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Simple numerical spline models for spatial correlation functions for slopes of 

the one$dimensional and isotropic wind rough sea are developed. The models are 

based on the modified Pearson$Moskowitz spectrum with the Gaussian cutting 

function. A parameter of the cutting is chosen so that the fourth moment of the 

spectrum calculated theoretically and the measured variance of sea surface 

curvatures would be in a good agreement.  

 
In a theoretical study devoted to the problem of 

vision, detection and ranging, and communication 
through a roughed sea surface, a correct choice of 
correlation functions of the surface slopes plays an 
important role. It should not be denied, certainly, that 
approximate models of these functions can be correctly 
used, especially, to reveal a physical nature of some 
optical phenomena and estimate a role of that or 
another factor in the process of optical signal 
formation. But in these cases a necessity always remains 
of testing the obtained results on the basis of a 
sufficiently rigorous numerical model. A goal of this 
paper is to construct rigorous numerical models of the 
slope spatial correlation function well agreeing with 
certain experimental data.  

 

1. SPECTRUM OF WIND ROUGH SEA 

 

Solving many problems of the sea statistical optics 
the authors (see, for example, Refs. 1 and 2) 
successfully employ in recent years the spline models of 
the spatial correlation functions of slopes of isotropic 
and one$dimensional wind rough sea obtained based on 
the modified Pearson$Moskowitz spectrum. Let us say 
at first that the modification of the spectrum is to 
introduce into the spectrum formula the Gaussian 
cutting function as a factor. Parameters of such a 
function provide an agreement between the theoretical 
and experimental values of the variance of slopes and 
curvatures of the surface. Let us consider this question 
in more detail.  

The expression for the Pearson$Moskowitz 
frequency spectrum for the wind rough sea has the 
following form:  

 

S0(ω, Θ) = βg2 ω$5 exp ⎣
⎡
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where ω is the frequency, ϕ(Θ) is the angular 

dependence of the spectrum ( ∫
$π

π

ϕ(Θ)dΘ = 1), v is the  

 

wind velocity, g = 9.8 m/s2 , and β = 8.1⋅10$3.  
From the relation 
 

S0(ω, Θ) dω dΘ = S0(k) dk , 
 

where k = (kx , ky) and dk = dkx dky , it follows that 
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Using the dispersion relation for waves on water 
surface  

 

ω = g k,  
 

where k = ⏐k⏐ and Θ = arctan ky/kx , we obtain from 
Eq. (2) the expression for the Pearson$Moskowitz 
spectrum as the function of the wave number k 

 

S0(k) = S0 [ω(k), Θ(k)] 0.5 g1/2 k$3/2 . (3) 
 

The expression (3) can be written as 
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where α = 0.74g2/v4. 
The expression (4) for the Pearson$Moskowitz 

spectrum is written in the Cartesian coordinates. In 
polar coordinates this expression has the following 
form: 

 

S0(k, Θ) = 
β

2k4 exp ($ α/k2) ϕ(Θ) (5) 

 

(note that the area element here is dk = k dk dΘ).  
It is not difficult to make sure that the 

expressions (1)$(5) cannot be used to calculate the 
variances of slopes and curvatures of rough sea because 
the second and the fourth integral moments tend to 
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infinity. Let us modify the spectrum (5) by introducing 
of the Gaussian cutting function  
 

S(k, Θ) = S0(k, Θ) exp ⎝
⎛

⎠
⎞$ 

k2

k2
m
   . (6) 

 

A question on the procedure of the parameter km 
selection was discussed in Ref. 3 where a method of km 
determination has been proposed. According to this 
method the theoretical value of the slope variance (the 
second moment of the spectrum (6)) is equated to the 
corresponding experimental value.4 But, when 
analyzing in detail, it appears that such a procedure 
does not provide a coincidence of the fourth theoretical 
moment of the spectrum with the measured variance of 
sea surface curvatures.5 This variance plays an 
important role in the problems of the sea surface optics, 
and an error in its determination is surely undesirable. 
That is why a principle of agreement of theoretical and 
experimental estimations of the fourth moment of the 
rough sea spectrum (the curvature variance) is a basis 
for the method of determining km .  

