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Time series (TS) of data on natural processes are considered.  The universal 
approach to mathematical simulation of time series based on the idea of dynamical 
switches is developed.  The strict mathematical statement of the problem is given in 
addition to qualitative reasons.  The ways of constructing the mathematical models 
of time series are shown.  Advantages of the approach are illustrated by the 
examples connected with global changes in the Earth climate.  The prediction of 
further behavior of the studied time series is discussed. 

 

1. INTRODUCTION 
 
When monitoring natural processes one, as a 

rule, deals with time series (TS) describing the 
temporal behavior of the object under investigation.  
Time series determine the behavior of the object and 
reflect the variety of all forces and fields affecting it.  
Since the whole complex of physical processes 
determines every time series, in order to understand 
the mechanisms of their influence on the object under 
study, it is important to create adequate 
mathematical models of the time series.  That 
approaches are most valuable which allow one to 
approach time series corresponding to different 
natural processes from the common positions.  For 
example, it may be time series of long-term 
observations of temperature, pressure, humidity of 
atmospheric air, temporal variations of one or another 
population, or temporal variations of solar or other 
radiation. 

In this paper we present the universal approach to 
mathematical simulation of time series.  The approach is 
based on some simple facts that are common for all time 
series arising at processing the data on natural processes.  
In particular, the characteristic feature of such time series 
is the fact that there are the time intervals, on which the 
parameter under investigation increases, and the intervals 
where it decreases.  The law by which the parts of 
increase and decrease alternate can be random, 
determined, and also their mixture.  The approach is 
based on the idea of dynamic and stochastic œswitchesB of 
the regimes at the points of the derivative sign 
alternation.  The first results of such a direction were 
published in Refs. 1 and 2.  The possibilities of the 
approach are illustrated (in Sec. 3) by examples of time 
series describing the global warming of climate in the 
current century, especially, the time series are considered 
of the œglobal changeB of temperature and carbon 
dioxide concentration in the atmosphere (data from 

Refs. 3 and 4).  Simple four-parameter mathematical 
models that approximate the real time series with the 
error not greater than 6% are also presented in these 
papers.  The prediction capabilities of the time series 
models obtained are briefly discussed, as well as the 
possibilities of developing systems of automated 
mathematical simulation of the time series created on 
their basis. 

 
2. DESCRIPTION OF THE METHOD 

 
2.1. Essence of the method 

 
It is convenient to illustrate the idea of the 

proposed method for processing and modeling the time 
series on the basis of the schematic time series 
describing the behavior of some object or process 
(Fig. 1).  As was mentioned above, the time series are 
characterized by increase and decrease parts, with their 
duration and alternation following some law. 

 

 
a 

 
b 

 
c 

 

 
FIG. 1.  Schematic time series (a), rays reflecting 
the increase and decrease periods of the time series 
(b and c). 
 

Let us fix the points of switch from the regime of 
increase to the regime of decrease and consider the 
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parts of the time series increase separately.  Let us 
assume that the parts corresponding to the periods of 
increase has the same origin (Fig. 2a).  The result is 
the œbundle of rays,B where each ray is characterized 
by its angle and sets the increase of the function x(t) 
on the corresponding time interval. 

As a rule, the angle of the bundle opening is 
small for real time series, so that one always can 
select some effective (average) angle of the ray in one 
or another way.  Then let us assume that the function 
x(t) changes on the parts of the time series increase 
according to œthe law of effective ray.B  Let us 
designate the partially smooth function obtained as 
F(+)(t).  Let us accept that this function describes 
the time series x(t) on the parts of its increase. 

 

 
 

FIG. 2.  Temporal series corresponding to the 
global change of temperature and its model (a); 
results of prediction of the time series of global 
change of temperature (b).  Curve 1 shows actual 
data, curve 2 is the model; curve 3 is the result of 
prediction, and curve 4 is the result of averaging 
real data over the period of prediction. 
 

