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The improvement way for vector generalization of small-angle modification of 

spherical harmonics approximation for backward viewing hemisphere has been 

expounded. It is based on perturbation theory method.  The numerical results of the 

improvement carried out are adduced.  Besides obtained and analyzed is the limit 

transition from vector small-angle modification of spherical harmonics 

approximation to small-angle approximation obtained by Dolin and its polarization 

generalization made by Zege and Chaikovskaya.  This fact makes small-angle 

modification of spherical harmonics approximation to be the general form of small-

angle approximation. 
 

The analysis of results of remote sounding of an 
underlying surface by optical methods can be more 
effective if one enlists a priory information obtained 
from the calculation of polarization characteristics of 
radiation reflected by a plane layer of a turbid 
medium.  As was shown in Ref. 1, the small-angle 
modification of the spherical harmonics method 
(below, MSH means the small-angle modification of 
the method of spherical harmonics, SH means 
spherical harmonics) permits one to calculate the 
fields of polarization characteristics of radiation with 
satisfactory accuracy when optical parameters vary 
widely.  But the approximation, first, lays rather 
rigid restrictions upon the scattering phase matrix of 
the medium, namely, slow monotonic descending of 
its angular spectrum when decomposed by generalized 
spherical functions, and, second, it has considerable 
error in the backward viewing hemisphere. 

Overwhelming majority of natural formations are 
heterogeneous structures with patches of coarse 
particles that, according to Mie theory, have 
scattering phase matrices whose properties are very 
close to MSH demands.2,3   In order to improve the 
solution of the vector equation of radiation transfer 
(VERT) obtained within the frame of MSH, we 
represent the scattering phase matrix as a sum of two 
components 

 

X
↔

(μ) = a X
↔

s a (μ) + (1 $ a) X
↔

p (μ) , (1) 

 

where X
↔

s a(μ) is the small-angle part of the scattering 

phase matrix with slowly and monotonously descending 

angular spectrum; X
↔

p (μ) is the perturbation of the 

small-angle matrix having the small number of 
harmonics in the angular spectrum (k ≤ 3 ÷ 5);  (1 $ =) 

is the small perturbation parameter, = <∼ 1; μ  is the 

cosine of the scattering angle. 
For convenience, let us represent VERT in the 

plane geometry for the Stokes vector-parameter L(τ, l̂) 
in an operator form: 

 

D L = S L,  (2) 
 

where D = μ0 
∂
∂τ + l

↔
 is the differential operator of 

radiation transfer in the small-angle approximation in 
the vector form1; μ0 is the cosine of the incidence angle 

of a parallel radiation flux onto a plane layer; 

μ0 = (l̂0 , ẑ), ẑ is the unit vector along the OZ axis 

directed downward normally to the layer boundary; 

τ = 
⌡⌠

0

z

 

 

ε(z) dz is the optical depth; SL = 

= o

⌡⌠

 
 

 

S
↔

(l, l′) L(τ, l̂) dl̂′ is the collision integral; S
↔

 is the 

phase matrix.  Other designations are taken from 
Ref. 1. 

Let us complete the equation (2) of the problem of 
reflection of polarized radiation by a layer of a turbid 
medium with the boundary conditions 

 

⎩⎪
⎨
⎪⎧

>

L(τ, l̂)⏐
Γ1

 = L0 δ(l̂ $ l̂0),

L(τ, l̂)⏐
Γ2

 = 0 ,

  (3) 

 

where L0 is the vector-parameter of the incident 

radiation; Γ1 = {z = 0, l̂ ∈ Ω+}; Γ2 = {z = H, l̂ ∈ Ω$}; 
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Ω+ and Ω$ are upper and lower viewing hemispheres 
respectively (Ω+ ∪ Ω$ = Ω); m is the complete width 
of the layer. 

In accordance with Eq. (1), the operator S in 
Eq. (2) also can be resolved into two parts: 

 
S = a Ss a + (1 $ a) Sp. (4) 

 
We will seek for the solution of the boundary-

value problem (2)$(3) as a series of the perturbation 
theory 
 

L(τ, l̂) = ∑
n=1

∞
 

 
 (1 $ a)n L(n)(τ, l̂) . (5) 

 
Substituting Eqs. (4) and (5) into the VERT (2) 

we obtain 
 

∑
n=1

∞
 

 
(D $ a Ss a $ (1 $ a) Sp) (1 $ a)n L(n)(τ, l̂) = 0 . (6) 

