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The formal mathematical procedures have been established for finding the 

eigenvectors and eigenvalues of the single–point backscattering phase matrices 
(BPMs) of reciprocal media on the basis of analysis of symmetrical complex 
operators belonging to the congruent unitary transformation space. 

 
It is well known1,2 that the backscattering phase 

matrix (BPM) of reciprocal scatterers is always 
symmetrical and undergoes the congruent unitary 
transformation in going to a new polarization basis. Let 
BPM be specified by the four complex numbers: 

 

Sg = 
⎝
⎜
⎛

⎠
⎟
⎞S

⋅
11 S

⋅
12

S
⋅
21 S

⋅
22

 , (1) 

 

in the Cartesian polarization basis, i.e., in the XY 

coordinate system, where S
⋅
21 = S

⋅
12 (due to the 

symmetry). The basis vectors of the laboratory 
coordinate system are two linearly polarized cophased 
Jones vectors parallel to the X and Y axes, 

respectively. Then in the (XY)′ coordinate system and 
the previous Cartesian basis operator (1) takes the 
following form: 
 

S1
g = R~ θ Sg Rθ, (2) 

 

where Rθ = ⎝⎛ ⎠⎞
cos θ; $ sin θ
sin θ; cos θ  is the rotation operator, 

θ is the angle between the (XY)′ coordinate system and 
the XY coordinate system in which the operator Sg 
(Eq. (2)) is represented, and the tilde denotes the 
transposition. 

Operator (2) in the polarization basis, whose 
normal unit vectors e1 and e2 are the Jones vectors 
with major axes of the polarization ellipses being 

parallel to the X and Y axes of the (XY)′ coordinate 
system, respectively, with opposite directions of motion 
along identical ellipses of their polarization, has the 
form: 

Sε = (e1;e2
Î

) S ′g (e1; e2) = Fε S ′g Fε, (3) 
 
where 
 

e1 = 
⎝
⎛

⎠
⎞cos ε

j sin ε
 ,  e2 = 

⎝
⎛

⎠
⎞j sin ε

cos ε
, (4) 

 

Fε = ⎝⎛ ⎠⎞
cos ε; j sin ε
j sin ε; cos ε . (5) 

 
The parameter ε in Eq. (5) specifies the absolute 

value of the ellipticity angle of the orthogonal basis 
vectors e1 and e2, with their orientation relative to the 

(XY)′ coordinate system remaining unchanged, and 

determines the ellipticity of the basis of the operator Sε 
in Eq. (3). Substituting Eq. (2) into Eq. (3), we 
obtain 
 

Sε = F~ε R
 ~
θ Sg Rθ Fε = L~ Sg L, (6) 

 
where L = Rθ Fε. 

Thus, representation Sε of the operator Sg in 

Eq. (1) in any basis with the ellipticity angle ε and 
the orientation angle θ (relative to the coordinate 
system in which the operator Sg is defined) has been 
given by general expression (6) in which the unitary 
operator L defines the rotation group in the three-
dimensional space of the stereographic projection of 
the Jones vectors to the Poincare sphere, and the 
parameters ε and θ vividly and unambiguously 
pazametrize this group. It should be noted that this 
parametrization has the advantages over the Cayley-
Klein parameters3 that also parametrize 
unambiguously the indicated group by two 

independent parameters A
⋅
 and B

⋅
 in the form: 

 

L = 
⎝
⎜
⎛

⎠
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⎞A

⋅
; $B*⋅

B
⋅
; A*⋅

, (7) 

 

where the complex numbers A
⋅
 and B

⋅
 satisfy the 

condition 
 

A
⋅
A*⋅  + B

⋅
B*⋅  = 1 , (8) 

 
and have no vivid physical meaning. 
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Due to the symmetry of the operator Sg and the 
congruence of the transformation in Eq. (6), one can 
always find such parameters ε = ε0 and θ = θ0 for which 

the matrix Sε takes the canonical (diagonal) form 
 

S0
ε = 

⎝
⎜
⎛

⎠
⎟
⎞λ

⋅
1 0

0 λ
⋅
2

 = F~ε0 R
~
θ0

 Sg Rθ0
 Fε0 = L~0 Sg L0, (9) 

 
where λ1 and λ2 are the eigenvalues of BPM, θ0 and ε0 
are the eigenbasis parameters. Solving Eq. (9) for the 
operator Sg, we obtain 
 

