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Numerical techniques are considered for reconstructing spatial coherence 

function from angular distributions of the intensity of multiply scattered plane 

wave using the small angle approximation of the radiation transfer theory based on 

the use of Fourier$Bessel and Dini series expansions.  Accuracy of the techniques is 

estimated in numerical experiments with the model function for which the 

analytical form of Hankel transform is known. 

 
STATEMENT OF THE PROBLEM 

 
When solving inverse problems of the radiation 

transfer theory in a small angle approximation, the 
reconstruction of the spatial coherence function F(ρ) 
from the angular distribution of the intensity of 
multiply scattered plane wave1 I(ω), 

 

k2

2π ⌡⌠
0

2R

 
 ρJ0(ωρ)F(ρ)dρ = I(ω),  (1) 

is an important point. In Eq. (1) J0(x) is the zeroth 
order Bessel function:  ω = k sinθ is the spatial 
frequency;  k = 2π/λ; and, θ is the scattering angle.  
In turn, the data on the coherence function of scattered 
field F(ρ) related to the correlation function of the 
particle shadow ϕ(ρ) and the optical thickness of the 
medium by the relationship2  

 

F(ρ) = exp[$ τ + τϕ(ρ)/2] $ exp($τ) (2) 
 

allow one to determine small angle scattering phase 
function, optical transfer function, and point spread 
function of the medium, as well as its disperse 
composition. 

Peculiarity of the problem is that the intensity 
I(ω) is normally measured at discrete points ωj within 
a finite interval [ωmin, ωmax].  On the one hand, 
limitation of the minimum frequency ωmin is connected 
with the practical difficulties in separation of direct 
and scattered radiation near the forward direction; on 
the other hand, the role of noise component 
significantly increases at high ω, when the small-angle 
intensity I(ω) comes to zero. This component is caused 
both by the measurement errors and by the contribution 
from scattered radiation which is not allowed for in the 
small-angle approximation given by Eqs. (1) and (2).  
The choice of maximum frequency ωmax is conditioned 

by the necessity of decreasing the effect from these 
errors. 

Under conditions when the experimental data set 
is not complete, it is expedient to take into account 
a priori information on the solution sought for 
reconstructing the coherence function F(ρ) from the 
angular distribution of the intensity I(ω).  Such an 
information may be continuity, monotony, and 
downward convexity and boundedness of the coherence 
function F(ρ) on the interval 0 ≤ ρ ≤ 2R: 

 

0.25 ≥ F(0) ≥ F(ρ) ≥ 0,   F′(ρ) ≤ 0,   F″(ρ) ≥ 0. (3) 
 

Vagin and Veretennikov1 have proposed the finite-
difference algorithms for inverting Eq. (1) based on 
minimization of the discrepancy functional on the set of 
functions satisfying the limitations (3).  In this paper 
we consider the techniques for reconstructing the 
coherence function F(ρ) from Eq. (1) based on the 
expansion of the functions with limited spectrum into 
Fourier$Bessel and Dini series.  It is essential for the 
approach proposed that the coherence function F(ρ) is 
equal to zero outside the interval 0 ≤ ρ ≤ 2R.  

 

METHOD OF SOLUTION 
 

Let us consider the integral relationship3 known in 
the Bessel function theory 

 

⌡⌠
0

1

 
 xJ0(αi x) J0(αj x) dx = 

⎩
⎨
⎧

>

1
2
   J1

2(αi),   i = j,

0,   i ≠ j,
 (4) 

 

where αi are the zeros of the Bessel function J0(x): 
J0(αi) = 0, I = 1, 2, ... . Orthogonality of the system 
of functions {J0(αi x)} with the weight x on the 
interval (0, 1) follows from Eq. (4).  The functions 

J0(αi x) = 2/J1(αi x) are normalized on the interval 
(0, 1). 
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The functions J0(αi x), i = 1, 2, ... form a 
complete system that allows one to write the expansion 
of an arbitrary function f(x) with limited variation 
within the interval(0, 1) into the Fourier$Bessel series: 

 

f(x) = ∑
i=1

∞

 αi J0(αi x),  at 0 < x < 1 , (5) 

 

with the coefficients 
 

αi = 
2

J1

2(αi)
 ⌡⌠

0

1

 
 xJ0(αi x)f(x) dx.  (6) 

 

If the function f(x) is continuous on the interval 

(0, 1) and the product x f(x) is absolutely integrable, 
then the Fourier$Bessel series of the function f(x) 
given by Eq. (5) uniformly converges on the interval 
(0, 1) (Ref. 3). 