 
It follows from Eq. (6) that the coefficients at the 

same powers of (1 $ a) equal zero what is equivalent to 
the system of recurrent boundary-value problems 

 
n = 0:     D L(0) = a Ss a L(0),  (7) 
 

⎩⎪
⎨
⎪⎧

>

L(0)(τ, l̂)⏐Γ0
 = L0 δ(l̂ $ l̂0),

L(0)(τ, l̂)⏐Γ2
 = 0 ;

  

 

n = k ≥ 1:      D L(k) = a Ss a L(k) + Sp L(k$1), (8) 
 

⎩⎪
⎨
⎪⎧

>

L(k)(τ, l̂)⏐Γ1
 = 0 ,

L(k)(τ, l̂)⏐Γ2
 = 0 ;

 

 

where Γ0 = {z = 0, l̂ ∈ Ω} what is the necessary 

condition to turn to MSH.1,4 
It is easy to see that the first boundary-value 

problem (7) completely satisfies the conditions of MSH 
applicability and its solution for the case of plane 
geometry can be written in the form 

 

L(0)(τ; ν, ϕ) = ∑
n=$1

+1
 

 ∑
l=0

∞
 

 

2l + 1
4π  ei2πϕ Y

↔2n

l (ν) l
↔

l(τ) f
2n

l (0) , 

  (9) 
 

where { }Y
↔2n

l (ν)  are generalized spherical functions1;   

ν = (l̂, l̂0); f
2n

l (0) are the coefficients of expansion of 

 

the right-hand side of the upper boundary condition of 
the boundary-value problem (7) in generalized spherical 
functions, which have the following form 
 

f
0
l(0) = 

L

2
 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤0

1 $ q
1 + q

0

 ,     f
2
l(0) = 

L

2
 

⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤p

0
0
p

 (10) 

 

in the reference plane (l̂×l̂0) for the incident radiation 

with brightness L, degree of polarization p, ellipticity q 
(Ref. 6) polarization plane coinciding with the plane 

(l̂0×ẑ), ∀ l; l
↔

l(τ) is the angular spectrum of the matrix 

surface Green’s function l
↔

l(τ, l̂0 → l̂) (transfer 

matrix6) 
 

L(0)(τ; l̂) = 

 

= o

⌡⌠

 
 

 

R
↔

(l̂×l̂′→l̂×l̂0) l
↔

(τ; l̂′→l̂)R
↔

(l̂′×l̂0→l̂×l̂′)L0 δ(l̂′$l̂0) dl̂′ 

  (11) 
 

where R
↔

 is the rotator, and the transfer matrix being 
expanded has the form 
 

( l
↔

l(τ ; l̂′→l̂))rs = ∑
l=0

∞
 

 
(2l + 1)( l

↔

l(τ))rs P
l

rs(l̂′, l̂))  (12) 

 

similar to that of the scattering matrix, as is seen from 
Eqs. (9) and (11). 

The connection between the generalized Legendre 

polynomials Prs
l  and Y

↔2n

l   is considered in Ref. 1.  If 

Eq. (9) is solved using MSH, one should change the 
single scattering albedo of the medium Λ by =Λ in 
accordance with Eq. (7). 

The boundary-value problem (9) is similar to the 
problem (7), but there are zero boundary conditions 
and a source function in the right-hand side of the 
equation.  By definition of the transfer matrix and by 
virtue of the connection between7 the surface Green’s 
function and the volume one, the solution to the 
problem (9) can be written as a superposition integral 

(for the case l̂ ∈ Ω$): 
 

L(1)(τ; l̂) =
⌡⌠

τ

τ
0

 

 

o

⌡⌠

 
 

 1

⏐(l̂′, ẑ)⏐
 R
↔

(l̂×l̂′→l̂0×l̂) l
↔

(τ′$τ; l̂′→l̂) × 

 

× R
↔

(l̂′×l̂0→l̂×l̂′) Ss a L0(τ, l̂)dl̂′dτ′. (13) 
 

After substituting the expression for the operator 
Ss a and taking into account the optical reciprocity 

theorem, we have the following expression for the 
transfer matrix according to Refs. (7)$(8). 
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1

⏐(l̂′, ẑ)⏐
 l
↔

(τ′$ τ; l̂′→l̂) = $ 
1

⏐(l̂, ẑ)⏐
 l
↔

(τ′$ τ;  −l̂→ $l̂′) ,  

  (14) 
 

Then the expression (13) takes the form  
 

L(1)(τ; l̂) = 
Λ

4πη0
 × 

 

× 
⌡⌠

τ

τ
0

 

 

o

⌡⌠

 
 

 

 R
↔

(l̂×l̂′→l̂0×l̂) l
↔

(τ′ $ τ; l̂′→l̂) R
↔

(l̂′×l̂0→l̂×l̂′) × 

 

× o

⌡⌠

 
 

 

R
↔

(l̂″×l̂′→l̂0×l̂′) X
↔

s a(l̂″,l̂′)R
↔

(l̂″×l̂0→l̂″×l̂′)

L0(τ′, l̂′) dl̂″dl̂′dτ′ 
 

where η0 = $ (l̂, ẑ). 

