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The coherence characteristics of the X-ray laser emission are studied as 
functions of the distribution of amplifying and refracting properties of an active 
medium. Analytical and numerical solutions have been obtained considering the 
effect of the dielectric constant fluctuations on output radiation parameters. 
Calculations have been performed on the basis of combination of the ray-tracing 
techniques: method of characteristics used for a solution of the radiative transfer 
equation and the phase approximation of the Huygens-Kirchhoff method.  

 
A number of approaches can be used to describe 

theoretically the X-ray laser emission. All are based 
on the paraxial approximation of wave optics for a 
solution of the parabolic equation1–3 or of the 
equation for the coherence function.4,5 Within the 
scope of the last approach, the effect of the dielectric 
constant fluctuations on the output radiation 
parameters was estimated. However, these 
calculations were performed for the uniform 
distribution of amplifying and refracting properties of 
an active medium. Simultaneous account of 
inhomogeneous properties and dielectric constant 
fluctuations within the framework of the above-
mentioned approaches is highly conjectural. 

This paper describes an approach that allows us 
to take into account both regular inhomogeneities and 
fluctuations in the active medium. The approach is 
based on combination of the ray tracing technique for 
a solution of the radiative transfer equation being the 
Fourier transform of the equation for the coherence 
function4,5 and on the use of the phase approximation 
of the Huygens-Kirchhoff method for taking account 
of the effect of the turbulent fluctuations of the 
dielectric constant. 

1. Let us first consider application of the approach 
to computation of output radiation parameters for an 
active medium without fluctuations. As an initial 
equation, we will consider the parabolic wave equation 

 

2 ik 
∂E
∂z  + ∇2

⊥ E + k2 Δε(z, ρ) E(z, ρ) = Psp(z, ρ), (1) 
 

where k is the wave number, Δε is the relative 
perturbation of the complex dielectric constant, Psp is 
the term caused by the spontaneous polarization in a 
medium, and r = (z, ρ). 

We consider the active medium with the following 
spatial distribution of the dielectric constant: 

 
Δε(z, ρ) = ε(z, ρ) + i σ(z, ρ), (2) 
 

where ε is the real part of the dielectric constant and σ 
is its imaginary part connected with the amplification 
coefficient of the medium g by the following relation: 
 

σ(z, ρ) = – k
–1 g(z, ρ). 

 

The form of functions ε and σ is determined by the 
spatial distribution of the density of population 
inversion in the medium. Spontaneous radiation is 
caused by the random polarization in the medium, 
which is considered to obey Gaussian statistics and to 
satisfy the condition 
 

<Psp(r) P*sp(r′)> = Wef(r) g0 δ(r – r′), (3) 
 

where Wef is the effective intensity of spontaneous 
emission, and g0 is the amplification coefficient at the 
origin of coordinates. Then we can write the equation 
for the coherence function in the approximation of 
paraxial optics 
 

∂Γ2
∂z  + ⎣

⎡
⎦
⎤1

ik ∇ρ∇R + 

k
2 i ρ ∇R ε(z, R) + k σ(z, R)  Γ2(z, R, ρ) = 

= 
g0

2 k2 Wef(z, R) δ(ρ), (4) 

 

where the sum R = (ρ1 + ρ2)/2 and difference  
ρ = ρ1 – ρ2 transverse coordinates were introduced and 
the approximate Taylor series expansion6 

 

Δε(z, R + ρ/2) – Δε*(z, R – ρ/2) ≈ 
 

≈ ρ ∇R ε(z, R) + 2 i σ(z, R) (5) 
 

was used. Next, taking the Fourier transform in ρ, we 
obtain the equation 

 

∂J
∂z + ⎣

⎡
⎦
⎤n⊥

k  ∇R + 

k
2 ∇R ε ∇n⊥

 + k σ(z, R)  J(z, R, n⊥) = 

 

= 
g0

8 π2 k2 Wef(z, R), (6) 
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where J is the radiation brightness, which is defined as 
the Fourier transform of the coherence function 
 

J(z, R, n⊥) = (2π)
–2

⌡⌠
  $∞

    ∞
 

 ⌡⌠
 

 

