphere at H = 0 km. 

 

 
FIG. 2. H

2
O absorption coefficient versus normalized 

frequency; κ(g) is converted from k(ν), as presented in 
Fig. 1. 
 

Next step toward obtaining the exponential series is to 
apply the appropriate quadrature formulas to the integral in 
formula (4), to arrive finally at the exponential series 
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τ(U) = ⌡⌠
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 exp {– κ(g) U} dg = ∑

i=1

n

 
 ai exp {– κ(gi) U} , (5) 

 

where ai are expansion coefficients. 

References 8 and 9 used Gaussian quadratures, in 
which case the nodes gi represent the roots of orthogonal 

Legendre polynomials, while approximation (5) is highly 
accurate and becomes exact when its integrand is a 
polynomial of the order 2n – 1. However the number of 
terms required in expansion (5) may sometimes be too large 
(more than twenty8), thus making this approach to 
obtaining exponential series inefficient. This is clearly so 
because the coefficients ai and the nodes gi in Eq. (5) do 

not depend on the form of the integrand. Also of note are 
companion Refs. 8 and 10 which use different integration of 
Eq. (4), but whose practical value is obscured by their 
empirical manner of choosing nodes and also by the fact 
that the fairly well developed methods of numerical 
integration are presently available. 

The present paper focuses on the representation of 
transmission function by exponential series with the 
parameters determined from once calculated absorption 
coefficients k(ν) by minimization of the absolute rms error 
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Here, this problem is solved for homogeneous path; 
extension to inhomogeneous ones is readily made following 
Refs. 3 and 4.  

As experience shows, approximation of a practically 
important functions is well accomplished by least squares fit 
using some functions of a narrower class, and much better 
than via interpolation polynomials.13 That can be most 
easily done using orthogonal functions,13 and precisely the 
class of exponential orthogonal functions are chosen here to 
represent transmission functions by exponential series, 
which, according to Refs. 1 and 14, have the form 
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where Dm(U, α
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, ..., αm) is the mth orthogonal 

function, U is argument, α
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the coefficients Ckm are determined from orthogonality and 

normalization condition on functions Dm, namely 
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Since the obtained system of functions is complete and 
the series uniformly converges,14 it is possible to 
approximate τ(U) as 

 

τ(U) = ∑
k=1

∞

 
 
bk Dk(U, α

1
, α

2
, ..., αk) ; (9) 

 

bk = ⌡⌠
0

∞

 
 τ(U) Dk(U, α

1
, α

2
, ..., αk) dU . (10) 

 

Upon collecting coefficients at equal exponents, we are 
led to series (5) with coefficients ai now given as 
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  bk Cik . (11) 

 

Error from dropping terms after nth one is given by  
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Thus, the problem of constructing series (5) is solved 
via minimization of Eq. (12) with respect to unknown 
coefficients αk. 

Since the integrands in Eqs. (1) and (4) have 
exponential forms, the coefficient bk can be represented as 
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while integral in Eq. (12) is also written in terms of 
absorption coefficient as 
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Thus, the problem of obtaining exponential series in 
fact reduces to that of minimizing relation (12) with the 
help of variable coefficients αi. As seen from Eqs. (14) and 

(15), this problem can in principle be solved without 
invoking k–representation, by evaluating the integrals from 
absorption coefficients using direct LBL technique. 
However, for efficient numerical implementation of the 
algorithm, the use of κ(g) is recommended because it is a 
smooth function. Equations (14) and (15) were evaluated by 
means of quadrature Gaussian formulas using 25 points, that 
ensured no worse than 1% computation error for a range of 
transmission of 0.001 to 1. 

Minimization of Eq. (12) was accomplished by an 
iteration procedure, specially devised and proved to be 
sufficiently fast and efficient for this purpose. Specifically, 
a zero approximation for first two coefficients is determined 
following the recommendations from Ref. 14; next, the 
contribution of the third term is included, and so forth. 

The method was run at the 2.7 μm water vapor band 
and 15 μm carbon dioxide band. Absorption coefficients 
were computed with a fast LBL technique15 using published 
spectral parameters.16 Figures 3 and 4 show absolute and 
relative errors of representing H

2
O transmission function by 

a three–, four–, and five–term expansion, each derived by 
a comparison with the direct computation; the results for 
CO

2
 are analogous. From the figures it can be concluded 

that: 
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FIG. 3. Absolute error of representation of transmission 
function by exponential series, derived from a comparison 
to LBL results, for 3550– 3570 cm–1 spectral band of H

2
O 

and horizontal path in the midlatitude summer atmosphere 
at H = 0 km. Number of terms in the series n = 3, 4, 5 
(curves 1, 2, 3). 
 

 
 

Fig. 4. Relative error from transmission function 
computation using Gaussian quadratures (number of nodes 
n = 5, curve 1), and from the method adopted in this 
paper (number of terms in the series n = 5, curve 2), for 
same conditions as specified in Fig. 3. 

 

1) The errors are the less, the more expansion terms are 
included. 

2) In a weakly absorptive case (U→ 0), the use of five–
term expansion gives an acceptable accuracy, and much better 
than using three– or four–term one. 

3) For the range of transmission function of 0.01 to 1, 
use of five–term expansion will give no more than 1% relative 
error, an acceptable precision in remote sensing applications. 

4) The increased relative error for τ < 0.01 stems from 
case of the specific orthogonal functions used in the study 
and, accordingly, from the form of functional (12). That 
can be overcome by either using more terms in the series, or  

employing other orthogonal functions with appropriate 
weights. In many applications, however, just working 
within transmission function range 0.01 to 1 will suffice. 

5) The traditionally used technique for constructing 
exponential series8,9 with the help of Gaussian quadratures 
is much more in error than that just outlined. 
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