By virtue of the addition theorem for generalized 
Legendre polynomials,5 it follows therefrom that 

 
L(1)(τ; ν, ϕ) =  

 

= 
Λ

4πη0
 ∑
n=$1

+1
 

 ∑
l=0

∞
 

 

2l + 1
4π  ei2πϕ Y

↔2n

l (ν) l
↔(1)

l (τ) f
2n

l (0) , 

 

where l
↔(1)

l (τ) = 
⌡⌠

τ

τ
0

 

 

l
↔

l(τ′ $ τ)X
↔(l)

p l
↔

l(τ′) dτ′ is the 

angular spectrum of the transfer matrix in the first 
order of perturbation theory. 

According to the solution of VERT by MSH 
obtained in Ref. 1, the latter integral can be calculated 
explicitly.  As a result, we obtain 

 

l
↔(1)

l (τ) = 

Λμ0

4π  ∑
i,j=1

+4
 

 

exp {$(τ/μ0)(1 $ Λ(α +
 

Δi))}

(η0 + μ0)(1 $ αΛ) $ Λ(Δi η0 + Δj μ0)
 × 

 

× 
V
↔

i X
↔(l)

p  V
↔

j

4 Δ$i Δ
$

j

 {1$ exp[$ (τ0$τ)/(η0 μ0)((η0+μ0)(1$αΛ) $ 

 

$ Λ(Δi η0 + Δj μ0))]}, (15) 

 

where V
↔

i , α, Δi are matrices and coefficients 

introduced in Ref. 1; X
↔(l)

p   is the angular spectrum of 

the matrix X
↔

p(μ). 

The obtained solution (15) similar the zeroth MSH 
approximation1 also has the symmetry properties of the 
exact solution.  For brevity, by analogy with Refs. 9$
11, we call it quasi-single. 

The curves for the degree of linear polarization in 
the turbid medium thickness in the case of normal 
incidence (μ0 = 1) of the natural light onto the layer 

are depicted in Fig. 1.  The viewing angle θ is counted 

off the OZ axis, cosθ =  (l̂, ẑ).  The Chandrasekhar 
solution is used as an exact one.  The curve 
œperturbationB corresponds to the quasi-single 
approximation.  The representation (1) for the Rayleigh 
scattering phase matrix is realized in accordance with 
Ref. 1.  From the plots shown in the figure it is seen 
that the quasi-single approximation essentially improves 
MSH for the back viewing hemisphere and its accuracy 
is enough to solve many problems of remote sounding 
of the environment. 

 

 
 

FIG. 1.  Comparison of calculation results for 
degree of polarization of a light field in a plane 
layer of turbid medium:  exact solution (solid 
curve), “small-angle” solution (dashed curve), 
“perturbation” (dot-and-dash curve). 
 

The form of the small-angle approximation,12 
including an attempt to generalize it for the vector 
case,9-11 can be found in the literature.  But this 
generalization does not describe completely all the 
properties of partially polarized radiation included in 
MSH.  The connection of the scalar version of MSH 
with the form12 is analyzed in Ref. 4.  Let us consider 
the connection between vector generalization of MSH1 
and the approximation from Refs. 9-11.  It is based on 
passing to the limit from the generalized spherical 
functions to the corresponding Bessel functions ∀ m, n 
(Ref. 5): 

 

lim
ν→1

 Pk
mn(ν) = im$n Jm$n(ρ l

⊥
),    ρ → ∞ , (16) 

 
where l

⊥
 is the length of the projection l

⊥
 of the unit 

viewing direction vector l̂ onto the plane orthogonal to 
the direction of the reference origin of the viewing 
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angle; ν = cos (l
⊥
/ρ) is the cosine the viewing angle γ; 

ρ is the length of l̂ equal to the radius of the above-
mentioned sphere; ρ ≡ 1 but l

⊥
 <<  ρ when ν → 1 (i.e. 

