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Two iteration techniques are proposed for restoration and compensation 
for wave front modes using the image, which are invariant relative to image 
source.  The results of numerical simulation for the case, when Zernike 
polynomials are the modes, are presented. 

 
We consider an adaptive optical system in which 

the pupil function is represented by a finite part of a 
series over a linearly independent system of functions 

 

Φ(ξ, η) = ∑
k=1

n
 ζk Φk(ξ, η) , (1) 

 
where ζ = (ζ1, ζ2, ..., ζn) is the unknown mode 
vector.  For instance, such an independent system 
can consist of response functions of actuators of a 
flexible adaptive mirror and of piecewise linear 
functions for a segmented mirror. 

It is assumed that the mode compensation 
proceeds by the adaptive optical system using the 
control vector ζu

 = (ζu
1, ζ

u
2, ..., ζ

u
n): 

 

Φ(ξ, η) = ∑
k=1

n
 (ζk $ ζk

u) Φk(ξ, η) . (2) 

 
Let us consider two different formulations of the 

problem on mode reconstruction and compensation 
using an image.  In the first one, a hardware solution 
is proposed for an equation in the control vector.  
For a point source, the equation has the form 
 
H(f; z, ζ $ ζu) = H(f; z, 0), (3) 
 
where H(f; z, ζ) is the optical transfer function at 
the spatial frequency f at a given defocusing z and 
the unknown mode vector ζ. 

If the source of incoherent radiation is arbitrary, 
two measurements corresponding to the planes z1 = 0 
and z2 = z are required.  In this case, we obtain 

 
 

H(f; z, ζ $ ζu)
H(f; 0, ζ $ ζu)

 = 
H(f; z, 0)
H(f; 0, 0) . (4) 

 
instead of equation (3). 

The left-hand sides of equations (3) and (4) are 
measured in the process of forming the discrepancy 
vector ζ $ ζu by an optical system.  It is supposed that 
the solution is found by iterative methods for which 
ζu → ζ. 

Another formulation of the problem of mode 
reconstruction implies a numerical solution of the 
equation 

 
H(f; z, ζ) = H(f; z, ζ*) (5) 
 
for to the mode vector ζ.  For an arbitrary source, 
the equation takes the form 
 
H(f; z, ζ)
H(f; 0, ζ) = 

H(f; z, ζ*)
H(f; 0, ζ*) . (6) 

 
The solution of equations is supposed to be sought for 
by iterative methods, but now only one measurement is 
needed: at the mode vector equal to ζ*. 

Let us examine the solution of the equation (3) 
in more detail by use of an iterative scheme of the 
modified Newton method.  The equation for 
discrepancy in such a scheme has the form 

 
P(f; z, ζ $ ζu) = H′(f; z, 0)(ζ $ ζu) , (7) 
 

where 
 

P(f; z, ζ $ ζu) = H(f; z, ζ $ ζu) $ H(f; z, 0). 
 

The operation of the iterative scheme is shown in 
Fig. 1, where I(z, ζ) is the intensity distribution in 
the plane displaced from the focal plane by the value 
of the given defocusing z, J(f; z, ζ) is the Fourier 
transform of the intensity at the spatial frequency f. 

 

 
 

FIG. 1. 
 

The order of calculations by Newton's scheme 
for the equation (7) is as follows: 
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1. Take a zeroth-order approximation for the 
control vector ζu which is always assumed to be zero. 

2. Measure the function H(f; z, ζ) forming the 
left-hand side of the equation (7). 

3. In correspondence with the solution of 
equation (7), the algorithm forms the control ζu 
transforming the optical system (OS) into a new 
state for which ζu → ζ. 

4. Let the zeroth-order approximation be equal  
to ζu.  

5. Go to the item 2 of the algorithm until the 
control ζu is stabilized at the required accuracy. 

Reference 1 presents the results of solution of 
equations (3) and (4) by Newton method for a 
segmented mirror when piecewise linear functions are 
taken as an independent function system for equation 
(1).  In the present paper, we demonstrate the 
feasibility and convergence of the Newton method for 
equations (3) and (4) in the case of a flexible mirror 
what essentially extends the applicability of such a 
formulation of the problem. 