Sg = Rθ0
 F*

ε0
 
⎝
⎜
⎛

⎠
⎟
⎞λ

⋅
1 0

0 λ
⋅
2

 F+
ε0

 R~θ
0
 = L*

0 S
0
ε L

+
0, (10) 

 
where the plus sign denotes Hermitian conjugation, and 
the asterisk denotes the complex conjugation. A vector 
signal observed at the exit from a field analyzer-shaper 
is related to a radiated signal by the expression: 
 

Up = P~ Sg P U0, (11) 
 
where P is the unitary operator of the analyzer–shaper 
determining its polarization properties (ellipticity and 
orientation of the measurement basis).1 

Taking into account Eq. (10), expression (11) for 
the operator Sg takes the form: 
 

Up = P~ L*
0 
⎝
⎜
⎛

⎠
⎟
⎞λ

⋅
1 0

0 λ
⋅
2

 L+
0 P U0 , (12) 

 
and for 
 
P = L0, (13) 
 
which can be always satisfied by changing the 
ellipticity and orientation of the measurement basis 
(i.e., by changing the polarization properties of the 
analyzer), Eq. (12) takes the simplest form 

 

Up = 
⎝
⎜
⎛

⎠
⎟
⎞λ1

⋅
0

0 λ2
⋅  U0 = S0

ε U0. (14) 

 
Relation (14) means that the BPM eigenvectors 

corresponding to its eigenvalues λ
⋅
1 and λ

⋅
2 have the 

following form in the eigenbasis of the representation: 
 

Ue1 = 
⎝
⎛
⎠
⎞1 

0
 

 → λ
⋅
1, Ue2 = 

⎝
⎛
⎠
⎞0 

1
 

 → λ
⋅
2. (15) 

 
Obviously, the eigenvectors in the Cartesian basis 

of the description (in the basis of the operator Sg ) in 
the XY coordinate system are reduced to the form 

Ug
e1 = L0 ⎝

⎛
⎠
⎞1 

0
 

, Ug
e2 = L0 ⎝

⎛
⎠
⎞0 

1
 

, (16) 

 
since the relation 

 

Sg U
g
e1 = λ

⋅
1 (Ug

e1)*, Sg U
g
e2 = λ

⋅
2 (Ug

e2)* (17) 
 
is valid for the operator Sg (see Eq. (10)) and vectors 
(16). 

The vectors Ug
e1 and Ug

e2 are the unique vectors 

corresponding to the eigenvalues λ
⋅
1 and λ

⋅
2 of the 

operator Sg due to the unique operator L0 inverse to 

the operator L0
+  in Eq.(10) for Sg . 

It is easy to make sure that the BPM eigenvectors 

Ug
e1 and Ug

e2 are always orthogonal 
 

(Ug
e1)+ Ug

e2 = (Ug
e2)+ Ug

e1 = 0, (18) 
 
since the relation 
 

L+
0 L0 = L0 L

+
0 = ⎝⎛ ⎠⎞

1 0
0 1  = I (19) 

 
is valid. 

Relation (17) contains the symbol of complex 
conjugation, which means that the BPM eigenvectors 
are contravariant to mapping of the XY coordinate 
system in which they are defined. This fact causes the 
difference of BPM from the transmission phase matrices 
(strictly forward scattering) belonging to the similarity 
transformation space. The relation defining their 
eigenvectors has the form 

 
S ee = λ ee, (20) 
 
which makes it possible to obtain the characteristic 
equation in the form 
 
Det {S – λ I} = 0. (21) 
 

Starting from Eq. (17), the BPM eigenvectors 
have the form 
 

S ee = λ e*e. (22) 
 
As follows from Eq. (16), in general the eigenvector ee 
can be written in the form 
 

ee = L0 ⎝
⎛
⎠
⎞1 

0
 

, (23) 

 
where the parameters θ0 and ε0 of the operator L0 (see 
Eq.(6) for L) specify the parameters of the eigenbasis 
of BPM relative to the basis in which the operator S in 
Eq. (22) is represented. Substituting Eq. (23) into 
Eq. (22), we obtain 
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⎛
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 = λ L*
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, (24) 

 
from which we can write the characteristic equation of 
BPM 
 

Det {S – λ L*
0 L

+
0} = 0. (25) 