The coherence function F(ρ) is determined on the 
interval [0, 2R] and satisfies all the above conditions.  
So one can expand it into the Fourier$Bessel series 

 

F(ρ) = 
π

(kR)2 ∑
i=1

∞

 
 
J0(ωi 

ρ)

J1

2(αi)
) I(ωi),   0 < ρ < 2R, (7) 

 

where ωi = αi/2R;  I(ωi) is the intensity at the point 
ω = ωi.  Formula (7) expresses the coherence function 
F(ρ) in terms of its Hankel transform I(ω) at the 
points ωi = αi/2R, i = 1,2, ..., where αi are the zeros 
of the Bessel function J0(x), and can be considered as 
the formula for inverting the integral equation (1). It 
follows from Eq. (7) that the information on the 
intensity distribution I(θ) near the forward direction, 
for which θ < α1/2kR ≅ (kr)$1, is not required for 
reconstructing the function F(ρ). 

For reconstructing the function F(ρ) by formula 
(7) it is necessary to a priori set the maximum radius 
of particles R, on which the position of the nodes 
ωi = αi/2R depends.  The errors in choosing R can 
lead to violation of the F(ρ) analytical properties 
determined by the relationships (3).  Therefore 
examination of the conditions (3) for the solution 
reconstructed is a criterion of the correctness in the 
a priori assignment of R values. 

Summing of the series (7) is unstable with respect 
to the errors in setting I(ωi), if the error in 
reconstructing F(ρ) is estimated in the uniform metrics.  
Stable techniques for summing the Fourier series based 
on the regularization are described in Ref. 4.  In the 
simplest case, the limitation of the number of terms in 
the expansion (7), corresponding to the errors in I(ωi) 
setting, serves for this purpose.  Substituting the 
expansion (7) into Eq. (1), we obtain the following 
formula 

 

I(ω) = 
1
R

 ∑
i=1

∞

 
 

I(ωi) ωi 
J0(2Rω)

J1(αi)[ω i
2 $ ω2]

 , (8) 

 

which means that the function I(ω) can be 
reconstructed from its values at the points ωi = αi/2R,  
i = 1, 2, ... . 

Let us now consider the partial sum Fn(ρ) 
corresponding to the finite number n of terms in the 
expansion (7). The partial sum In(ω) of the series (8) 
corresponds to it.  At the limit transition ω → ωj in 
Eq. (8), we obtain for In(ω): 

 

In(ωj) = 
⎩
⎨
⎧

>

I(ωj),  j ≤ n;
0,  j > n.

 (9) 

 

It follows from Eq. (9) that the discrepancy of the 
Eq. (1) determined at the set of points ωj, j = 1, ..., n, 
is equal to zero for any finite number of the terms of 
the expansion (7).  If the value 
 

σ2 = ⌡⌠
0

∞

 
 [I(ω) $ In(ω)]2ωdω, (10) 

 

is taken as a measure of deviation of the functions I(ω) 
and In(ω), then we obtain by the Parceval formula: 
 

σ2
 = ⎝
⎛

⎠
⎞k2

2π

2

 ⌡⌠
0

2R

 
 [F(ρ) $ Fn(ρ)]2ρdρ = 

1
2R2 ∑

i=n+1

∞

 
  
I2(ωi 

)

J1

2(αi)
 .  

(11) 
As follows from Eq. (11) the discrepancy of 

Eq. (1) is determined in the metrics L2, when replacing 
the series (7) by the finite sum of n terms, by the 
values of the function I(ω) at the points ωi = αi/2R, 
i > n.   

It should be noted that one can construct other 
Fourier series of the function F(ρ), the coefficients in 
which are determined by its Hankel transform, i.e. by 
the intensity I(ω).  For example, if the roots of the 
equation J1(x) = 0 i = 1, 2, ... are βi, then we obtain a 
new system of functions J0(βi x) that are orthogonal on 
the interval (0, 1) with the weight x: 

 

⌡⌠
0

1

 
 xJ0(βi x)J0(βj x)dx = 

⎩
⎨
⎧

>

1
2
   J0

2(βi),   i = j,

0,   i ≠ j,
 (12) 

 

Expansion of an arbitrary function f(x) into a 
series over the system of functions {J0(βi x), i = 1, 2, ...} 
has the form analogous to Eq. (5) where αi is replaced 
by βi and with the coefficients 

 

bi = 
2

J0

2(βi)
 ⌡⌠

0

1

 
 x J0(βi x) f(x)dx , (13) 
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and one can write the series for the function F(ρ) 
 

F(ρ) = 
π

(kR)2 ∑
i=1

∞

 
 

J0(ωi 
ρ)

J0

2(βi)
) I(ωi),   0 < ρ < 2R, (14) 

 

where ωi = αi/2R, i = 1, 2, ... . One should recognize 
that the expansion (14) is less correct in comparison 
with the expansion (7), because the first zero of the 
function J1(x) β1 = 0 and it is necessary to set 
I(ω1) = I(0) in Eq. (14). 

