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This paper presents a derivation of the Bouguer law based on semiclassical 

electrodynamics.  Within the framework of the relaxation theory an expression is 

obtained for the absorption coefficient.  Contributions coming to the relaxation 

from the effect of spatial dispersion have been isolated and discussed. 
 

1. INTRODUCTION 
 

Derivation of the Bouguer law based on the 
fundamental electrodynamics principles enables one to 
track most important aspects of the theory of optical 
radiation interaction with gaseous medium and to 
obtain an expression for the absorption coefficient in 
the most general form. In this paper the problem is 
solved using a macroscopic approach to description of 
the interaction between the field and a substance, using 
electric susceptibility in material equations and 
fluctuational theorem.  This theorem connects 
dissipative properties of a medium, being in 
thermodynamic equilibrium, with the spectral density 
of the equilibrium fluctuations of the polarization 
vector. 

 

2. DERIVATION OF THE BOUGUER LAW  
 

In the case of a stationary electromagnetic field 
and neglecting spontaneous and stimulated radiation, 
we can derive this law considering balance between 
energy, converted into the heat per unit time in a 
volume V of the medium and the energy inflow into 
this volume (Refs. 1 and 2). The electromagnetic field 
at a point r at the moment t is presented by the 
complex vector E(r, t) and the polarization of the 
medium by the complex vector P(r, t).  For the amount 
of energy, converted into the heat per unit time in the 
volume V, we obtain  

 

Q(R) = 

⌡⌠

V

 

 

d3ρlim
T→∞

 

1
2T

 

⌡⌠
$T

T

 

 

dt 
1
2

 Re{E(R + ρ, t)j*(R + ρ, t)}, 

  (1) 
 

where 
 

j(r, t) = ∂P(r, t)/∂t  (2) 
 

is the current density (it is assumed that the medium 
consists of electrically neutral particles).  The 
parametric dependence on R shows that the volume V 
is localized near the point with the radius vector R. 

Introducing Fourier components of the field and 
polarization, formula (1) is reduced to the following 
form:  
 

Q(R) = 

V

2
 Im∑

r

 ωr ∑
i={x,y,z}

  Ei(R; kr, ωr)P*i(R; kr, ωr). (3) 

 

The polarization is related to the incident field and in 
gaseous media that are in thermodynamic equilibrium. 
This relation may be expressed by the formula from 
Ref. 1 
 

Pi(R; kr, ωr) = ∑
i={x,y,z}

   χij(kr, ωr)Ej(R; kr, ωr),  (4) 

 

where χij(kr, ωr) is the tensor of linear electric 
susceptibility. Its dependence on the wave vector and 
frequency results from spatial and time dispersion, 
respectively. If the field is too weak to influence the 
statistical distributions in the medium, then 
χij(kr, ωr) = χ(kr, ωr)δij and formula (1) takes the 
following form  
 

Q(R) = 
V

2
 ∑
r

 ωr χ″(kr, ωr)⏐E(R; kr, ωr)⏐2,  (5) 

 

χ″(kr, ωr) is the imaginary part of the susceptibility. 
By introducing energy density of the wave with the 
wave vector kr and frequency ωr at the point R, 
 

W(R; kr, ωr) = (1/4π)⏐E(R; kr, ωr)⏐2, (6) 
 

we reduce formula (3) to the form 
 

Q(R) = $ 4πV∑
r

 ωrχ″(kr, ωr)W(R; kr, ωr). (7) 

 

From this we obtain that the amount of energy, 
converted into heat from the wave with the wave 
vector kr and the frequency ωr, is  

 

Q(R; kr, ωr) = $ 4πVωrχ″(kr, ωr)W(R; kr, ωr). (8) 
 

Let us now calculate the energy influx from this 
electromagnetic wave into the volume V which is then  
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dissipated in it.  It can easily be done if the volume V 
is presented by parallelepiped with the cross section ∑ 
and the length l. This parallelepiped is oriented along 
the wave propagation direction.  In this case the flux 
through the lateral face is zero, and we can find the 
value sought, which we designate by Φ(R; kr, ωr). The 
value sought is designated as the difference between the 
wave energy, flowing out of the volume V per unit 
time through the cross section at the point R + l of the 
path, and the amount of energy, flowing into the 
volume V at the same time through the cross section at 
the point R, that is,  

 
Φ(R; kr, ωr) = c{W(R + l; kr, ωr) $ W(R; kr, ωr)}Σ.  
  (9) 
 

Equating Eq. (9) to Eq. (8) we obtain 
 

ΔkW(R; k, ω)/l = $ 4πωχ″(kr, ω)W(R; k, ω), (10) 
 
where for simplicity of the subscript r is omitted and 
we denote the increment of wave energy density along 
the direction k of its propagation at the path of the 
length l as ΔkW(R; k, ω).  Assuming that the medium 
is not too dense and the field is attenuated at the paths 
of the pathlength on the order of the wavelength only 
slightly, we can proceed to limit l → 0 in Eq. (10) 
under the condition that  
l   >>  1/⎥k⎥.  As a result, we obtain  
 
∂W(R; k, ω)/∂l = α(k, ω)W(R; k, ω) . (11) 
 
This formula is the Bouguer law in a differential form, 
where the absorption spectral coefficient is 
α(k, ω) = (4πω/c) χ″(k, ω).  If we consider the 
propagation of the field to takes place along one of the 
reference axis, then we can introduce the ordinary 
derivative instead of the partial derivative with respect 
to direction.  In this case the Bouguer law takes the 
form  
 
dW(R; k, ω) = α(k, ω)W(R; k, ω)dl,  (12) 
 
in which the law is usually used.  Here the dependence 
on the wave vector k is informal and in the general case 
has to be preserved. 

