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The equation is derived for the field in the cross section of a searchlight 
tubular beam formed with an axicon with a laser source at the input.  The equation 
in the form of a Fourier integral transforms the function of radial coordinate at the 
axicon input into the function of radial frequency at its output in the Fraunhofer 
zone.  The calculations made with the use of a fast Fourier algorithm permit the 
real time control over the searchlight beam shape at an arbitrary distance from the 
source based on data measured in the near zone.  In a particular case of a 
homogeneous plane wave and Gaussian beam at the output, the integral can be 
calculated explicitly, and the solution may be represented as the degenerate 
hypergeometric Kummer functions. 

 
By the radial-frequency representation of an 

axially symmetric function ψ(r), r = x2 + y2 we 
understand its representation with a one-side Fourier 
transform of some other axially symmetric function 

ϕ(r′), r′ = x′2 + y′2 of the frequency variable Δ 
dependent on r: 

 

ψ(r) = ⌡⌠
0

∞

 ϕ(r′) exp(i Δ r′) dr′ ,   Δ = Δ(r) . (1) 

 

This representation is found to be very convenient for 
description of a searchlight tubular beam formed in 
the far zone by a system of a laser and axicon (or 
reflaxicon) as a linear spatial modulator of a coherent 
optical radiation phase.1$3 

If a coherent optical radiation wave with the 

complex amplitude ϕ0(r′), r′ = x′2 + y′2 is incident 
on an axicon located in the plane z = z′, at its output 
it will be described by the expression: 

 
ϕ(r′) = ϕ0(r′) exp(i ω0 r′) , (2) 
 

where exp(iω0r′) is the axicon transmission function; 
ω0 is the parameter connected with the radiation 
wavelength λ and the angle of a beam deviation by 
the axicon, β, by the relation: 
 
ω0 = kβ ,   k = 2π/λ . (3) 
 

In the case of a conic axicon with the angle α at 
the base (α   <<  1) made from a dielectric material 
with the index of refraction n, the deviation angle β 
is equal to (n $ 1)α.  For the reflaxicon with the 
angle α between the inner and outer reflecting  
 

surfaces, β = 2α.  In the paraxial Fraunhofer 
approximation of the scalar Kirchhoff diffraction 
theory the field ψ(r) is defined by the Fourier-Bessel 
transform of ϕ(r′): 

 

ψ(r) = 
k
z 

0

∞

⌡⌠ 

 

ϕ(r′) J0(ω r′) r′ dr′ , (4) 

 
where J0(⋅) is the Bessel function of the first kind of 
zeroth order.4 When the system has a collecting lens 
with a focal length f the distribution of complex 
amplitude ψ in the focal plane of the lens is described 
by the same equation at z = f. 

A solution in the closed form was found in the 

approximation of large parameter x = ω0a, where 2a 
is the cross size of a beam passed through the axicon 
(values of this quantity in actual practice is close to 
103) in the case of a plane wave and a Gaussian beam 
at the axicon input.5$7  In the first case 
ϕ0(r′) = circ(r′/a) is a circular function and 
 

ψ(r) = exp($2 i x) 
i 4 a3

9 λ z r0
 1F1(3/2, 5/2; $i 2 ρ) ,  

(5) 
r0 = βz ,   ρ = ka(r $ r0)/2z ; 

 

1F1 denotes the degenerate hypergeometric Kummer 
function.  The derived from Eq. 5 formula for the 
radiation intensity I(r) =⏐ψ(r)⏐2 can be 
approximated by the expression8: 

 

I(r) ≈ 
a3

2 λ z r0
 

sinρ
ρ

2
 . (5’) 
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In the second case ϕ0(r′) = exp($r′2/a2) and 
 

ψ(r) = B ⎣
⎡
1F1(3/4,

 
1/2;

 
$ρ2) $ 

 

⎦
⎤$ 2 i ρ 

Γ(5/4)
Γ(3/4) 1F1(5/4, 3/2; $ρ2)  , (6) 

 

B = 
Γ(3/4)

2  
a3

i λ z r0
 , 

 
Γ(.) is the gamma function.  The intensity I(r) is 
approximated by the expression 
 

