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Algorithms for modeling stationary processes and homogeneous isotropic fields 
with the prescribed 1-D distribution and spectral power density (correlation 
function) are discussed in the paper.  A random field with the 1-D lognormal 
distribution and power-law spectrum is used to imitate the 2-D field of optical 
thickness of marine stratocumulus clouds. 

 

1. INTRODUCTION 
 
The solution of geophysical problems calls for 

modeling of random processes and fields such as those 
of temperature, humidity, wind velocity, cloud optical 
properties, rough sea surface, etc.  As a rule, one knows 
only the one-dimensional (1-D) distribution and 
spectral power densities (correlation functions) and so 
can model realistic geophysical processes and fields only 
approximately. 

This modeling relies upon the spectral 
representation1 

 

w(x) = ⌡⌠ cos(λx) ξ(dλ) + ⌡⌠ sin(λx) η(dλ) , (1) 

 
which is essentially an analog of the Fourier transform 
for a stationary random process w(x).  Here, ξ and η 
are the orthogonal stochastic measures.  Methods for 
numerical simulation of stationary process and 
homogeneous random fields on the basis of spectral 
representation (1) are well studied in the literature2$4 
and are widely used to solve many applied  
problems.4$9  Among them is the method of spectrum 
analysis and randomization proposed by Mikhailov2,5,10 
as well as its modification for modeling isotropic fields 
on a plane4,11 (for its algorithmic implementation, also 
see Ref. 12). 

In this paper, we outline algorithms for modeling 
of stationary processes and homogeneous isotropic fields 
with the prescribed 1-D distribution and spectral power 
density or correlation function (Sections 2$4). 
Nonisotropic fields can be modeled by changing a scale 
along a coordinate axis.  In Section 5, an algorithm for 
modeling a field with the 1-D lognormal distribution 
and power-law spectrum is used to imitate 2-D fields of 
optical thickness of stratocumulus clouds.  The 
structure functions and fractal dimension of this 
random field are also discussed in this section.  For 
convenient reading, attached to the paper is 

Appendix A providing additional information about the 
structure functions and fractals. 

 
2. SPECTRAL MODELS FOR GAUSSIAN 

STATIONARY PROCESSES 

 
Let w(x), x ∈ R, be a Gaussian stationary process 

with zero mean, unit variance, correlation function 
 

K(x) = Ew(x + y) w(y) , 
 

and spectral power density f(λ) with 
 

K(x) = ⌡⌠
0

∞

 cos(λx) f(λ)dλ ,  

f(λ) = 
2
π ⌡⌠

0

∞

 cos(λx) K(x)dx . 

 

Here and below, E denotes the mathematical 
expectation over an ensemble of random process (field) 
realizations.  The stochastic integral (1) is 
approximated by the expression of the form 
 

wn = ∑
j=1

n

  aj $2 lnαj cos(λj x + 2πβj) , (2) 

 

where αj and βj are independent random variables 
distributed uniformly on [0, 1].  Here and below, n 
denotes the number of terms in the approximation of 
the stochastic integral.  The independent random 
variables λj can be modeled in two ways. 

Model A1: λj are distributed on the corresponding 
intervals [bj$1, bj) with the probability densities 

 

fj(λ) = 
f(λ)

aj
2  ,  aj

2 = ⌡⌠
bj$1

bj

 f(λ)dλ ,   

 

0 ≤ b0 < b1 < ... < bn = +∞ . 
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Model B1: aj
2 = 1/n, λj are identically distributed 

on [0, ∞) with probability density f(λ). 
For both models A1 and B1, the random processes 

(2) have the 1-D Gaussian distribution functions, 
correlation function K(x), and spectral power density 
f(x). The conditions: 1) max

j ≤ n$1
⎜bj$1 $ bj⎜ →n→∞

 0 ,  

⌡⌠
b0

bn$1

 f(λ)dλ → 1 and 2) n → ∞ ensure asymptotic 

Gaussian behavior of process (2) for models A1 and B1, 
respectively.  Model B1 is simpler from the algorithmic 
viewpoint, whereas model A1 is more versatile and 
adequate for fewer harmonics. 

As an example, we consider an algorithm for 
simulating a Gaussian stationary process with a power-
law spectrum 

 

f(λ) = 
⎩
⎨
⎧

>

0,   λ < λ
*
,

const λ$k,  λ ≥ λ
*
,  k > 1 .  (3) 

 

It is easily shown that the independent random variable 
λj in Eq. (2) should be modeled for model A1 as 
 

λj = [γj b j
1$k + (1 $ γj) b j$1

1$k]1/(1$k), j = 1, ..., n $ 1,  

  (4) 

λn = bn$1 γ n
1/(1$k) ,  b0 = λ

*
 

 

and for model B1 as 
 

λj = λ
*
 γ j

1/(1$k), j = 1, ..., n, (5) 
 

where γj are independent random variables distributed 
uniformly on [0, 1]. 

Generally, the spectral model of a stationary 
process with mean μ and variance σ2 is constructed 
using the formula 

 

μ + σwn(x), 
 

where wn(x) is the spectral model defined by formula 
(2). 
 