Repeating the reasoning for the time intervals 
where the time series decreases (Fig. 2b), we obtain 
the function F($)(t) that characterizes the time series 
x(t) on the parts of its decrease to a certain accuracy.  
As a result, the time series x(t) at the time of 
observation is approximated by some effective time 
series F(+)(t) + F($)(t). As to the construction, the 
approximation accuracy depends on the way of 
selecting the œeffective raysB. 

The effective time series constructed in such a 
way will allow one to predict the behavior of the 
experimental time series for some period of time, if 
the law of the alternation of the regimes of increase 
and decrease is known (see below). When constructing 
a mathematical model of a real time series, the main 
problem of the mathematical statement is the choice of 
functions F(+)(t) and F($)(t). 

 

2.2. Mathematical statement of the problem 
 

From the formal point of view, the majority of 
time series under study are the one-dimensional 
functions of time.  However, if take the variable x(t) 
as a variable characterizing the state of the natural 
medium at some point, then x(t) becomes a 
multidimensional vector (let us call it the vector of the 
natural medium state).  Its components are, for 
example, field of the atmospheric air velocities, 
concentration of one or another admixture, 
temperature, pressure, humidity, radiation intensity, 

etc.  There are many time intervals T(+)
i  for each of the 

components xi(t) of the vector of state x(t), where the 
variable xi(t) increases.  Let the dynamics of the 

component xi(t) at the times t ∈ T(+)
i  be described by 

the equation 
 

⋅xi = F(+)
i (x(t), t). (1) 

 
The time series x(t) within time intervals  

T($)
i  = T\T(+)

i  is described by the partially decreasing 
function that is the solution of some different equation: 

 
⋅xi = F($)

i  (x(t), t), (2) 
 
where T sets the total time of observation of the 
characteristic under study, xi(t).  The back slash &\[ 
means the operation of subtraction of sets; the functions 

F(+)
i  and F($)

i  are some scalar functions of the vector 
argument x(t) and the time t.  Let us set the initial 
conditions for the component of state xi(t) at t = 0; as 
xi(t = 0) = xi0.  As is seen from Eqs. (1) and (2), the 
mechanisms of interaction of physical subsystems are 
involved into the scheme of construction through the 
influence of the components of the vector of state x(t) 
on each other. 

The aforementioned system of equations is related 
to the case of concentrated dynamical systems, when 
the state of natural medium at fixed point is the single-
parametric function of the temporal variable t. The 
vector of the state of natural medium in a more general 
statement depends both on time and spatial variables.  
In this case, Eqs. (1) and (2) should be interpreted as 
some operator equations for the vector of state. Then 
the dependence of the vector of state on the variables of 
the problem becomes multiparametric. Expansion of the 
approach to the case of the systems with distributed 
parameters will be stated in a separate paper. 

One can write the system of equations (1) and (2) 
for the vector of state x in a more compact form.  To 
do this let us introduce an indicator function αi(t) so 

that αi(t) = 1 (or some constant) if t ∈ T(+)
i , and 

αi(t) = $1 if t ∈ T($)
i .  As a result, the system (1) and 

(2) is reduced to the equation of the form: 
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⋅xi = 
1
2 [Fi

(+)(x, t) + Fi
($)(x, t)] + 

 

+ 
1
2 αi [Fi

(+)(x, t) $ Fi
($)(x, t)]  (3) 

 

with the initial condition xi(t = 0) = xi0.  As is seen 
from Eq. (3), the resulting behavior of the system 
described by the vector of state x is the result of 
mixing the two dynamics.  These dynamics are set by 
Eqs. (1) and (2) for each component.  Depending on 

the properties of the sets T(+)
i  and T($)

i , this mixing has 
determined the stochastic or mixed nature.  Now using 
the qualitative scheme stated in the Section 2.1, let us 

take some functions F(+) and F($) obtained by some 
averaging of the time series under study, xi(t), over the 

parts of increase and decrease as functions F(+)
i (x(t), t) 

and F($)
i (x(t), t), respectively. The equation (3) for 

such a choice of the function F(+) and F($) is the 
mathematical model of a real time series xi(t). 