Γ2(z, R, ρ) exp (– i n⊥ ρ) dρ. (7) 

 

Solution of Eq. (6) can be represented in the form 
 

J(z, R, n⊥) = 

g0

8 π2 k2 

⌡⌠
0

z
 

 

dz′ Wef(z′, R(z′)) × 

× exp 

⎣⎢
⎢⎡

⎦⎥
⎥⎤

⌡⌠
z′

z
 

 

dz′′ g(z′′, R(z′′))  , (8) 

 

where the characteristic R = R(z') obeys the equation 
 

d2R
dz2  = 

1
2 ∇R ε(z, R(z)) (9) 

 
with the initial conditions R(z′ = z) = R and 
dR(z′ = z)/dz′ = n⊥. 

Analytic solution for the parabolic distribution of 
the population inversion density 

 

ε(R) = 1 + (R2
 – a2)/L2

R, ⎪R⎪ < a, ε(R) = 1, ⎪R⎪ > a, 

g(R) = g0(1 – R2/a2), ⎪R⎪ < a, g(R) = 0, ⎪R⎪ > a, 
(10) 
 

was obtained in Ref. 6. This solution was found with 
the use of approximations 

 

Wef(z, R) = Wδef(R) δ(z), (11) 

Wδef(R0) = Wδ0(R) exp (– R2
0/a2). (12) 

 

Condition (11) means that we consider only the 
contribution from an infinitely thin layer of radiating 
elements, located at the end of the active medium 
(approximation of incoherent disk), to the output 
radiation. Zemlyanov and Kolosov6 pointed out that 
this approximation may yield more than twice 
overestimated values of the coherence radius of the 
output radiation of an X-ray laser. Condition (12) also 
should be considered as an approximation because in 
rigorous formulation of the problem, the distribution of 
the intensity of sources must copy the distribution of 
the amplification coefficient, i.e., it must have the 
parabolic profile. 

2. Let us consider results of numerical solution of 
this problem for a two-dimensional medium. We assume 
that functions ε and g have the forms 

 

ε(z, x) = 1 – (a2/L2
R) ch

–2(x/a), (13) 

g(z, x) = g0 cosh
–2(x/a), (14) 

 

respectively, and that the sources of spontaneous 
radiation are distributed by the law 
 

Wef(z, x) = W0 cosh
–2(x/a). (15) 

 

By numerical integration of the system of 
equations (8) and (9) and subsequent numerical 
Fourier transform 

Γ2(z, x, ρ) = 
⌡⌠
$∞

∞
 

 

dn⊥ J(z, x, n⊥) exp (i n⊥ ρ), (16) 

 
we find the coherence function and hence the modulus 
of the degree of coherence 
 

μ(ρ) = 
⎮Γ2(z, x = 0, ρ)⎮

W(z, x = 0)  = 
⎮Γ2(z, x = 0, ρ)⎮
Γ2(z, x = 0, ρ = 0) . (17) 

 

This numerical solution considers the contribution of 
spontaneous sources throughout the volume of the 
active medium. When we were interested in the 
contribution of the end region solely, calculations were 
made with condition (11). Results of calculations of 
the modulus of the coherence degree in the given 
approximation are shown in Fig. 1. Analytic solution 
for parabolic profiles of the functions ε and g given by 
Eq. (10) with the Gaussian distribution of Wδef given 

by Eq. (12) and numerical solution for ε, g, and Wδef 

obeying the parabolic distribution are also shown in 
Fig. 1. It is seen that the last case corresponds to the 
highest degree of coherence of the output radiation. 
Numerical measure of output radiation coherence may 
be the coherence radius ρc, for which we will use two 
definitions. First, we define the coherence radius ρc as 
the transverse distance at which μ decreases from 1 (at 
ρ = 0) to sin(1) ≈ 0.84. Second, we will use the 
definition 
 

ρc(z) = 
0.83

2 π1/2 ⌡⌠
$∞

∞
 

 

dρ μ(ρ). (18) 

 

 
 
FIG. 1. Modulus of the coherence degree at the axis of 
an active medium with parabolic (...) and  
cosh–2(- - -) profiles of population inversion for 
G = 10, η = ε0/σ0 = GFx/(g0LR)2 = 50, and Fx = 50, 
100. Solid curve shows the corresponding analytic 
solution given by Eqs. (32) and (33). 
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It is clear that both definitions give identical 
values of ρc for the modulus of the degree of coherence 
obeying the Gaussian distribution. For non-Gaussian 
distribution, these definitions yield different values of 
the coherence radius. Corresponding calculations of the 
coherence radius for parabolic and cosh–2 profiles are 
shown in Fig. 2. 

