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A modified solution of the lidar equation has been derived that develops the 

Klett algorithm as a stable form of inversion of the lidar equation and provides the 

reconstruction of the extinction coefficient profiles from laser sounding data.  This 

solution allows for the small-angle scattering typical of oceanic waters.  Inversion 

errors for the Klett and modified algorithms have been compared in a numerical 

lidar experiment for a medium with various model vertical profiles of the 

extinction coefficient.   
 

In general, inverse problem of laser sounding of 
oceanic medium, which involves the reconstruction of 
the vertical profiles of hydro-optical characteristics 
from backscatter signals, is an ill-posed problem from 
the mathematical standpoint.   

This is caused by effects of multiple scattering of a 
collimated laser beam in an inhomogeneous (both by 
the volume concentration and size distribution of 
scatters) medium, which are difficult to consider, as 
well as by double passage of radiation trough a random 
oceanic surface.1   

Laser aerosounding of oceanic medium is used to 
solve a number of applied problems.  In this case, as a 
rule, relative measurements of the hydro-optical 
characteristics are of interest, especially their spatial 
distribution and spatiotemporal variability of different 
scales;  at the same time, measurement of the absolute 
values is not important.   

Proceeding from objectives of applied studies, 
approaches to the inverse problem solution are based on 
the use of approximate expressions allowing to one or 
another extent for the specific character of laser 
sounding of the upper oceanic layer and, at the same 
time, being sufficiently simple to satisfy the 
requirements for real-time processing.   

One of these approaches is the Klett algorithm2$4 
allowing the inversion of the lidar equation for the 
extinction coefficient to be realized.  This algorithm 
was used to process backscatter signals of both the 
atmosphere2 and oceanic5 media.   

The papers devoted to analysis of possibilities and 
peculiarities of the given algorithm are known.6$9   

In Ref. 2, the lidar equation 
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was used, where Pp is the pulse power, τp is the pulse 
duration, c is the velocity of light, Φ is the effective 

area of a receiving antenna, σ is the scattering 
coefficient, r is the distance along a sounding path, 
σ(π, r) is the backscattering coefficient, 
ε(r) = σ(r) + i(r) is the extinction coefficient, and 
i(r) is the absorption coefficient.  Equation (1) is 
solved for ε(r) on the assumption that 

 

σ = B εk , (2) 
 

where B and k are the constants with the value of k 
being within the interval 0.67$1.0 depending on the 
type of scattering particles.   

Klett2 obtained the stable solution  
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where S(r) = ln[P(r) r2] is the logarithm of the 
backscatter signal power P(r) weighted with distance, 
rm is the maximum distance along the sounding path, 
εm = ε(rm), and Sm = S(rm).  However, as noted by 
Klett himself,2 solution (3) ignores the small-angle 
scattering effects and, we add, the effects of double 
passage of radiation through a random interface 
between media.  Since rigorous (with allowance for 
these effects) expression for echo-signal power1 cannot 
be analyzed numerically in practice, the necessity arises 
to search for approximate solutions.   

To take into account the small-angle scattering in 
the solution (3), we use the expression known from the 
papers of Dolin and Savel'ev (Ref. 10) 
 

s(r) = s0(r) + π ⌡⌠
0
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2
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which describes variations of the beam cross section (in 
the small-angle approximation) in an inhomogeneous 
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scattering medium. In Eq. (4) s0(r) = π(r tanαΛ)2 is 
the beam cross section ignoring the scattering, αΛ is the 

angular beam divergence, and γ20(ξ) is the variance of 

the angle of deflection due to a single act of scattering. 
In this case, the following assumptions were made.   
1. Sounding is carried out from the height H 

through a smooth interface between media 
(n1, σ1, i1; n2, σ2, i2);  with n1 = 1, n2 = n (n is the 
refractive index), σ1<   <  σ2 = σ, and i1<   <  i2 = i. 

2. The distribution of scatters over size is 
invariable with depth. This allows one to consider the 
variance of the angle of deflection due to a single act of 
scattering to be independent of r: 

 

γ20(r) = γ20 = const . 

 
3. Relation (2) derived by Barteneva11 and used 

by Klett is appropriate for a turbid atmosphere (fog, 
smog, rain cloud) when scattering processes are 
predominated, and the absorption is small compared 
with the scattering.   

Let us assume that relation (2) is also appropriate 
for some water types. 

Let i ≤ 0.1 σ, and the mean value  

i
$(λ = 530 nm) = 0.03 m$1 in accordance with 
Ref. 12 (p. 185); then σ ≥ 0.3 m$1.  It seems likely 
that similar cases (according to classification of water 
types proposed in Ref. 12) can be observed in regions 
of drift of eolian suspension, coastal zones, and 
regions of high bioproductivity of an ocean.  This 
assumption does not contradict the physical model of 
radiation attenuation (Ref. 12, p. 231) if the relation 
between i and σ is estimated based on the photon 
survival probability 

 
Λ = σ/(σ + i), 

 
which is greater or equal to 0.9 for the wavelength 
range 510$550 nm (for coastal waters) and is 0.77$0.88 
(for oceanic waters) to depths as great as 100 m.   