 
3. SIMULATION OF THE SPECIFIC TIME SERIES 

 
As was mentioned in the previous section, the 

representation of a time series by a mathematical model 
constructed by mixing of stochastic and dynamical states 
depends on what functions F(+)(x, t) and F($)(x, t) have 
been chosen on the interval of the study of the time 
series. We use the following ideas for choosing these 
functions. Numerous examples of the processes occurring 
in living and inanimate nature show  the S$like temporal 
behavior, when the parameter under study increases, 
initially, according to a power or an exponential law, 
then the increase slows down, and the curve comes to the 
established regime and weakly depends on time during 
some interval. As a rule, physical reasons that restrict the 
increase of the characteristics are various nonlinearities in 
the dynamics of the system and its interaction with other 
subsystems. The time interval, on which the established 
regime of the system behavior is observed for real 
systems, is often finite. It can be followed by a sharp 
decrease of the parameter under study due to the 
development of non-linear effects also. The examples of 
such a behavior can be a number of kinetic processes in 
solid bodies, in particular, the processes of magnetizing 
and electroconductivity in magnetic and conductive 
materials,5,6 the effects of electromagnetic radiation 
propagation in condensed media.7,8 In living nature, the 
dynamics of any population, including the mankind, has 
analogous behavior.9,10 

For the simplicity of simulation and to make 
results more descriptive, let us take the function 
F(+)(t) as a solution corresponding to the classic 
logistic model9 

 
⋅x = ax $ bx2, (4) 
 
where a and b are some positive numbers, i.e. the right-
hand side of the logistic equation (4) is chosen as a 

function F(+)
i (x(t), t).  The solution of Eq. (4) at 

small t increases exponentially and reaches the 
stationary level xst = a/b at a great time 
 

x(t) = [aexp(at)]/[c + bexp(at)],  (5) 
 
where c is the constant determined by the initial 
condition x(t0 = 0) = x0.  Let us simulate the regime of 
decrease by the exponentially decreasing function 
x(t) = Cexp($pt) that is the solution of the dynamic 
equation 
 
⋅x = $px.  
 
Obviously, the right$hand side of this equation sets the 

function F($)
i (x, t) = $px. 

It will be shown below that, even for such a 
choice of simplest dynamic regimes, their mixing and 
use as an approximation of the real time series provides 
quite satisfactory accuracy. 

Let us consider the parts of increase of the time 
series.  Two points are known for each part, the 
beginning of the period (x1, t1) and its end (x2, t2).  
Obviously, one can draw an infinite number of the 
curves of the form (5) through two points (x1, t1) and 
(x2, t2), so let us use the least square method (LSM) 
to select the coefficients a and b and the constant c.  
LSM supposes minimization of the rms deviation 

 

σ2 = 1/n∑
i=1

n
 (xi $ f(ti))2, (6) 

 
where f(ti) is the value of the approximation function 
at the point ti.  Since Eq. (5) is not convenient for 
taking derivatives, let us transform it by means of the 
substitution X = 1/x, θ = exp($at).  As a result, we 
obtain the quasilinear dependence 
 
X = kθ + m,   (7) 
 
where k = c/a and m = b/a, which is more acceptable 
for minimization.  Using Eqs. (6) and (7), we obtain the 
expressions that allow us to determine a and b for each 
period of the increase in the time series.  Since 
linearization of the initial dependence gives some error, 
the coefficients a and b were recalculated in the vicinity 
(a ± 0.2a), (b ± 0.2b) for better accuracy. Then the 
coefficients a and b were averaged as mean weighted over 
all parts of the increase of the time series.  The constant c 
was determined from the condition of sewing together the 
solutions at the initial points x(t = t1) = x1.  The 
coefficient p and the constant C are determined 
unambiguously for each part of the decrease of the time 
series by the points of the beginning and the end of a 
decrease period.  Then the coefficient p is similarly 
averaged over all parts of the decrease in the time series.  
By substituting the results obtained into Eq. (3), we 
obtain the mathematical model of a real time series 
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⋅x = (1/2) ((a $ p)x $ bx2) + 
 

+ (1/2) α(t)((a + p)x $ bx2),   (8) 
 

where α(t) = ±1 at the points of the derivative sign 
alternation.  Obviously, the model obtained depends on 
three parameters a, b, and p in an explicit form and on 
the fourth parameter μ, the frequency of switches of the 
regimes of increase and decrease, in an implicit form.  
Let us present the numerical values of these parameters 
for the time series under consideration. 
 