l
⊥
 → γ), and the main condition of passage to the limit 

is satisfied. 
In a similar manner as in Ref. 12 as applied to the 

vector case for an infinitely wide light beam in a plane-

parallel layer, we turn from the vectors l̂ to radius 
vectors l

⊥
 in the CP-representation13 of polarization and 

assume that 
 

⎩
⎨
⎧

>

L(τ, l̂) = L(τ, l⊥) = L(τ, l⊥, ϕ);

X
↔

(l̂′, l̂) ≈ X
↔

(Δ⊥),

 (17) 

 

where Δ
⊥
  is the length of the vector l ′

⊥ $ l
⊥ (see 

Fig. 2).  Here, it is convenient to refer the coordinate 

system to the direction l̂0 of the radiation incidence 
onto the layer, i.e., the reference origin of the viewing 
angle.  In this case, the spherical triangle formed by 

the unit vectors l̂′, l̂, and l̂0 becomes a usual triangle in 

the plane (l⊥×l ′
⊥) ⊥ l̂0, and the Euler angles5 χ, 

δ = arccos μ = arccos (l̂′, l̂) (scattering angle), χ′ 
become the angles between the sides of the triangle (see 
Fig. 2), and it is obvious that Δ

⊥
 → δ for small 

scattering angles.  The rotations on the sphere of 
infinitely large radius and the motions in the plane 
become equivalent as well as the corresponding 
transformation groups. 
 

 
 

FIG. 2.  Change of the variables. 
 

Using the transition to the limit (16) we turn to 
the matrices 
 

Z
↔

m(x) = lim
ν→1

 Y
↔m

k(ν) = 

 

= im Diag{$ Jm$2(x); Jm(x); Jm(x); $ Jm+2(x)}, (18) 

 

where .  = ρ l
⊥
, from the matrices Y

↔m
l (ν) = 

= Diag{P2,m(ν); P0, m(ν); P0, m(ν); P2, m(ν)} used to 

expand the fields L in the CP-representation. 
The assumptions enable us to represent the field of 

the Stokes vector-parameter (17) as a Hankel transform 

with the matrix kernel Z
↔

m (18): 
 

L(τ, l⊥, ϕ) = ∑
m=$∞

∞
 

 
eimϕ 

1
2π 

⌡⌠

0

∞

 

 

 Z
↔

m(p l
⊥
)Lm(τ, p) p dp ,  

  (19) 
 

where L
m(τ, p) is the azimuth-spatial spectrum for 

L(τ, l
⊥
). 

We also represent the elements of the scattering 
phase matrix (17) by Hankel transforms of 
corresponding orders: 

 

Xrs(Δ
⊥
) = 

i
r$s

2π  
⌡⌠

0

∞

 

 

 Jr-s(q Δ
⊥
) Xrs(q) q dq, (20) 

 
where r, s = 2, 0, 0, $2 (Ref. 13). 

Turning to the matrices X
↔

(Δ
⊥
) from the matrices 

X
↔

(l̂′, l̂) = X
↔

(μ) one should take into account that  

μ =~ 1$0.5 Δ
�

2  in the small angle region. 

Further, substituting Eqs. (19) and (20) into the 
integral part of the VERT operator and using simple 
geometrical relations (see Fig. 2), we have the 
following expression for the rth element of its column 
vector 

 

{S L}r = 
Λ
4π o

⌡⌠

 
 

 

e$irχ ∑
s

 

 
Xrs(Δ

⊥
) eirχ′ Ls(τ, l ′

⊥) d
2
l ′⊥ = 

 

= 

Λ
4π 

1

(2π)2 ∑
s

 

 
eirϕ′

⌡⌠

0

2π

 

 

⌡⌠

0

∞

 

 

⌡⌠

0

∞

 

 

i
r$s

 e$irχ
 Jr-s(q Δ

⊥
) eirχ

 Xrs(q) q dq× 

 

× ∑
m=$∞

∞
 

 
ei(m$s)ϕ 

⌡⌠

0

∞

 

 

i
s$m

Js$m (pl
⊥
)L s

m(τ, p)p dp l ′
⊥  dl ′

⊥  dϕ′= 

 

= 
Λ

2(2π)3 ∑
s

 

 
ei(r+s)ϕ ∑

m,n

 

 
i
r$m

 e$inϕ

⌡⌠

0

∞

 

 

Js-n (q l
⊥
)Xrs(q)dq × 
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× 
⌡⌠

0

∞

 

 

 L s
m(τ, p) 

⌡⌠

0

∞

 

 