I(r) = 0.24 π 
a3

2 λ z r0
 exp[$2(ρ/1.65)2] . (7) 

 
The middle radius of illumination circle r0 and the 
circle width δ (at the intensity level e$2 of the 
maximum value) in the plane transverse to the beam 
at the distance z from the axicon are defined by the 
expressions: 

 

r = z β ,   δ = 3.3 
λz
πa ≈ 

λz
a  . (7′) 

 
In the general case it is impossible to obtain 

simple analytical expressions for ψ(r) and I(r) based 
on Eq. (4).  But in the same approximation on the 
parameter ω0a one can reduce Eq. (4) to a form (1) 
convenient for numerical estimations.  Let us use the 
asymptotic expansion of the function J0(y) (Ref. 9, 
p. 185): 

 

J0(y) = 2/(πy) {cos(y $ π/4) + O(⎜y⎜$1)} . 

 
In our case y = ωr′ = ωa(r′/a), where ωa is value of 
the order of 103, and if the inequality (r′/a) ≥ 10$2 is 
fulfilled the rest term can be neglected.  In the initial 
part of the integration domain 0 ≤ r′ < 10$2a the 
inequality is not fulfilled, but it is inessential because 
of the factor r′ in the integral expression.  
Substituting the asymptotic representation J0(y) into 
Eq. (4), omitting the remainder term O(⏐ωr′⏐2), and 
taking into account Eq. (2), we obtain 

 

ψ(r) = 2C 
0

∞

⌡⌠ 

 

ϕ(r′) cos(ωr′ $ π/4) dr′ = 

 

= C 
0

∞

⌡⌠ 

 

ϕ0(r′) {exp[i (ω r′ $ π/4)] + 

 

+ exp[$i (ω0 r′ $ π/4)]} exp(i ω0 r′) dr′ , 
 

C = 2π/(λ2 z2 ω) . 

 

The term with the rapidly oscillating factor 
exp[i(ω0 + ω)r′] yields, as a result of integration, the 
value very close to zero. Omitting it we obtain the 
equation of the form of Eq. (1) 
 

ψ(r) = ⌡⌠
0

∞

 ϕ∼0(r′) exp(i Δ r′) dr′ , (8) 

 

where 
 

ϕ∼0(r′) = q ϕ0(r′) r′ , 
 

Δ = ω0 $ ω = 
2π
λz (r0 $ r) ,  (9) 

 

C ≈ 2π/(λ2 z2 ω0) = 1/ λ z r0 . 
 

We have omitted here the insignificant phase factor 
exp(iπ/4) and take ω ≈ ω0.  This is justified by the 
fact that the function ψ(r) has a maximum at r = r0 
and rapidly falls off in magnitude at a distance r 
from r0.  Physically this means that the field of the 
wave passed through the axicon in the Fraunhofer 
zone is concentrated in a narrow layer (with the 
width δ) around a conic surface with the angle 
r0/z ≈ β at vortex.  It is the property of an axicon 
that is used in laser beacons with an searchlight beam 
shaped as a tubular cylinder with the circular 
distribution of radiation energy in every cross 
section.1 

The wave transformed according to Eqs. (4) or 
(8) is usually plane but not always is uniform.  The 
dependence ϕ0(r′) can be too complicated, 
particularly in the case of a reflaxicon, and can 
change in time.  The use of equation (8) in 
calculations makes it possible to permanently control 
the beam shape I(r) = ⏐ψ(r)⏐2 in the far zone using 
the data of measurements of I0(r′) in the immediate 
vicinity of the axicon.  Calculation of the function 

ψ(r) on the base of the finite set of values ϕ∼0

(r′) = q r′ I(r′) is performed with the use of a 
discrete linear filter realizing fast Fourier transform 
algorithm.  The text of the corresponding PASCAL 
program is given in Appendix. 