$ a b p 
Global temperature change 0.106 0.055 0.056
Carbon dioxide concentration 0.090 0.003 0.04 
 

Shown in Fig. 2a is the time series of the œglobal 
changeB of temperature from the data of Ref. 3 and its 
mathematical model.  Relative deviation of the model 
from the real series in the meaning of average values is 
6%, and the relative deviations for each of 126 points 
considered vary from 40 to 0.2%, that is 17% on 
average.  The real series is shown by the thin line, and 
the model is shown by a bold line.   

The results of prediction of the series by means of 
the model (8) are shown in Fig. 2b.  Prediction of the 
behavior of the time series is shown by dashed line in 
the right corner of the figure, the solid line is averaging 
of the real series values over the same time interval.   

Figures 3a and b show the temporal series of the 
carbon dioxide concentration from the data of Ref. 4 as 
well as its mathematical model and the result of 
prediction.  It is easy to notice a good agreement of the 
calculated behavior of the time series with actual data.  
As is seen from Figs. 2 and 3, the predicted behavior of 
the time series model does not leave the limits of 
accuracy of approximation of the real series at the time 
intervals of about 1.5 years. 

 

 
 

 
 

FIG. 3.  Temporal series of the carbon dioxide 
concentration in the atmosphere (a); results of 
prediction of the time series of the carbon dioxide 
concentration in the atmosphere (b): curve 1 is 
actual data, curve 2 is the model, and curve 3 is 
the result of prediction. 

 

4. DISCUSSION 
 

The proposed approach to mathematical simulation 
of temporal series allows one to avoid many difficulties 
arising at the traditional approaches to simulation of 
complex time series.  It is usually accepted in the 
traditional approach that one can describe the dynamics 
of the time series by systems of nonlinear dynamic 
equations, often supposing the explicit time dependence 
of coefficients of these equations..  When simulating 
the complex objects, the state of which is described by 
nonlinear equations, the additional time dependence of 
the coefficients of equations leads to the complex 
mathematical problems.  The problems often arise 
already at the stage of the proof of theorems of the 
existence of solutions and their classification.  The 
above approach to simulation of the time series uses 
very simple mathematical models.   

We have selected the solutions of logistic equation 
and linear equation of the first order as simulating 
functions. It is clear that the class of functions, by means 
of which one can simulate the time series based on an 
idea of mixing dynamic and stochastic states, is not 
limited by this fact.  In particular, such functions can be 
polynomials. Let us note that when simulating the 
temporal series we fix the points of the derivative sign 
alternation, thus obtaining some average characteristic 
times of increase and decrease of the time series. Such 
times, together with the characteristic time of the time 
series derivative sign alternation, are the fundamental 
parameters for describing the real time series. By means 
of them one can extrapolate the results of simulation to 
the times when the observations are absent.   

As applied to the time series considered in this 
paper, the accuracy of predictions is within the limits of 
the accuracy of simulation (<6%) at the times not less 
than the characteristic time of the derivative sign 
alternation.  The simplicity of simulation and possibility 
of extrapolating allow one to say about the possibility of 
creating an automated system of mathematical simulation 
of the natural processes described by the time series.  
Another approach to simulation of time series based on 
the stochastic distribution of the points of switches of the 
regimes and the choice of time series sample the most 
close to reality from the many possible ones is also 
possible.  We will discuss the results of prediction and 
stochastic simulation in our future papers. 
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