Let us use the data (as the basic experimental 

dependences) for the rough sea slope variance σ2
x(v) 

obtained by Cox and Munk4 and data for the curvature 

variance σ 2
x x(v) obtained by Burtsev and Pelevin5: 

variance of the wind wave slopes 
 

σ2
x = (3 + 1.92v)⋅10$3 , (7) 

 

variance of the wind wave curvatures 
 

σ 2
x x = ($ 4.13 + 1.23v)2 m$2 (8) 

 

(formula (8) is valid at v > 3.5 m/s).  
Generally speaking, we have no exact information 

about the angular spectrum of the rough sea these 
experimental data were obtained for. However, since 
the variances of slopes and curvatures are determined in 
principle by a high$frequency portion of the rough sea 
spectrum having a distribution which is close to the 
isotropic, the dependencies (7) and (8) can be classified 
as a statistically isotropic rough sea to a certain extent 
of reliability.  

The theoretical values of the variances of slopes 
and curvatures of a statistically isotropic surface are 
calculated by formulas 
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Substituting into these formulas the expression (6) 
for the rough sea spectrum, we obtain after integration 

σ$2
x = 

β
4 K0(2km α) , 

 

σ$ 2
x x = 

3
16

 βkm α K1(2km α) , 

 

where K0(•) and K1(•) are the McDonald functions.  
For a small argument the McDonald functions can 

be presented as asymptotic dependences: 
 

K0(x) ≈ $ ln x ,  K1(x) ≈ x$1 . (11) 
 

In this case the expressions for the variances of 
slopes and curvatures reduce to the forms  
 

σ$2
x = $ 

β
4 ln (2 k$1

m  α) , (12) 
 

σ$ 2
x x = 

3
32

 β k2
m . (13) 

 

By substituting an experimental value of the curvature 
variance into the left-hand side of the relation (13), we 
determine the parameter km of the cutting function in 
the rough sea spectrum (6):  

 

km = 32 
σ  2

x x

3β  . (14) 

 

To examine the assumption (11), the curvature 
variance for the modified spectrum with the cutting 
parameter (14) was calculated numerically. It appeared 
that over the wind velocity range of  
4$10 m/s the numerical and experimental estimations 
are close. To provide the coincidence of the theoretical 
and experimental estimations of the rough sea slope 
variances, the parameter β was required to be changed 
slightly. The best agreement between estimations is 
achieved at β = 11.5⋅10$3 (Fig. 1).  

 

 
 

FIG. 1. Variances of slopes σ2
x and curvatures  

σ 2
x x as functions of the wind velocity, σ2

x :  
1) experiment (7), 2) theory (12), and 3) theory (9); 

σ 2
x x , 4) experiment (8) and theory (10) and (13) 

(deviation is no more than 1 %). 
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Let us give a summary of the formulas describing 
the modified version of the Pearson$Moskowitz 
spectrum of wind rough sea in the final form 
 

S(k) = S(k) ϕ(Θ) ,  
 

S(k) = 
β

2k4 exp 
⎝
⎛

⎠
⎞$ 

α
k2 $ 

k2

k2
m

 ; 
(15) 

α = 
0.74g2

v4  ;  k2
m = 

32
2

 
σ 2

x x

β  ; 

σ 2
x x = ($ 4.13 + 1.23v)2 ;  β = 11.5⋅10$3 . 

 

Let us proceed to consideration of the correlation 
functions of sea surface slopes. Since, in the problems 
of the sea surface optics, two models (the alternative 
ones, in certain sense) of the rough sea, isotropic and 
one$dimensional, are considered most often, we create a 
numerical model of the spatial slope correlation 
function for every of the models mentioned.  

 

TABLE I. 
 