 

It follows from Eq. (6) for L and Eqs. (5) and (2) 

for Fε and Rθ : 
 

L0 = Rθ
0
 Rε

0
 = 
⎝
⎜
⎛

⎠
⎟
⎞A

⋅
; $B*⋅

B
⋅
; A*⋅

, (26) 

 

where 
 

A
⋅
 = cosε0 cosθ0 – j sinε0 sinθ0, (27)

 

B
⋅
 = cosε0 sinθ0 + j sinε0 cosθ0. 

 

By substituting Eq. (26) into Eq. (25), after 
multiplication we obtain 

λ2 – λ [Sp S cos2ε0 – j sin2ε0 {(S
⋅
11–S

⋅
22) sin2θ0 – 

– 2 S
⋅
12 cos2θ0}] + Det S = 0, (28) 

 

where Sp and Det denote the spur and determinant of 

the operator S, respectively; S
⋅
ij are the elements of the 

operator S. Thus, relation (28) establishes the 
correspondence of the eigenvalues λ1 and λ2 with 

eigenbasis parameters ε0 and θ0 and elements S
⋅
ij of the 

matrix S in the form of two transcendental equations 
 

λ
⋅
1 = 0.5 [N

⋅
 + (N

⋅ 2 – 4Det S)1/2], (29) 

λ
⋅
2 = 0.5 [N

⋅
 – (N

⋅ 2 – 4Det S)1/2], 
 

where N
⋅

 = Sp Scos2ε0 – j sin2ε0 {(S
⋅
11–S

⋅
22) sin2θ0 – 

– 2S
⋅
12 cos2θ0}, and λ

⋅
1 and λ

⋅
2 (BPM eigenvalues) are 

solutions of square form (28) for λ. 
A system of equations (29) contains six real 

unknowns: ⏐λ
⋅
1⏐, ⏐λ

⋅
2⏐, ϕ1 = argλ

⋅
1, ϕ2 = argλ

⋅
2, ε0, and θ0, 

and is equivalent to a system of four real equations that, 
at first glance, have no unambiguous solutions for six 
unknowns. Because the norm and the determinant of 
BPM are invariant for the basis parameters, a system of 
equations (29) can be completed by two relations 

⏐Det S⏐ = ⏐λ
⋅
1⏐ ⏐λ

⋅
2⏐, 

||S||2 = ⏐λ
⋅
1⏐

2 + ⏐λ
⋅
2⏐

2.  (30) 
 
It then follows that 

 

⏐λ
⋅
1⏐ = 

1

2
 [||S||2 + (||S||4 – 4⏐ Det S⏐2)1/2]1/2,  (31) 

 

⏐λ
⋅
2⏐ = 

1

2
 [||S||2 – (||S||4 – 4⏐ Det S⏐2)1/2]1/2,  (32) 

 

where ||S|| =

⎝
⎜
⎜
⎛

⎠
⎟
⎟
⎞

∑
i=1
j=1

2
 

 

⏐
⋅
Sij⏐

2
1/2

 is the Euclidean norm of 

BPM. 
The system of equations (29) and (30) is 

unambiguously solvable for six unknowns ⏐λ
⋅
1⏐, ⏐λ

⋅
2⏐, 

ϕ1, ϕ2, ε0, and θ0. Generally speaking, relation (30) 
follows immediately from the system of equations (29), 
as their comprehensive analysis (which is beyond the 
scope of this paper) shows, and characteristic equation 
(28) provides complete information about the 
parameters λ1, λ2, ε0, and θ0 that parametrize 
sufficiently and nonredundantly BPM of a scattering 
object. 

In summary the following conclusion can be 
drawn: 

# BPM characteristic equation (28) 
unambiguously determines its eigenvalues and 
eigenbasis parameters (and hence its eigenvectors) and 
establishes formal mathematical rules for finding them 
as its solutions; 

# the above–indicated formalism makes it 
possible to eliminate some discrepancies and evident 
errors encountered in some papers devoted to analysis 
of BPM (for example, see Ref. 4). 
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