If small-scale variability is considered in cross 
section through the oceanic medium, local formations 
of such a type can be obviously observed as a fine 
structure of seasonal thermocline in the form of 
sublayers of increased turbidity in which the 
extinction coefficient can change several times.13   

In connection with the accepted assumption on 
applicability of relation (2) for some water types, 
Ref. 5 should be mentioned where results were 
presented of processing of laser return signals from 
oceanic medium by various algorithm including the 
Klett one.   

The spread of points on diagrams in the 
coordinate system (ε, B), where B (in designations 
from Ref. 5) is proportional to backscattering, shows 
a presence of various types of functional relations 
close to linear, between the above quantities.   

 

Within the bounded region of investigations, 
different water types were observed which are 
characteristic of areas of river drifts, shallows, and 
clear waters of oceanic streams.  This is manifested 
through the change of slope of sets of points grouping 
about some preferred directions in the coordinate 
system (ε, B) as well as through the shift of these sets 
of points in the coordinate plane.   

4. It is reasonable to assume that the profiles σ(r) 
and σ(π, r) are correlated since it is well known that 
basic variations of scattering are primarily caused by 
changes in the concentration of scattering particles and 
to a lesser extent by transformation of the particle size 
distribution.   

In their turn, anomalous changes in the 
concentration of any individual fraction of 
polydispersed suspension can lead to extrema in the 
scattering phase function and, as a result, to 
disagreement between the forms of σ(r) and σ(π, r) 
profiles.  However, as was noted in Ref. 12 (see 
p. 170), œfor most oceanic scattering phase functions, 
local extrema have not been found.B   

Allowing for accepted assumptions for the case of 
double passage of a collimated beam through the air-
water interface, lidar equation (1) can be written in the 
following form: 
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(5) 
where ν = γ0 n/tanαΛ, and A is the instrumental 
constant of a lidar.   

Using expression (5) and following the procedure 
of the lidar equation solution described in Ref. 2 in 
detail, we have derived a modified expression 
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in which (allowing for the accepted assumptions) the 
scattering effects are considerated, and 
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It should be noted that solution (6) is analogous 
to the Klett solution3 if the relation 

 

σ(r) = B(r) [ε(r)]k (8) 
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is valid.  The difference is that new solution contains 
the ratio of functionals  
 

⎣
⎡

⎦
⎤F(r)

F(r
m
)

1/k

 

 

instead of the term ⎣
⎡

⎦
⎤B(rm)

B(r)

1/k

.  Numerical modeling of 

the problem of reconstruction of the ε(r) profile by 
modified (6) and known (3) algorithms was carried out 
for media with different model distribution of ε(r).  
The following models were used: 

a) homogeneous 
 

σ(r) = σ0 ; (9) 
 

b) linear 
 

σ(r) = σ0 + a r , (10) 
 

where a>< 0 and ⏐a⏐ < σ0/r
m
 ; 

 

c) exponential 
 

σ(r) = σ0 exp (a r), (11) 
 

in which for a < 0 the restriction is imposed 
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d) harmonic 
 

σ(r) = σ0 [1 + m sin (q r)] , (13) 
 

where q = 2π/r0, and r0 is the spatial period of 
variation of σ(r); 

e) Lorentz model14 
 

σ(r) = σ0 
⎩
⎨
⎧

⎭
⎬
⎫

1 + 
α δ2

(r $ r0)
2 + δ2  , (14) 

 

where r0 is the coordinate of the maximum 
concentration of scatters, δ is the half-width of σ(r) 

distribution, and α>
< 0 is the coefficient determining the 

maximum value of σ. 
Each model has proper functional F[σ(r)] found 

by integration of Eq. (7).  Results of integration for 
H = 0 yield: 

a) homogeneous model 
 

F(r) = 1 + 
σ0 

ν2

3
 r , (15) 

 

b) linear model 
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c) exponential model 
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d) harmonic model 
 

F(r) = 1 + σ0 ⎝
⎛
⎠
⎞ν

r
2
 
⎩
⎨
⎧

⎭
⎬
⎫r3

3
 + m 

q r2 $ 2 [1 $ cos(q r)]

q3  , (18) 

 

e) Lorentz model 
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A simulation program provided the reconstruction 
of the profile 
 

ε(r) = σ(r) +i (20) 
 

in equidistant points of a path whose end points is at 
rm by two inversion algorithms: ignoring the scattering 
effects (3) and allowing for these effects (6).   