Let Zernike polynomials corresponding to 
defocusing, spherical aberration, general wave front 
slope, coma, and astigmatism be taken as an 
independent function system.  In polar coordinates 
they have the form 

 
Φ1(ρ) = 2ρ2 $ 1 ,   Φ2(ρ) = 6ρ4 $ 6ρ2 + 1 , 
 

Φ3(ρ, θ) = ρ cos(θ) ,   Φ4(ρ, θ) = ρ sin(θ) , 
 

Φ5(ρ, θ) = (3ρ3 $ 2ρ) cos(θ) , (8) 
 

Φ6(ρ, θ) = (3ρ3$2ρ) sin(θ) , 
 

Φ7(ρ, θ) = ρ2 cos(2θ) ,   Φ8(ρ, θ) = ρ2 sin(2θ) . 
 
Consider now the function H(f; z, ζ) at a finite 
number of frequencies fk = (r, ψk), (k = 1, ..., n),  in 
polar coordinates and introduce a frequency vector 
f = (f1, ..., fn).  Then one can consider a system of 
equations 
 
P(r, ψk; z, ζ $ ζu) = H′(r, ψk; z, 0)(ζ $�ζu) . (7a) 
 
instead of the equation (7). 

The optical transfer function at the frequencies 
f(ξ, η) has the form2 

 

H(f; z, ζ) = ⌡⌠ ⌡⌠
$∞

∞

 G(ξ + ξ′, η + η′) G0(ξ + ξ′, η + η′) × 

 

× G*(ξ′, η′) G0
*(ξ′, η′) dξ′dη′, (9) 

 
to a constant factor.  Here G0(ξ, η) =  

= exp($ iz(ξ2
 + η2)/2) is the pupil function containing 

aberrations corresponding to the given defocusing z, 
G(ξ, η) = exp($i2πt(ξ, η)) is the pupil function with 
 

an unknown aberration function (1) (i is the 
imaginary unit). 

The iterative scheme for the system of equations 
(7a) is feasible if a nonsingular matrix is formed from 
the derivative vector H′(r, ψ; z, 0) by choosing 
frequencies fk = (r, ψk).  Using Eq. (9), one can 
obtain the expression for the derivative vector in 
polar coordinates 

 

H′(r, ψ; z, 0) = ∑
j=1, 2

 ϕj(r) ζj + ∑
j=3, 5

 ϕj(r) ζj cos(ψ) +  

 

+ ∑
j=3, 5

 ϕj(r) ζj+1 sin(ψ) + ϕ7(r) ζ7 cos(2ψ) + 

 

+ ϕ7(r) ζ8 sin(2ψ) , (10) 
 

where 
 

ϕ1(r) = 16π2(r/b) [J0(b) $ 2J1(b)/b] ; 
 

ϕ2(r) = 48π2(r/b) [J0(b) $ 6J1(b)/b + 16J2(b)/b2] ; 
 

ϕ3(r) = 4π2 r J1(b)/b ; (11) 
 

ϕ5(r) = 4π2 r [4J1(b)/b $ 12J2(b)/b2 $ J3(b)/b] ; 
 

ϕ7(r) = $8π2 r b J2(b)/b2 . 
 