Finally, in order to invert the integral 
equation (1) one can use the expansion into the Dini 
series.3  Let us consider the function p(x) = q J0(x) $ 
$ x J1(x), where q is an arbitrary constant.  It is 
known that for any q the function p(x) has a root 
between any two roots of the function J0(x).  Let γ1, 
γ2, ..., γi ... be the roots of the equation 

 

qJ0(x) $ x J1(x) = 0. (15) 
 

It can be shown that the functions J0(γi x), 
i = 1, 2, ... are orthogonal on the interval (0, 1) with 
the weight x, and the condition of the function J0(γi x) 
normalization has the form: 

 

⌡⌠
0

1

 
 x J0

2(γi x)dx = 

1
2
 [J0

2(γi) + J1

2(γi)] = 

1
2

 J0

2(γi) [1 + 

q2

γi
2].  

(16) 
The Dini series for the function f(x) on the 

interval (0, 1) has the form of Eq. (5) with αi replaced 
by βi and with the coefficients: 

 

ci = 
2

J0

2(γi)
 

γi 
2

q2 + γi
2 ⌡⌠

0

1

 
 x J0(γi x) f(x)dx . (17) 

 

The Dini series for the function F(ρ) has the form: 
 

F(ρ) = 
π

(kR)2 ∑
i=1

∞

 hi J0(ωi ρ) I(ωi), (18) 

 

0 < ρ < 2R, where ωi = γi/2R; and γi are the roots of 
Eq. (15); 
 

hi = 
1

J0

2(γi)
 

γi 
2

q2 + γi
2 = 

1

J1

2(γi)
 

q2

q2 + γi
2 . (19) 

 

The important property of the expansion (18) is 
the possibility of varying of the left boundary ωmin in 
the region where it is necessary to measure I(ω), using 
the corresponding choice of the parameter q in 
Eq. (15). 

 
RESULTS OF THE NUMERICAL SIMULATIONS 

 
Model calculations have been carried out in order 

to study the efficiency of using series expansions for 
inverting Eq. (1).  The function G(x), 

G(x) = 
⎩
⎨
⎧

>

2
π [arccosx $ x 1 $ x2],  x ≤ 1,

0,  x > 1,
 (20) 

 

was considered as the exact solution of Eq. (1).  Its 
Hankel transform has the known analytical form: 
 

⌡⌠
0

1

 
 x J0(xω) G(x) dx = 2 ⎣

⎡
⎦
⎤J1(ω/2)

ω  ≡ I(ω) , (21) 

 

and is the normalized small-angle scattering phase 
function in the Fraunhofer diffraction approximation. 
The function G(x) is reconstructed by the formula 
 

f(x) = 
2
R2 ∑

i=1

∞

 
J0(ωi 

x)

J0

2(βi)
) I(ωi),   0 < x < R, (22) 

 

where ωi = βi/R, and βi are the zeros of the function 
J1(x). 

The consequences of replacing the series (22) by 
the finite sum, errors in setting I(ωi), and a priori 
choice of the parameter R were studied in the 
numerical experiments.  The choice of R is connected 
with estimating the upper limit of integration in 
Eq. (21).  Obviously, the errors in reconstructing G(x) 
by Eq. (22) can appear in the case of Eq. (21) for 
R < 1 and they are determined by the contribution 

from the integral ⌡⌠
R

1

 xJ0(xω) G(x) dx into the value of 

I(ω). The relative errors in setting I(ωi) have been 
modeled by a random law with a uniform distribution 
on the interval [$ε, ε]. 