 

 
a 

 
b 

FIG. 2. The coherence radius as a function of the 
Fresnel number for a medium with parabolic (a) and 
cosh–2 (b) profiles of the population inversion 
distribution for G = 10 and 
η�=�ε0/σ0 = GFx/(g0LR)2 = 50: ⎯•⎯ first definition 
and the incoherent disc approximation; ⋅⋅⋅⋅ first 
definition and sources through on the volume;  
- - - second definition given by Eq. (18) and 
distributed sources; -------- analytic solution given by 
Eq. (33). 

 

3. The results discussed above were obtained 
neglecting fluctuations of the population inversion 
density in the active medium. In this section, we 
estimate the effect of fluctuations of the dielectric 
constant on the parameters of output radiation. 

As previously, we will consider the parabolic 
approximation. The distribution of the relative 
dielectric constant is represented in the form 

 

Δε(z, ρ) = ε(z, ρ) + δε(z, ρ) + i σ(z, ρ), (19) 
 

where the fluctuations of dielectric constant δε are 
characterized by the structure function 

Dε(r, r′) = <[δε(r + r′) – δε(r)]2> (20) 
 
and the mean <δε(r)> = 0, and angular brackets denote 
an ensemble averaging. Formal solution of Eq. (1) can 
be represented in the form 
 

E(z, ρ) = 
⌡⌠
0

z
 

 

dz0 ⌡⌠
  $∞

    ∞
 

 ⌡⌠
 

 

 dρ0 Psp(z0, ρ0) G
∼
(r, r0), (21) 

where ~G is the Green's function and r = (z, ρ). 
Consequently, 

Γ2(z, ρ1, ρ2) = 
⌡⌠

 

 ⌡⌠
 

 

0

  
z

dz01dz02 × 

× 

⌡⌠
 

 ⌡⌠
 

 
$∞ 

 
∞

dρ01dρ02 <Psp(z01, ρ01) P*sp(z02, ρ02)> <G
∼

1G
∼

2*> = 

= g0 

⌡⌠
 

 ⌡⌠
 

 
$∞ 

 
∞

dρ01 Wδef(ρ01) <G
∼
(r1, r01)G

∼*(r2, r01)>,  

G
∼

i= G
∼
(ri, r0i), 

 
where conditions (3) and (11) where taken into 
consideration. Using the phase approximation of the 
Huygens–Kirchhoff method,7 we can write 
 

G
∼
(z, ρ; 0, ρ0) = G(z, ρ; 0, ρ0) exp [ik S

∼
(z, ρ; 0, ρ0)], (22) 

 

where G is the Green's function for the case δε(r) } 0, 

and ~S is determined by the expression 
 

S
∼
(z, ρ; 0, ρ0) = 

1
2 

⌡⌠
0

z
 

 

dz′ δε(z′, ρ(z′)) 

 

and is equal to a random run-on of the phase along 
unperturbed geometric ray connecting points (0, ρ0) 
and (z, ρ). This geometric ray ρ(z') satisfies Eq. (9) 
with boundary conditions ρ(z' = 0) = ρ0 and 
ρ(z' = z) = ρ. In this case, 

 

<G
∼

1G
∼

2*> = G(r1, r01) G*(r2, r02) exp ⎣
⎡ 
 

– 
k2

4  

⌡⌠
 

 ⌡⌠
 

 