ρ, m R1 R ′
1 ρ, m R2 R ′

2 

0.00 + 0   1.000 + 0   0.000 + 0 0.00 + 0   1.000 + 0   0.000 + 0 

3.00 $ 2   9.261 $ 1 $ 3.487 + 0 3.00 $ 2   8.171 $ 1 $ 7.474 + 0 

2.10 $ 1   6.100 $ 1 $ 7.928 $ 1 6.00 $ 2   6.672 $ 1 $ 3.381 + 0 

3.70 $ 1   5.075 $ 1 $ 5.110 $ 1 1.30 $ 1   5.179 $ 1 $ 1.382 + 0 

7.00 $ 1   3.925 $ 1 $ 2.456 $ 1 3.30 $ 1   3.470 $ 1 $ 5.288 $ 1 

1.40 + 0   2.703 $ 1 $ 1.241 $ 1 5.50 $ 1   2.556 $ 1 $ 3.244 $ 1 

2.70 + 0   1.625 $ 1 $ 5.559 $ 2 8.00 $ 1   1.904 $ 1 $ 2.128 $ 1 

4.80 + 0   8.227 $ 2 $ 2.545 $ 2 1.25 + 0   1.162 $ 1 $ 1.277 $ 1 

8.00 + 0   3.101 $ 2 $ 9.442 $ 3 2.00 + 0   4.615 $ 2 $ 6.778 $ 2 

1.20 + 1   7.879 $ 3 $ 3.112 $ 3 2.90 + 0   5.924 $ 4 $ 3.679 $ 2 

1.50 + 1   1.657 $ 3 $ 1.260 $ 3 3.00 + 0 $ 2.973 $ 3 $ 3.455 $ 2 

1.60 + 1   5.803 $ 4 $ 9.055 $ 4 4.20 + 0 $ 3.170 $ 2   1.554 $ 2 

1.70 + 1 $ 1.808 $ 4 $ 6.307 $ 4 5.80 + 0 $ 4.594 $ 2 $ 3.867 $ 3 

2.00 + 1 $ 1.236 $ 3 $ 1.416 $ 4 9.00 + 0 $ 4.274 $ 2   3.867 $ 3 

2.40 + 1 $ 1.254 $ 3   8.132 $ 5 1.30 + 1 $ 2.523 $ 2   4.308 $ 3 

3.00 + 1 $ 6.143 $ 4   1.048 $ 4 1.60 + 1 $ 1.390 $ 2   3.204 $ 3 

3.80 + 1 $ 5.957 $ 5   3.746 $ 5 2.20 + 1 $ 1.180 $ 3   1.181 $ 3 

4.00 + 1   2.307 $ 6   2.498 $ 5 2.40 + 1   7.019 $ 4   7.251 $ 4 

4.40 + 1   6.532 $ 5   8.092 $ 6 2.80 + 1   2.333 $ 3   1.559 $ 4 

5.00 + 1   7.293 $ 5 $ 3.231 $ 6 3.40 + 1   2.072 $ 3 $ 1.628 $ 4 

5.80 + 1   3.483 $ 5 $ 4.923 $ 6 4.00 + 1   1.004 $ 3 $ 1.690 $ 4 

6.60 + 1   5.344 $ 6 $ 2.423 $ 6 4.60 + 1   2.007 $ 4 $ 9.652 $ 5 

6.80 + 1   1.111 $ 6 $ 1.825 $ 6 4.80 + 1   3.283 $ 5 $ 7.195 $ 5 

7.00 + 1 $ 2.013 $ 6 $ 1.311 $ 6 5.00 + 1 $ 8.934 $ 5 $ 5.076 $ 5 

7.80 + 1 $ 6.447 $ 6   3.430 $ 9 6.00 + 1 $ 2.343 $ 4   9.077 $ 6 

8.40 + 1 $ 5.232 $ 6   3.313 $ 7 6.60 + 1 $ 1.541 $ 4   1.543 $ 5 

9.20 + 1 $ 2.367 $ 6   3.338 $ 7 7.40 + 1 $ 4.286 $ 5   1.109 $ 5 

1.00 + 2 $ 3.173 $ 7   1.768 $ 7 7.80 + 1 $ 6.305 $ 6   7.291 $ 6 

1.04 + 2   2.337 $ 7   1.034 $ 7 8.00 + 1   6.559 $ 6   5.588 $ 6 

1.12 + 2   6.340 $ 7   7.396 $ 9 9.40 + 1   2.615 $ 5 $ 1.175 $ 6 

1.20 + 2   5.108 $ 7 $ 3.053 $ 8 1.04 + 2   1.101 $ 5 $ 1.506 $ 6 

1.24 + 2   3.838 $ 7 $ 3.044 $ 8 1.12 + 2   1.406 $ 6 $ 8.726 $ 7 

1.28 + 2   2.559 $ 7 $ 3.889 $ 8 1.16 + 2 $ 1.416 $ 6 $ 5.462 $ 7 

1.32 + 2   1.000 $ 7 $ 2.685 $ 8 1.32 + 2 $ 3.180 $ 6   1.566 $ 7 

1.36 + 2   5.000 $ 8 $ 8.099 $ 9 1.36 + 2 $ 2.496 $ 6   1.753 $ 7 

1.40 + 2   1.000 $ 8 $ 8.250 $ 9 1.40 + 2 $ 1.755 $ 6   2.111 $ 7 

1.50 + 2   0.000 + 0   0.000 + 0 1.50 + 2   0.000 + 0   0.000 + 0 
 

The values in Table I are presented by two numbers. The first number is the mantissa and the second number is 
the order (for example, 1.40+2 means 1.4.102 and 9.652$5 means 9.652.10$5). 
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2. CORRELATION FUNCTIONS OF THE 