Here Js(b) are Bessel functions of the sth order, and 
the parameter b = rz.  Let us take ψk = (2/3)πk  and 
make up the following expressions 

 

M0 = ∑
k=0

2
 P(r, ψk; z, ζ $ ζu) ,    

M1 = ∑
k=0

2
 P(r, ψk; z, ζ $ ζu) exp(iψk) ,  

M2 = ∑
k=0

2
 P(r, ψk; z, ζ $ ζu) exp(i2ψk) . (12) 

 

Then the equations for the discrepancies have the 
form 
 

Re(M)/3 = ∑
j=1, 2

 ϕj(r) ζj ; 

 

Im(M1 + M2)/3 = ∑
j=3, 5

 ϕj(r) ζj ,    

 

Re(M1$M2)/3 = ∑
j=3, 5

 ϕj(r) ζj+1 ; (13) 

 

Re(M1+M2)/3 = ϕ7(r) ζ7 ,  
 

Im(M1$M2)/3 = ϕ7(r) ζ8 , 
 

and the system of equations (7a) can be divided  
into three systems of the second order and two 
equations by use of six measurements of the function 
p(r, ψk; z, ζ $ ζu) at fk = (r1, ψk), fk = (r2, ψk), 
k = 0, 1, 2. 
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TABLE I. 
 

Number 1 2 3 4 5 6 

ζ1 $ ζ1
u 0.1500 0.2000 0.1705 0.1205 0.0705 0.0216 

ζ2 $ ζ2
u 0.0500 0.0000 $0.0500 $0.0539 $0.0117 $0.0218 

ζ3 $ ζ3
u 0.1375 0.0964 0.0464 0.0194 0.0078 0.0042 

ζ4 $ ζ4
u 0.0500 0.0187 0.0048 $0.0004 0.0006 $0.0001 

ζ5 $ ζ5
u 0.0500 0.0021 0.0142 0.0148 0.0108 0.0060 

ζ6 $ ζ6
u 0.0500 0.0173 0.0081 0.0057 0.0021 0.0015 

ζ7 $ ζ7
u 0.0500 0.0000 $0.0234 $0.0124 $0.0089 $0.0030 

ζ8 $ ζ8
u 0.0500 0.0000 $0.0225 $0.0121 $0.0089 $0.0025 

2ζ $ ζu2 0.2375 0.2235 0.1873 0.1355 0.0738 0.0319 
 

 
TABLE II. 

 

Number 1 2 3 4 5 6 

ζ1 $ ζ1
u 0.1500 0.2000 0.1500 0.1000 0.0500 0.0168 

ζ2 $ ζ2
u 0.0500 0.0000 $0.0500 $0.0074 0.0069 $0.0095 

ζ3 $ ζ3
u 0.1335 0.0987 0.0487 0.0173 0.0078 0.0056 

ζ4 $ ζ4
u 0.0500 0.0203 $0.0039 0.0012 $0.0055 0.0015 

ζ5 $ ζ5
u 0.0500 0.0000 0.0155 0.0171 0.0107 0.0036 

ζ6 $ ζ6
u 0.0500 0.0118 0.0083 0.0015 0.0067 $0.0011 

ζ7 $ ζ7
u 0.0500 0.0000 $0.0051 $0.0207 $0.0290 $0.0349 

ζ8 $ ζ8
u 0.0500 0.0000 $0.0315 $0.0186 $0.0068 0.0092 

2ζ $ ζu2 0.2352 0.2224 0.1694 0.1069 0.0607 0.0415 

 
The solution of the system (13) was performed 

at the relative frequencies r1 = 0.05 è r2 = 0.1, whose 
value has the sense of a relative displacement in the 
pupil plane by the vector f = $(r1cosψk, r2 sinψk) in 
the formula for optical transfer function (9).  The 
initial values of the mode vector coordinates in 
Eq.(1) correspond to larger aberrations.  The 
aberrations reach the value 0.8λ (λ is the wavelength) 
at the edges of a round pupil for ζk = 0.1.  The values 
of the discrepancy vector ζ − ζu at first six iterations 
under restriction on the module of the control value  
|ζu

k | = 0.05 are presented in Table I.  Such a 
restriction is natural for the control system and, 
besides, excludes overshoots at the first iteration.  In 
addition to the discrepancies, the table presents a 

generalized result, namely, the discrepancy vector 
norm at each iteration. 

The result of the algorithm operation with the 
measurement error equal to 3% of the maximum 
measurement value is presented in Table II.  The 
table shows that the algorithm has good convergence 
already at the sixth step. 
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