0

  
z

dz′ dz′′ × 

× 

1
2 [ψε(z′, z′′, ρ1(z′) – ρ1(z′′)) + ψε(z′, z′′, ρ2(z′) – 

 – ρ2(z′′)) –2ψε(z′, z′′, ρ1(z′) – ρ2(z′′))]⎦
⎤ 
 
, 

 
where 
 
ψε(z′, z′′, ρi(z′) – ρj(z′′)) = <δε(z′, ρi(z′)) δε(z′′, ρj(z′′))>  

 
for the homogeneous fluctuations in the transverse 
plane. Then we can finally write the solution in the 
form 
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Γ2(z, ρ1, ρ2) = exp 

⎣⎢
⎢⎡

⎦⎥
⎥⎤$ 

k2

4π 
⌡⌠
0

z
 

 

dz′ H(z′, ρ(z′))  g0 × 

 

× 
⌡⌠

 

 ⌡⌠
 

 
$∞

∞

dρ01Wδef(ρ01) G(z, ρ1; 0, ρ01) G*(z, ρ2; 0, ρ02) = 

 

= exp 

⎣⎢
⎢⎡

⎦⎥
⎥⎤$ 

k2

4π 
⌡⌠
0

z
 

 

dz′ H(z′, ρ(z′))  Γ2R(z, ρ1; ρ2), (23) 

 
where ρ(z') = ρ1(z') – ρ2(z'), Γ2R is the coherence 
function for a regular medium, and 
 

H(z, ρ1 – ρ2) = 
1
π [A(z, 0) – A(z, ρ1 – ρ2)]; 

 

H(z, ρ1 – ρ2) δ(z′) = <δε⎝
⎛

⎠
⎞z + 

z′
2, ρ1  δε⎝

⎛
⎠
⎞z + 

z′
2, ρ2 >, (24) 

 

2π H(z, ρ′) δ(z′) = Dε(z, ρ, z′, ρ′). 
 

Solution (23) can be rewritten in the form 
 

Γ2(z, R, ρ) = Γ2R(z, R, ρ) γ(ρ), (25) 
 
where γ(ρ) is the factor describing the contribution of 
the turbulent fluctuations 
 

γ(ρ) = exp 

⎣⎢
⎢⎡

⎦⎥
⎥⎤$ 

k2

4π 
⌡⌠
0

z
 

 

dz′ H(z′, ρ(z′)) . (26) 

 

We assume that the amplification coefficient and 
dielectric constant have parabolic distribution given by 
Eq. (10). Then for the homogeneous fluctuations of the 
dielectric constant with the Gaussian correlation 
function 

 

ψε(r) = <δε(r′ + r) δε(r)> = σ2
ε exp [– r2/r2c] (27) 

 
we obtain 
 

H(ρ) = 
σ2

ε rc

π
 [1 – exp (– ρ2/r2c)],  r = {z, ρ}. (28) 

 
Using the approximation (for ρ�<�rc) 

 

H(ρ) ≈ σ2
ε ρ

2/ π rc (29) 

 
and taking into account that 
ρ(z') = ρ sinh(z'/LR)/sinh(z/LR), we obtain 
 

γ(ρ) = exp 
⎣
⎢
⎡

⎦
⎥
⎤

$ 
π

8 rc
 σ2

ε LR k2 ρ2 
sinhz$ coshz$ $ z$

sinh2z$
 = 

 
 

= exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ 

π
8  

σ$2
ε

rc
 
L2

D

L2
R

 
a

LR
 ρ$2

 
sinhz$ coshz$ $ z$

sinh2z$
 = exp 

⎣
⎢
⎡

⎦
⎥
⎤

$ 
ρ$2

4 a$2
t

,  

  (30) 
where 
 

a$2
t = r$2

c 
2

π
 
L2

R

L2
D
 
LR
a  

1

σ$2
ε r

$
c

 
sinh2z$

sinhz$ coshz$ $ z$
 (31) 

 

and σ$ε = σε/ε0, ε0 = a2/L2
R, r$c = rc/a, ρ$ = ρ/a,  z$

 = z/LR. 
In the approximation of incoherent disk, analytic 

solution was obtained in Ref. 6 for Γ2R. Then it follows 
from Eqs. (25) and (30) that 