The following characteristics were calculated 
beforehand: the true model profile ε(r) and the 
simulated value S(r) of the input signal weighted with 
distance on a logarithmic scale.  This value takes into 
account the effects of multiple small-angle scattering 
for the given stratification model: 
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(21) 
A program in FORTRAN (for the BESM-6 computer 

system) provided for double access to algorithm (3) or 
(6).  In the first case, the boundary condition for 
solution of the lidar differential equation is given by 
the true value εm = ε(rm).  In the second case, the 
problem is approximated to the real situation when the 
value of εm at the end point of the path is a priori 
unknown, and the estimate 
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proposed by Klett2 is used based on simulated values of 
real signal.   

Reconstruction of the profiles ε(r) for models (9)$
(14) by algorithm (6) with functional F(r) for 
homogeneous medium (15) simulates most adequately 
the real situation of remote sensing when a priori 
information on the character of the profile ε(r) and 
especially on the value of ε

m
 at the end point of the 

path is lacking.   
At the same time, preliminary check of algorithm 

(6) with the use of functionals (15)$(19) for models 
(9)$(14) have shown a complete coincidence of the 
initial and reconstructed profiles.   
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The simulation results are shown in Figs. 1$5.  
The dashed curve at the top of the figures shows the 
dependence S(r) (see Eq. (21)).   

It follows from the obtained results that ignoring 
the scattering for the case of homogeneous medium 
(Fig. 1) results in a relative error of the profile 
reconstruction (when estimate ε = ε(r

m
) is used) more 

than 37% in maximum (curves 1 and 3),  whereas the 
profile reconstruction by the modified algorithm with 

ε ′
m
 = ε̂(r

m
) (curve 4) provides the error which does not 

exceed 12% for 84% of the path length.   
 

 
FIG. 1. Comparative results of reconstruction of the 
ε(r) profile for homogeneous model medium (see 
Eq. (9)) allowing for (modified algorithm) and 
ignoring (known algorithm) the effects of small-angle 
scattering with different boundary conditions:  true 
profile of ε(r) (1); reconstruction with boundary 
conditions given by the true value ε

m
 = ε(rm) (2 and 

3); reconstruction with boundary conditions given by 

the estimate ε ′
m
 = ε̂(r

m
) (from Eq. (22)) (4 and 5); 

reconstruction allowing for the effects of multiple 
scattering (modified algorithm (6)) (2 and 4); 
reconstruction ignoring the effects of multiple 
scattering (known algorithm (3)) (3 and 5); the level 
of ε

m
 value for estimate (22) (in Fig. 1 only) (6).  

S(r) is shown by dashed curves in Figs. 1$5 (see 
Eq. (21)). 

 

Figures 2$5 show that the use of the modified 
algorithm for a priori unknown profile (with functional 
(15) for homogeneous medium) and estimate of the 
boundary condition ε = ε(r

m
) ensures small (less than 

10-15%) errors in reconstruction (curves 1 and 2 in the 
figures).   

The exception is the region of maximum for the 
Lorentz model (Fig. 5) where the error increases to 
approximately 39%.  At the same time, this error is still 
greater, i.e., about 83% (curve 3) when scattering is 
ignored.   

 
FIG. 2 .  The same as in Fig. 1 but for the linear 
model profile ε(r) (a < 0, see Eq. (10)). 

 

 
FIG. 3.  The same as in Fig. 1 but for the exponential 
model profile ε(r) (a < 0, see Eqs. (11) and (12)).  
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FIG. 4.  The same as in Fig. 1 but for the harmonic 
model profile ε(r) (r0 = 50 m, m = 0.5, see Eq. (13)). 

 
FIG. 5.  The same as in Fig. 1 but for the Lorentz 
model profile ε(r) (α = 5.0, δ = 7.5, r0 = 40 m, see 

Eq. (14)). 

As follows from the figures (curves 4 and 5) the 
main errors of the profile reconstruction are due to the 
choice of the boundary conditions, in particular, 

ε ′
m
 = ε̂(r

m
).  This is peculiar to the given inversion 

algorithm.   
Our results allow us to draw the following 

conclusions:   
First, compared with the known inversion 

algorithm, the obtained solution introduces essential 
corrections for the scattering effects.  In this case, the 
accepted assumptions limiting the range of application 
of the proposed algorithm should be borne in mind.   

Second, a peculiarity of the Klett algorithm 
(irrespective of scattering) is strong dependence of the 

profile on a choice of the value ε̂(r
m
) (boundary 

conditions at the end point of sounding path).  
Obviously, this disadvantage can be overcome to a 
certain extent if we take into account a fact that 
variability of the extinction coefficient of oceanic 
medium decreased with depth and simultaneously the 
value of the extinction coefficient decreases 
monotonically.  Extrapolation of the smoothed profile 
to the end point of the path will help one to approach 

the estimate ε̂(r
m
) to its true value and thereby to 

decrease the error.   
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