 
3. THE ABSORPTION COEFFICIENT 

 
Dissipative properties of the medium are 

determined by the imaginary part of the susceptibility 
and related to the equilibrium fluctuations of the 
medium polarization vector. This relation is described 
by the fluctuational$dissipational Callen$Velton 
theorem.12 Using this theorem, the absorption 
coefficient can be expressed in terms of the correlation 
function  

 

α(k, ω) = 
4πω
c�

 tanh
�ωβ

2
 
⌡⌠
$∞

+∞

 

 

ψ(k, τ)eiωτdτ, (13) 

where ψ(k, τ) is the correlation function 
 

ψ(k, τ) = (1/2)Tr{ρ∼[P+
z(k, τ) + h.c.]},  (14) 

 

in which averaging over medium states is presented as 

spur over states of all the particles in the volume V; ρ∼ 
is the equilibrium density matrix, corresponding to the 
Hamiltonian H, h.c. means that it is necessary to add 
the term Hermitian conjugated to the previous one. The 
projection of the polarization vector on the z axis, fixed 
in space, is determined by the following formulas  
 

Pz(k, τ) = eiHτ/� Pz(k)e$iHτ/�, (15) 

Pz(k) = 
1
V

 
⌡⌠
V

 

 

d3ρ Pz(R + ρ)e$ikρ.  (16) 

 

Use of these formulas and invariant property of 
the spur relative to cyclic permutation of operators 
after presentation of the polarization as a collection of 
point dipoles in the volume V and after integration 
over the volume gives for the correlation function  
 

ψ(k, τ) = 
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  (17) 
where Hk(ρs) = exp($ikρs)Hexp($ikρs), ρs(p) is the 
radius vector of a dipole s(p).  Note then that all the 
multipliers under sum sings, except for the first 
multiplier, are the solution to the evolution equation of 
the form 
 

∂x(τ)/∂τ = $ (i/�){Hk(ρs)x(τ) $ x(τ)H}  (18) 
 

with the initial condition x($∞)=ρ∼(ρs, ρp)d(p), by 

introducing a superoperator L̂k(ρ) and assuming 
formally that  
 

L̂k(ρs)x(τ) = $ (i/�){Hk(ρs)x(τ) $ x(τ)H}, (19) 
 

and after integration over time under assumption of the 
adiabatic field switching on in the far past and 
adiabaticity of its switching off in the far future, we 
obtain for the absorption coefficient  
 

α(k,ω)= 
4πω
c�

 tanh 
�ωβ

2
 

1
2V2 × 
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(20) 
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We can divide the right part of this formula into 
two parts, corresponding to the same and different 
indices s and p.  The first case belongs to the 
monomolecular absorption, which we will use below, 
and the second one belongs to the bimolecular 
absorption. For simplicity we assume that an optically 
active gas consists of particles of one kind and its 
density is much lower than the density of particles of a 
buffer gas. Thus we can consider each molecule 
absorbing the radiation as a molecule, being in a 
thermostat of a buffer gas. Then after transition to 
thermodynamic limit we obtain  
 

α1(k, ω) = 
4πωηs

c�
 tanh 

�ωβ

2
 
1
2
 × 

× ImTr{ }dz[ω $ L̂k(ρs)]$1[ρ∼k(ρ)dz] + h.c. , (21) 
 

where ηs is the density of an optically active gas . 

 

4. EXCLUSION OF THERMOSTAT VARIABLES 
 
Following Ref. 3 and introducing only necessary 

changes, connected with the allowance for spatial 
dispersion, we separate the relaxation part and exclude 
thermostat variables. 