 

μ(ρ) = μR(ρ) γ(ρ) = exp [– ρ$2/(4 a$2
ρ) – ρ$2/(4 a$2

t)], (32) 

 
where μR is the modulus of the complex degree of 
coherence for regular medium,6 

 

a$2
ρ = 

1

Fx z
$ sinh(z$) + 

G

2 z$
 (sinh(z$) cosh(z$) $ z$) , (33) 

 

G = g0 z; and Fx = k a2/z is the Fresnel number. 
Consequently, we obtain for the transverse coherence 
radius 
 

ρc = 0.83 a$ρ/( 1 + a$2
ρ/a$2

t). 

 
For homogeneous fluctuations with the correlation 
function 

 

ψε(r) = σ2
ε exp [– |r|/rc] (34) 

 
we obtain in a similar manner 
 

μ(ρ) = μR(ρ) γ(ρ) = exp [– ρ$2/(4 a$2
ρ) – |ρ$|/(2 a$2

t)],  

 (35) 
 
where 
 

a$t = r$c 
L2

R

L2
D
 
LR
a  

1

σ$2
ε r

$
c

 
sinhz$

coshz$ $ 1
 . (36) 

 
Equation (35) was obtained with the use of the 
approximation 

 

H(ρ) = 2 σ2
ε rc/π [1 – exp(– |ρ|/rc)] ≈ 2 σ2

ε/π |ρ|. (37) 
 
Approximations (29) and (37) hold true under 
condition 
 

a$t < r$c . (38) 
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FIG. 3. Modulus of the degree of coherence μR and the 
parameter γ for the parabolic profile of the population 
inversion distribution in the incoherent disk 
approximation: ⎯ analytic solution for μR given by 
Eqs. (32) and (33); - - - analytic solution for γ given 
by Eqs. (35) and (36). Dashed curves show the results 
of numerical calculations of the parameter γ for 
rc = 0.1 (•); 0.5 (), 1.0 (–), and G = 15, g0LR = 7.5, 
LD/LR = 100, a/LR = 10–2, σ$2

ε  = 0.1 (a), 0.2 (b), 
and 0.3 (c). 

We point out that for LR/LD ≈ 10–3 and 
a/LR ≈ 10–2 condition (38) is valid for the following 

dimensionless parameters: $σ2
ε = 0.1, 0.2, 0.3; $rc = 0.1, 

0.5, 1.0; $z ≥ 1. We also notice that we can write 
μ(ρ) ≈ μR(ρ) under condition 

 

aρ <  < at (39) 
 

and violation of condition (38) has no effect on 
determination of ρc. It follows from Eqs. (31) and (36) 
that turbulent coherence radius does not vanish as in 
homogeneous medium and saturated at a fixed level. 

In the case LR/LD ≈ 10–2 conditions (38) and 
(39) are violated for the above-indicated dimensionless 
parameters. Results of numerical calculations differ 
from analytical one given by Eq. (35). However, for 
rc = 0.5 and 1.0 this difference is not great in the most 
important region ρ < aq. 

 

CONCLUSION 
 

Thus, the coherent characteristics of the X-ray 
laser emission have been described theoretically with 
simultaneous consideration of nonuniform distribution 
of amplification and refraction profiles and fluctuations 
of dielectric constant of an active medium. This 
approach is based on combination of the ray tracing 
technique for a solution of the radiative transfer 
equation and phase approximation of the Huygens–
Kirchhoff method.  

The same characteristics [geometric rays given by 
Eqs. (9)] provide the basis for both methods. This 
circumstance essentially simplifies the problem from a 
mathematical point of view. An account of nonuniform 
distribution of amplification and refraction in an active 
medium and dielectric constant fluctuations reduce to 
the simple integration of corresponding Eqs. (8) and 
(26) along the given characteristics.  

Within the framework of this approach, effective 
numerical algorithms have been constructed and 
accurate analytical solutions have been obtained. For 
an inhomogeneous medium the coherence radius is 
found to saturate with the increase of the distance of 
radiation propagation in the active medium (this effect 
is not observed in the homogeneous medium).  
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