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Phenomenological model is investigated which enables separation of 
two contributions of the total received field, one from direct radiation, and 
another one from multiple scattering. Using the Beckman distribution, based 
on this model, we have calculated the higher moments and derived the 
relationships between the distribution parameters and experimentally 
measured moments. It has been found that this distribution, due to 
limitations on the value of its third moment, cannot be used for describing 
intensity fluctuations along some paths, particularly under strong 
turbulence. Results are compared with the experiments, in which the 
Beckman distribution is applicable. 

 

Contemporary theories of optical waves fail to 
describe comprehensively the probability density of 
intensity fluctuations at different atmospheric paths. 
The law of the intensity distribution is shown to be 
controlled by a single dimensionless parameter β0 
(Ref. 1) 
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n is the intensity of the refractive index 
fluctuations, L is the path length, and k = 2π/λ is 
the wave number. In the weak fluctuation limit, 
β0 < 1 and the theory and experiment both exhibit 
lognormal distribution of intensity fluctuations, 
while at β0 >   > 1 (strong turbulence, long paths), the 
theory predicts exponential distribution of the 
intensity. However, these models do not provide a 
satisfactorily good description of the intensity 
fluctuations in the intermediate, though quite wide, 
region most interesting in practice. 

In recent years the phenomenological approach2,3 
to the description of the probability density of 
fluctuations in a wide range of turbulent conditions 
is being widely used. The present paper validates 
experimentally one such a fluctuation model, 
proposed by Beckman and then adapted to optical 
range in Ref. 5. 

According to the model chosen, the total 
received field consists of two components 

 

A ei φ = A1 e
i φ1 + A2 e

i φ2 . (2) 
 

The first, A1 e
i φ1 , is due to forward scattered 

radiation on the inhomogeneities located at the  
 

transmitter-receiver axis, and has a lognormal 
distribution of the amplitude and normal distribution 

of the phase. The second, A2 e
i

 

φ2, is due to multiple 
scattering on the off-axis inhomogeneities and has 
Rayleigh distribution of the amplitude and uniform 
distribution of the phase. In fact, the same model is 
used in Ref. 3 except that it assumes that amplitudes 
A1 and A2 of the first and the second waves are 
distributed according to the Nakajimi m–
distribution. Also essentially close to it is the model 
of optical wave intensity fluctuations in the 
atmosphere,6 with precipitation which considers the 
probability density as a mixture of two contributions, 
one from the atmospheric turbulence, and the other 
due to scattering on hydrometeors. 

A universal distribution from Ref. 3 was 
explored in Ref. 4 and it was shown that in a weak 
turbulence regime, it does not obey lognormal law 
and deviates considerably from the experimental data 
obtained under deep fading regime. 

Based on the model (2) Ref. 5 introduces the 
integral representation of the Beckman probability 
density in the form 
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where σI1
 and mI1

 are the variance and mean value of 

the logarithm of the lognormal component intensity, 
respectively, mI2

 is the mean intensity of the 

Rayleigh component of the field, and I0() is the 
modified Bessel function of zero order. Using Eq. (3) 
we can write the expression for the high normalized 
intensity moments immediately as 

 

mn = 
<I

n
>

<I>
n = 

1

(1 + R)
n ∑
k=0

n

 (C
k

n)
2
 m

n–k

r  m
k

l R
k
 , (4) 

 

where m
k

l  = <A
2k

1 >/<A
2

1>
k
 is the kth normalized moment 

of the lognormal component, m
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normalized moment of the Rayleigh component, and 
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2> is the parameter controlling the 
relation between the lognormal and Rayleigh 
components of the total field. 

Then, in order to relate the parameters of 
Eq. (3) to the moments measured experimentally, we 
solved the system composed of the equations for the 
first three moments, mn, and for the parameters of 
the distribution (3). As a result, we have 
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It is important to note that the function  
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is limited, – 0.4 < f(σI
1
) < 0.2, and therefore, the 

ratio 
m2 – 2

(m3 – 9 m2 + 12)2/3 must take values from this 

interval in order for σI1
 to be determined. This 

condition, together with the condition mI
2
 > 0, limits 

possible range of the third moment, specifically, to 
those m3 values falling within the shaded zone in 
Fig. 1. This, therefore, casts some doubts on the 
conclusion drawn empirically in Ref. 5 about the 
universality of the Beckman distribution. We note 
that the relation (4), for normalized moments, 
coincides exactly with that from Ref. 3, for the 
normalized moments of the universal distribution. 
Thus, we can assume that this expression for the 
moments as well as the restrictions imposed on the 
third normalized moment is, to say generally, 
common for all such models. 

 
FIG. 1. Applicability ranges of the Beckman 
distribution. 

 
Analyzing experimental data, for m2 < 2, that is 

under weak turbulence, we have calculated 
parameters for a number of sets of the Beckman 
distribution and inserted them into Eq. (3). The 
results are shown in Figs. 2–4 together with the 
model distributions. The measurements were 
performed with the instrumentation and by the 
methods described in Refs. 6 and 7. As seen, 
distribution (3) essentially differs from the 
experimental one, especially in the deep fading 
regime. 

 

 
FIG. 2.  Comparison of the histogram of normalized 
intensity with lognormal distribution (curve 1) and 
with the Beckman distribution (curve 2) at 
β = 0.74, for a narrow beam reflected from a plane 
mirror in rain. 
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FIG. 3. The same as in Fig. 2 but at β = 0.76, for a 
quasiplanar wave reflected from a mirror disk. 

 

 
FIG. 4. The same as in Fig. 2 but at β = 0.99, for a 
quasiplanar wave reflected from a mirror disk. 
 

For m2 > 2, none of the realizations has moments 
falling within the region shown in Fig. 1. This, in our 
opinion, is attributed to the limited dynamic range of 
the instrumentation employed, resulting in the  
 

systematically low high–order moments in the 
experiment. Also, doubtful is the use of the Rayleigh 
distribution to describe the amplitude of the second 
component in Eq. (1); this could be justified if the 
overall field were the superposition of multiply 
scattered waves, statistically independent and 
abundant in number. This, however, is not generally 
the case in the real atmosphere, which, while 
comprising inhomogeneities of a wide range of scales, 
is, in fact, dominated by radiation fields scattered 
from large inhomogeneities, thus, being partially 
correlated. The overall radiation field is therefore not 
rigorously Rayleigh and, hence, the intensity 
distributions are not exponential. In this regard, it 
would be most reasonable to describe the amplitude 
of the second component in Eq. (2) with the K–
distribution which fits experimental data8 much 
better than the exponential distribution. Use of such 
a model, in which the second field component is 
described with the K–distribution rather than with 
the Rayleigh one, will make a subject for a separate 
paper. As to the distribution (3), its narrow 
applicability range and poor fit of experimental data, 
meeting the application criteria, makes its use to 
describe probability densities over a wide range of 
atmospheric turbulence hardly possible. 
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