 Jr$n(l ′
⊥ q) Js$m (l ′

⊥ p) l ′
⊥ dl ′

⊥ × 

 

× 
⌡⌠

0

2π

 

 

ei(m+n$r$s)ϕ′ dϕ′pdp = 
Λ
4π ∑

m=$∞

∞
 

 
($1)m

i
r$m eimϕ × 

 

× 
1
2π 

⌡⌠

0

∞

 

 

 Jr-m(q l
⊥
) ∑

s

 

 
 Xrs(q) L s

m(τ, q)q dq   

 
or, in the matrix form, 
 
SL(τ, l

⊥
)= 

 

= 
Λ
4π ∑

m=$∞

∞
 

 
 eimϕ

($1)m

2π ⌡⌠

0

∞

 

 

Z
↔

m(q l
⊥
)X
↔

(q) L
m(τ, q)qdq. (21) 

 
The condition of orthogonality for Bessel functions 
 

⌡⌠

0

∞

 

 

 Jm(xy) Jn(xz)x dx = 
($1)m

y
 δmn δ(y $ z), 

 
where δmn is the Kronecker delta and δ(y $ x) is the 

Dirac function, is used in Eq. (21). 

For the matrices Z
↔

, this condition can be written 
in the form 

 

⌡⌠

0

∞

 

 

Z
↔

m(xy) Z
↔

n(xz)dx = 
($1)m

y
 δmn δ(y $ z) 1

↔

 , (22) 

 

where 1
↔

= Diag{1; 1; 1; 1}. 
The addition theorem for Bessel functions5 playing 

a decisive part in deducing Eq. (21), is written in the 
form 

 

e$irχJr$s(qΔ
⊥
)eisχ

 =�eirϑ
 ∑
n=$∞

∞
 

 
 Jr$n (ql ′

⊥
 )Js$n(ql

⊥
)e$inϑ  

  (23) 
 

in the designations used (see Fig. 2). 
Let us transform the differential transfer operator 

(2) in the œsmall-angleB form neglecting the summand 

with the factor l
⊥

2 for small scattering angles.12  
Further, substitute Eqs. (19) and (21) into the 
corresponding parts of the VERT, multiply both the 

parts by Z
↔

n(pl
⊥
) einϕ, and integrate within the 

admissible values of the variables l
⊥
 ,  ϕ.  Then, on the  

basis of the orthogonality condition (22), we obtain  
the system of four differential equations for the 
azimuth$spatial spectrum of the matrix Green’s 
function 

 

μ0 
∂
∂τ l

↔
(τ; p) = $ ⎣

⎡
⎦
⎤1̂ $ 

1
4π X

↔

(p)  l
↔

((τ; p) . (24) 

 
The system (24) is completely identical to the 

system obtained in MSH, and it is obvious that its 
solution holds all the properties of the solution by 
MSH discussed in Ref. 1 and its symmetry. 

When neglecting non-diagonal elements in the SP-

representation of the matrix X
↔

(p), one can see that the 
solution of the system (24) becomes the solution obtained 
in Refs. 9$11.  The full scattering phase matrix 
(neglecting only the small backscattering) is invariant 
under small-angle modification of SH and its corollary 
(24), and, due to CP-representation, all the rotations of 
the reference plane at every scattering event are 
accurately taken into account.  A purely diagonal matrix 
describing the attenuation of an incident beam 
polarization in directions close to its axis is used for 
zeroth approximation in small-angle methods.9-11  For 
instance, it is suitable for solving problems on laser beam 
transformations.  The full scattering matrix enables MSH 
to describe both the transformation in an event of 
polarized light scattering and the œgenerationB of linear 
polarization by the medium from the natural light due to 
energy transfer from incoherent part to the coherent one 
what is essential for solving problems of remote optical  
sounding. 

As to the term Bsmall-angle modification,B it is 
understood in the sense of small velocity of amplitudes 

l
↔

k(τ) decreasing against the number k.  In the scalar 

version, it is equivalent to the demand of high 
extension of the brightness body in the region of angle 
distribution.  As to the vector case, extension is 
characteristic only of the energy component of the 
Stokes vector-parameter, but the property of the 
spectrum remains valid for all its components. 

Thus, MSH generalized in Ref. 1 for the case of 
taking into account radiation polarization is the most 
general form of the small-angle approximation.  
Application of the quasi-single approximation to MSH 
permits one to describe the fields of polarization 
characteristics in all the viewing angles and within 
sufficiently large limits of variation of medium optical 
characteristics in an analytically simple form with 
accuracy sufficient for practice. 
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