The equations (5) and (6) were obtained by 
approximation of infinite series, representing the 
right-hand side of Eq. (4) for a plane wave and a 
Gaussian beam, respectively.  They can be considered 
as approximate solutions of the exact equation (4).  
But they are also exact solutions of the approximate 
equation (8).  One can check this using formulas of 
the integral representation of the degenerate 
hypergeometric and parabolic cylinder functions.  So 
the formula [Ref. 9, (13.2.1)] 

 

Γ(b $ a) Γ(a)
Γ(b)  1F1(a, b; z) = 
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= 
0

1

⌡⌠ 

 

exp(z t) ta$1 (1 $ t)b$a$1 dt  

 
at z = iρ, a = 3/2 and b = 5/2 it is reduced, 
accurate to insignificant phase factors, to Eq. (5) and 
formula [Ref. 10, (7.341)] 
 

Dp(z) = 
exp($z2/4)

Γ($p)  
0

∞

⌡⌠ 

 

exp($z x $ x2/2) x$p$1 dx 

 
because of the relationships existing between 
parabolic cylinder functions and Kummer functions 
[Ref. 10, (7.340)] 
 

Dp(z) = 2p/2 exp($z2/4) × 
 

× 
⎩
⎨
⎧ π
Γ[(1 $ p)/2] 1F1($p/2, 1/2; z2/2) $ 

 

⎭
⎬
⎫

$ 
2π z

Γ($p/2) 1F1[(1 $ p)/2, 3/2; z2/2]  

 
at z = iΔa and p = $3/2 leads to Eq. (6). 

In so doing, calculations by Eq. (8) in the case 
of a plane wave and a Gaussian beam give the same 
order of approximation as calculations by Eqs. (5) 
and (6) derived from Eq. (4).  Its advantage in 
comparison with Eq. (4) is in it convenience for 
numerical calculations of functions ϕ0(r′) of an 
arbitrary type.  At fast time variations of ϕ0(r), 
tracked with a beam shape recorder, calculations of 
ψ(r) by Eq. (8) can be performed in real time. 

 
APPENDIX 

 
The program for calculating discrete linear filter 

performing fast Fourier transform algorithm 
 

Program IIi; 
Type Real Array=Array[0...31] of Real; 
Function Ibitr (j,nu:Integer):Integer; 
Var i, j1,j2,k: Integer; 
Begin 
 j1:=j; 
 k:=0; 
 For i:=1 to nu do 
 Begin 
 j2:=j1 Div 2; 
 k:=k∗2+(j1$2∗j2); 
 j1:=j2 
 End; 
 Ibitr:=k 
End; {ibitr} 
 
 
 

Procedure FFT(VarXReal,XImag:RealArray;N,nu:Integer); 
Var N2,Nu1,i,l,k,m: Integer; 
TReal, TImag,p,arg,c,s: Real; 
Label LBL; 
Begin 
N2:=N DIV 2; 
NU1:=NU$1; 
K:=0; 
FOR L:=1 TO NU DO 
BEGIN 
 LBL: 
  FOR I:=1 TO N2 DO 
 BEGIN 
 M:=K DIV ROUND(EXP(NU1 ∗ LN(2))); 
  P:=IBITR(M,NU); 
 ARG:=6.283185∗P/N; 
 C:=COS(ARG); 
 S:=SIN(ARG); 
 TREAL:=XREAL[K+N2]∗C+XIMAG[K+N2]∗S; 
 TIMAG:=XIMAG[K+N2]∗C$XREAL[K+N2]∗S; 
 XREAL[K+N2]:=XREAL[K]$TREAL; 
 XIMAG[K+N2]:=XIMAG[K]$TIMAG; 
 XREAL[K]:=XREAL[K]+TREAL; 
 XIMAG[K]:=XIMAG[K]+TIMAG; 
  END; 
  K:=K+N2; 
  IF K<N THEN GO TO LBL; 
  K:=0; 
  NU1:=NU1$1; 
  N2:=N2 DIV 2 
END; 
FOR K:=0 TO N$1 DO 
BEGIN I:=IBITR(K,NU); 
  IF I>K THEN 
  BEGIN; 
   TREAL:=XREAL[K]; 
   TIMAG:=XIMAG[K]; 
   XREAL[K]:=XREAL[I]; 
   XIMAG[K]:=TIMAG[I]; 
   XREAL[I]:=TREAL; 
   XIMAGE[I]:=TIMAG; 
END  END  END; {FFT} 
BEGIN FFT(  ); END. 
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