ISOTROPIC ROUGH SEA SLOPES 

 
As known, the spatial correlation function of 

elevations of two$dimensional random surface is 
determined from its spatial spectrum as follow: 
 

Mς(ρ) =⌡⌠
 
 ⌡⌠

 
 

$∞    

∞

S(k) coskρ dk . (16) 

 

For the statistically isotropic surface (ϕ(Θ) = 1/2π) it 
follows from Eq. (16) that 
 

Mς(ρ) = ⌡⌠
0

∞

 
 S(k) J0(k ρ) k dk , (17) 

where ρ = |ρ|, and J0(...) is the Bessel function.  
The slope correlation functions Mx(ρ), My(ρ), and 

Mxy(ρ) of the sea surface are expressed in the case of 
the isotropic rough sea from two general functions  
M1 and M2 (Ref. 6): 
 

Mx(ρ) = ρ2
x M2(ρ) + ρ2

y M1(ρ) , 
 

My(ρ) = ρ2
x M1(ρ) + ρ2

y M2(ρ) , 
 

Mx y(ρ) = ρx ρy [M2(ρ) $ M1(ρ)] , 
 

where 

M1(ρ) = $ 
1
ρ 

d
dρ Mς(ρ) ;  M2(ρ) = $ 

d2

dρ2 Mς(ρ) . 

By substituting the expression (17) into the 
relations for M1,2 we obtain: 
 

M1(ρ) = 
1
ρ ⌡⌠

0

∞

 
 k

2 S(k) J1(k ρ) dk ; (18) 

 

M2(ρ) = ⌡⌠
0

∞

 
 k

2 S(k) J0(k ρ) k dk $ M1(ρ) . (19) 

 

The relations (18) and (19) are the Fourier$Bessel 
transforms of the spectrum of the statistically isotropic 
rough sea. The correlation functions M1 and M2 were 
computed with the use of the spectrum (15) for several 
values of the wind velocity (4, 6, and 8 m/s). The 
obtained data array for every ρ describes the 
functions (18) and (19) at a more than 200 points 
(nonequidistant sequence) over the range ρ = 0$270 m. 
To compute the function between the nodes, we used 
the method of cubic spline$interpolation7 
 

y(x) = yi + ai hi [y′i + ai (ci + ai bi)] , (20) 
 

where 
 

ai = (x $ xi) / hi ;  hi = xi+1 $ xi ; 
 

bi = y′    i + 1 $ y′i $ 2 (yi + 1 $ yi) / hi ; 
 

ci = $ bi + (yi + 1 $ yi) / hi $ y′i . 
 

The spline derivatives were computed by the 
procedures of direct and back pass of the initial array 
of the function values.7 These procedures provide a 
continuity not only of the first but of the second 
derivatives at the spline nodes. The author of the 
present paper optimized the data array intended for the 
spline$interpolation in the sense of minimization of the 
node number and their optimal arrangement along the 
coordinate ρ. This optimization allowed the node 
number necessary for interpolation to be reduced 
essentially without the loss in accuracy of 
determination of the function values. Table I presents 
the values of normalized functions 
 

R1(ρ) = M1(ρ)/σ$2
x ,  R2(ρ) = M2(ρ)/σ$2

x 
 

and their derivatives at the nodes ρi for the wind 
velocity of 6 m/s. Analysis has shown that the use of 
this data in the formula (20) makes the interpolation 
error not more than 1%.  

 

3. CORRELATION FUNCTION OF THE ONE$

DIMENSIONAL ROUGH SEA SLOPES 

 

In the case of a one$dimensional rough sea 
(ϕ(Θ) = δ(Θ)) we obtain from Eq. (16) a formula for 
the correlation function of the sea surface elevations: 
 

M
ς
(ρ) = ⌡⌠

0

∞

 
 S(k) coskρ k dk , 

 

where ρ = ρx is the coordinate along the wave 
propagation direction.  

Hence, it is not very difficult to obtain an 
expression for the spatial correlation function of the 
surface slopes 
 

Mx(ρ) = 
d2

dρ2 Mς
(ρ) = ⌡⌠

0

∞

 
 k

3 S(k) coskρ dk . (21) 

 

The theoretical values of the slope and curvature 
variances of one$dimensional wind rough sea can be 
calculated by the formulas 
 

σ$2
x = ⌡⌠

0

∞

 
 k

3 S(k) dk , (22) 

σ$ 2
x x = ⌡⌠

0

∞

 
 k

5 S(k) dk . (23) 

 