Hamiltonian of the problem has the following form  
 

H = Hs
0 + H s

tr + Hb + Hsb, (22) 
 

where H
s
0 describes internal motion and rotation of a 

molecule absorbing radiation (with all possible 

interactions between them);  H
s
tr describes its 

translational motion, Hb is the Hamiltonian of a 
thermostat; and Hsb is the Hamiltonian of all the 
interactions between the absorbing molecule and a 
thermostat.  Because of commutativity of exp(ikρ) with 

all the components in Eq. (22) except for H
s
tr, the 

transformed Hamiltonian Hk(ρ) has the form  
 

Hk(ρ) = Hs
0 + H s

tr(k, ρ) + Hb + Hsb, (23) 
 

where H s
tr(k, ρ) = exp( $ ikρ)H s

tr exp(ikρ).  Because of 

linearity, the Liouville operators L̂ and L̂k(ρ) have 
similar structures. Keeping this in mind, we can rewrite 
the resolvent from Eq. (21) in the following form  
 

1

ω$L̂k(ρ)
 = 

1

ω$L̂0(k, ρ) $ L̂sb
 = 

1

ω0$L̂0(k, ρ)
 × 

 

× 
⎣⎢
⎡

⎦⎥
⎤1+ M̂(ω; k, ρ) 

1

ω$L̂0(k, ρ)
, (24) 

 

where 
 

L̂0(k, ρ) = L̂s
0 + L̂ s

tr(k, ρ) + L̂b (25) 
 

and the relaxation superoperator introduced is 
 

M̂(ω; k, ρ) = L̂sb 
1

ω $ L̂0(k, ρ) $ L̂sb
 (ω $ L̂0(k, ρ)) . (26) 

 
Averaging over variables of a thermostat, which will be 
designated by angular brackets, gives us the following 
form  
 

〈
1

ω $ L̂k(ρ)
〉 = 

1

ω $ L̂s
k(ρ)

 

⎣⎢
⎡

⎦⎥
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1

ω $ L̂
s
k(ρ)

 =  

 

 = 
1

ω $ L̂s
k(ρ) $ 〈M̂c(ω; k, ρ)〉

 , (27) 

 
where  
 

L̂
s
k(ρ) = L̂s

0 + L̂ s
tr(k, ρ), (28) 

 
and analog of Zwanzig relaxation operator3,4 is 

introduced as 〈M̂c(ω; k, ρ)〉 related to 〈M̂(ω; k, ρ)〉 by 
the relationship  
 

〈M̂c(ω; k, ρ)〉 = 
 

= 〈M̂(ω; k, ρ)〉 
⎣⎢
⎡

⎦⎥
⎤1 + 

1

ω $ L̂s
k(ρ)

 〈M̂(ω; k, ρ)〉
$1

. (29) 

 

The technique of expansion of the relaxation 
operator over powers of thermostat particle density was 
discussed in Ref. 3 in detail. In the first order 
corresponding to the approximation of binary 
interactions, it gives the form  

 

〈M̂c(ω; k, ρ)〉 → ηb〈m̂c(ω; k, ρ)〉, (30) 
 

where ηb is the particle density of a thermostat and 

〈m̂c(ω; k, ρ)〉 is the binary relaxation operator 
 

〈m̂c(ω; k, ρ)〉 = 〈L̂c 
1

ω $ L̂0(k, ρ) $ L̂c

 (ω $ L̂0(k, ρ))〉,  

  (31) 
 

L̂c is the Liouvillian of interaction of a molecule 
absorbing radiation and a particle of a thermostat. 

Thus the monomolecular absorption coefficient 
takes the following form:  

 

α1(k, ω) = $ 

4πωηs

c�
 tanh

�ωβ

2
 
1
2

 ImTrs{dz[ω $ L̂s
0 $ 

 

L̂
s
tr(k, ρ) $ηb〈m̂c(ω; k, ρ)〉]$1 [ρ∼k(ρ)dz]+ h.c.}, (32) 

 

Here spur is already taken only over states of the 
molecule absorbing radiation, these states may be 
internal, rotational or translational. 
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5. DISCUSSION 
 
Spatial dispersion, when taken into account, 

formally results in appearance, according to Eq. (32), 
of the dependence of relaxation superoperator on the 
wave vector and translational coordinate of the 
molecule absorbing radiation.  As a direct result, 
α1(k, ω) automatically transforms in the absence of 
collisional broadening, into the absorption coefficient of 
the Doppler spectrum. Collisions result in the line 
broadening.  Due to the dependence of the relaxation 
superoperator on the wave vector and translational 
coordinate, collisions also result in a static interrelation 
between the Doppler and collisional mechanisms what 
result, for example, in deviations of an isolated line 
shape from the Voigt profile. 

Binary relaxation superoperator 〈m̂c(ω; k, ρ)〉 can 
be divided into two parts.  

 

〈m̂c(ω; k, ρ)〉 = 〈 ~̂mc(ω; k, ρ)〉 $ 
 

$  〈 ~̂mc(ω; k, ρ)[L̂
s
tr(k, ρ)/ω $ L̂s

0]〉,  (33) 

 
where 

 

〈 ~̂mc(ω; k, ρ) = L̂c 
1

ω $ L̂0(k, ρ) $ L̂c

 (ω $ L̂0), (34) 

 

and L̂0 = L̂s
0 + L̂b. The first part describes both the 

collisional relaxation and the change in Doppler shift due 
to collisions (and, as a result, shape of the Doppler 
spectrum). The second part of the correlation term 
reflects the presence of a connection between the changes 
in velocity of a molecule absorbing radiation and 
collisional broadening.  The correlation term disappears in 
the absence of one of these factors. A more detailed 
analysis of these questions needs for a separate 
investigation. 
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