Table I gives the information on the convergence 
of the partial sums of the series (22), where n is the 
number of terms in the expansion, εG is the relative 
root-mean-square error in reconstructing G(x).  As is 
seen from the table, high accuracy of the approximation 
of G(x) (Eq. (20)) by the series (22) is reached for the 
number of expansion terms n = 10 (εG = 2.2%), i.e. for 
reconstructing G(x) it is enough to have the data on 
the value of I(ω) at only 10 points within the interval 
0 < ω ≤ β10 • 32.19. Then there is a significant gain in 

the rate of operation in comparison with the techniques 
considered in Ref. 1.  The series (22) converges worse 
in the vicinity of the point x = 0, for which the relative 
errors ε0 in reconstructing G(0) are given in Table I.  It 
leads to violation of the convexity of the function G(x) 
in the vicinity of x = 0, that can be corrected based on 
the a priori information on the solution determined by 
Eq. (3). 

The effect of the error ε in setting I(ω) on the 
error in reconstructing εG for different n is also shown 
in Table I.  The results presented in the third row 
indicate the stability of summing Eq. (22) relative to 
the error in the initial data.  It is seen from the table 
that, starting from n = 10, further increase in the 
number of terms in the expansion (22) does not result 
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in increase of the accuracy of reconstruction of the 
model function G(x) at the presence of errors in the 
initial data, and even small increase in the error εG is 
observed for n ≥ 40.  For n = 50 the dependence of εG 
on ε is practically linear with the œerror amplification 
coefficientB εG/ε 

•
 0.6 in the interval 1 ≤ ε ≤ 10%. 

Random errors in the initial data show a stronger 
effect on the accuracy of reconstruction of G(x) at 
x → 1. 

 
TABLE I. 
 

N n 3 5 10 15 20 40 50

1 εG, % ε = 0 10 5.2 2.2 1.6 1.1 0.6 0.4

2 ε0, % R = 1 17 9.2 4.0 2.8 2.0 1.0 0.8

3 εG, % ε = 10%, R = 1 $ 6.2 5.5 $ 5.5 5.7 5.8

4 εG, % ε = 10%, R= 1.5 $ 8.1 3.6 $ 2.4 2.1 $

 
A family of functions f(x) reconstructed by 

formula (22) with the exact initial data (ε = 0), 
n = 50 and different values R ≤ 1 is shown in Fig. 1. 
Curve 1 corresponds to R = 1 and practically 
coincides with the exact solution G(x).  Other 
curves, 2 to 5, are obtained with the sequence of 
decreasing values R = 0.9, 0.8, 0.7, and 0.6. The 
examples shown in Fig. 1 illustrate the effect of 
errors in choosing R on the shape of the solution 
reconstructed.  Since Eq. (22) is the expansion of the 
function G(x) on the interval (0, R), then each curve 
shown in Fig. 1 should also be considered on the 
relevant intervals, for example, curve 2 is on the 
interval 0 < x < 0.9, etc. 

 

 
 

FIG. 1.  Reconstruction of the model function G(x) 
(Eq. (20)) by the technique of summing the Fourier$
Bessel series (22) for n = 50, R = 1 (1), 0.9 (2), 
0.8 (3), 0.7 (4), and 0.6 (5) and exact setting of 
I(ω). 
 

One can note that for the fixed value R each of 
the reconstructed functions f(x) keeps its monotonic 
decrease within the interval (0, R), reaches its 
minimum at the boundary x = R, and then  
 

significantly increases at R < x ≤ 1.  If we designate 
Δ = 1 $ R as an error in choosing R, then the 
function f(x) satisfactorily approximates the function 
G(x) on the interval 0 ≤ x < R$Δ; and their 
divergence is observed to the right of the point 
x = R$Δ.  The width of this interval vanishes at 
R → 1/2, that determines the lower boundary of the 
acceptable values R equal to the half of the true 
value R = 1. 

Thus, the choice of R < 1 essentially influences 
the deviation of f(x) from G(x). The rms error in 
reconstructing G(x) on the interval (0, 1) is shown 
in Fig. 2 as a function of R.  It is seen from Fig. 2 
that the behavior of εG is not symmetrical relative to 
the point R = 1, and the choice of R > 1 practically 
does not result in a poorer quality of the 
reconstruction. One should take into account these 
peculiarities in the behavior of the error εG(R) when 
choosing R a priori. 

 

 
FIG. 2.  Relative error in reconstructing the model 
function G(x) by the technique of summing the 
Fourier$Bessel series on the interval (0, 1) as a 
function of R. 
 

Let us note in conclusion a peculiarity that appears 
when choosing R > 1.  As is seen from the bottom row of 
the Table I, the choice of R > 1 at presence of errors 
(ε ≠ 0) results in a decrease in the error in reconstructing 
the function G(x) for n = 10 and higher. In contrast to 
the case of the exact setting R (third row), the increase 
of n up to 40 is accompanied by a monotonic decrease in 
the error εG. 
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