Note, by the way, that the slope variance of one$
dimensional rough sea is two times as much as the 
analogous value for the isotropic rough sea, and the 
value of curvatures variance of one$dimensional rough 
sea is 8/3 of the corresponding value for the isotropic 
rough sea. That can be easily tested by comparing the 
expressions (9) and (22), (10) and (23). 
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The relation (21) is the Fourier transform of the 
one-dimensional rough sea spectrum. The correlation 
function Mx was calculated numerically with the use of 
the spectrum (16) for the wind velocities of 4, 6, and 
8 m/s. The obtained data array for every value of ρ 
describes the values of the function (21) at more than 
120 points over the range ρ = 0$190 m. To calculate 
the functions between the nodes, the method of cubic 
spline interpolation described above is used. The spline 
derivatives are computed using known procedure of 
direct and back pass of the initial array of the function 
values. The data array for the spline interpolation were 
optimized. 

Table II presents the values of the normalized 

function Rx(ρ) = Mx(ρ)/σ$2
x and its derivatives at the 

nodes ρi when the wind velocity is 6 m/s. The use of 
these data in the formula (21) makes the interpolation 
error which does not exceed 1 %.  

 
TABLE II. 

 

ρ, ì Rx R ′x 
0.00 + 0 1.000 + 0 0.000 + 0 
3.00 $ 2 7.773 $ 1 $ 8.575 + 0 
6.00 $ 2 6.273 $ 1 $ 2.967 + 0 
1.40 $ 1 4.680 $ 1 $ 1.341 + 0 
3.00 $ 1 3.292 $ 1 $ 5.742 $ 1 
5.00 $ 1 2.380 $ 1 $ 3.603 $ 1 
9.00 $ 1 1.374 $ 1 $ 1.786 $ 1 
1.50 + 0 5.776 $ 2 $ 9.682 $ 2 
2.30 + 0 2.155 $ 3 $ 4.910 $ 2 
2.40 + 0 $ 2.586 $ 3 $ 4.573 $ 2 
3.50 + 0 $ 3.630 $ 2 $ 1.903 $ 2 
5.00 + 0 $ 5.156 $ 2 $ 3.569 $ 3 
8.00 + 0 $ 4.424 $  5.782 $ 3 
1.20 + 1 $ 2.043 $ 2 5.385 $ 3 
1.70 + 1 $ 1.272 $ 3 2.362 $ 3 
1.80 + 1 8.285 $ 4 1.854 $ 3 
2.40 + 1 5.489 $ 3 6.184 $ 6 
2.90 + 1 4.155 $ 3 $ 4.262 $ 4 
3.50 + 1 1.582 $ 3 $ 3.788 $ 4 
4.00 + 1 1.105 $ 4 $ 2.108 $ 4 
4.50 + 1 $ 5.746 $ 4 $ 7.207 $ 5 
5.00 + 1 $ 7.043 $ 4 1.022 $ 5 
5.50 + 1 $ 5.549 $ 4 4.319 $ 5 
6.00 + 1 $ 3.225 $ 4 4.610 $ 5 
6.50 + 1 $ 1.181 $ 4 3.451 $ 5 
7.00 + 1 1.735 $ 5 1.974 $ 5 
8.00 + 1 9.876 $ 5 $ 5.219 $ 7 
9.00 + 1 5.691 $ 5 $ 5.785 $ 6 
1.00 + 2 7.905 $ 6 $ 3.594 $ 6 
1.05 + 2 $ 6.013 $ 6 $ 2.027 $ 6 
1.10 + 2 $ 1.281 $ 5 $ 7.305 $ 7 
1.15 + 2 $ 1.427 $ 5 $ 8.139 $ 9 
1.20 + 2 $ 1.243 $ 5 9.931 $ 7 
1.30 + 2 0.000 + 0 0.000 + 0 

 

Figure 2 presents the dependence Rx(ρ) obtained 
from the data of Table II with the use of the 
interpolation formulas (20).  

 
FIG. 2. Normalized correlation function of slopes of the 
one$dimensional rough sea for the wind velocity of 
6 m/s. 

 

A peculiarity of this dependence is the region in 
the vicinity of small ρ, where this dependence quickly 
varies and also the presence of a comparatively slow 
oscillations at large argument. The first is explained by 
effect of the short gravitation and capillary waves 
(ripple) on the slope correlation function, and the 
second is explained by the action of the long (power 
carrying) gravitation waves at the sea surface.  

It should be noted in conclusion that with 
refinement of the model of the wind rough sea and 
obtaining of new (more accurate) experimental data on 
the variance of slopes and curvatures of the rough sea 
surface our model of the slope correlation functions will 
be also refined. But it will not require any changes in 
the technique discussed above. 
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