3. MODELING OF INHOMOGENEOUS 

ISOTROPIC GAUSSIAN RANDOM FIELDS  

ON A PLANE 

 
We consider a homogeneous isotropic Gaussian 

field wρ(x, y) with zero mean and correlation function 

 

E wρ(x, y) wρ(0, 0) = J0 (ρ x2 + y2),  ρ > 0 , 

 
where J0(⋅) is the Bessel function of the first kind.  The 
spectral representation of this field can be written as 

 

wρ(x, y) = ⌡⌠

R2

 cos(λx + νy) ξ(dλ dν) + 

+ ⌡⌠

R2

 sin(λx + νy) η(dλ dν) , 

 

where ξ and η are orthogonal stochastic measures 
concentrated on the semicircle P in space R2.  As a 
numerical model of wρ(x, y), we use the following 

approximation:  
 

w ρ
M(x, y) = M$1/2 ∑

m=1

M

 [ξm cos(xρ cosωm + yρ sinωm) + 

+ ηm sin(xρ cos ωm + yρ sin ωm)], (6) 
 

where ξm and ηm are independent standard normal 
variables, ωm = π(m + α′)/M, and α′ is random 
variable distributed uniformly on [0, 1].  
Geometrically, approximation (6) corresponds to the 
division of semicircle P into equal segments. 

Formula (6) can be written in more economical 
computational form as 

 

w ρ
M(x, y) = M$1/2

 ∑
m=1

M

 $2 lnαm × 

× cos(xρ cos ωm + yρ sin ωm + 2 π βm),      (7) 
 

where αm and βm are independent random variables 
distributed uniformly on [0, 1].  The simulation 
algorithm consists of forming arrays 
 

A(m) = $2 lnαm/M ,  B(m) = ρcosωm,  
 

C(m) = ρsinωm, D(m) = 2 π βm, m = 1, ..., M, 
 

while the magnitudes of random field at a given point 
(x, y) are calculated by the formula 
 

w ρ
M(x, y) = ∑

m=1

M

 A(m) cos[xB(m) + yC(m) + D(m)]. 

 

A homogeneous isotropic Gaussian field with 
mathematical expectation μ and correlation function 

σ2 J0(ρ x2 + y2) is modeled by the formula 
 

μ + σ w ρ
M(x, y). 

 

Let wρ(x, y), ρ > 0, be a family of independent 

homogeneous isotropic Gaussian fields on a plane, with 

zero mean and correlation function J0(ρ x2
 + y2).  An 

arbitrary homogeneous isotropic Gaussian random field 
on the plane w(x, y), with mean μ and correlation 
function 

 

K(x, y) = E[w(x, y) $ μ][w(0, 0) $ μ] = B( x2
 + y2), 

 

can be represented as a superposition of fields wρ(x, y): 
 

w(x, y) = μ + ⌡⌠
0

∞

 wρ(x, y) z(dρ), (8) 
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where z(dρ) is the real orthogonal stochastic measure 
on [0, +∞), while the correlation function is given by 
the expression 
 

K(x, y) = B( x2
 + y2) = ⌡⌠

0

∞

 J0(ρ x2
 + y2)G(dρ), 

 

where G(dρ) = Ez2(dρ) is radial spectral measure.  
Henceforth we assume that for the radial spectral 
measure there exists the probability density g(ρ): 
 

G(dρ) = g(ρ)dρ and g(ρ) = ρ ⌡⌠
0

∞

 rJ0(rρ)B(r)dr. 

 
The integral in Eq. (8) will be approximated by 

the sum 
 

w(N)(x, y) = μ + ∑
n=1

N

 an w ρn

Mn(x, y),          (9) 

 

where the independent field realizations w ρn

Mn(x, y) are 

modeled by formula (7).  As for random process, we 
adopt two models. 

Model A2: ρn are random variables distributed on 
the corresponding intervals [bn$1, bn) with probability 
density gn(ρ): 

 

gn(ρ) = an
2/g(ρ),  an

2
 = ⌡⌠

bn$1

bn

 g(ρ) dρ, 

0 ≤ b0 < b1 < ... < bN = +∞ . 
 

Model B2: an
2
 = G(0, ∞)/N, ρn are independent 

random variables distributed identically on [0, ∞) with 
probability density g(ρ)/G[0, ∞). 

The algorithm for modeling Eq. (9) consists of 
forming arrays 

 

A(n, m) = an $2 lnαnm/Mn ,  B(n, m) = ρncosωnm,  
 

C(n, m) = ρnsinωnm , D(n, m) = 2 π βnm , 
 

where ωnm = π(m $ γnm)/Mn and the random variables 
αnm, βnm, and γnm are independent and uniformly 
distributed on [0, 1].  The magnitudes of the random 
field at the point (x, y) are calculated from the formula 

 

w(N)(x, y) = μ + ∑
n=1

N

 ∑
m=1

Mn

 A(n, m) × 

 

× cos[B(n, m)x + C(n, m)y + D(n, m)]. (10) 
 
The algorithm is specified by the parameters N and Mn, 

while the sum ∑
n=1

N

 Mn is taken over the number of 

harmonics in the random field approximation.  The 

values of the parameters N and Mn are chosen 
empirically. 

The limiting behavior of the spectral models  
was studied in Refs. 2$5 and 13.  Here, we note  
only that the A2 and B2 models, describing  
adequately the correlation function and the  
spectrum of the approximated field, obey the  
one-dimensional Gaussian distribution and become 
asymptotically Gaussian as N → ∞ and  
max
n < N

⎜bn$1 $ bn⎜→ 0, G[b0, bN$1) → G[0, +∞) for the A2 

model. 
If the correlation function of the field is 

exponential, that is, B(r) = exp($ar), g(ρ) = 
= aρ(ρ2 + a2)$3/2 and for the spectral model B2 the 
random variables ρn can be calculated as 

 

ρn = a δ n
$2 $ 1, 

 

where δn are independent random variables distributed 
uniformly on [0, 1]. 

For homogeneous isotropic Gaussian field on a 
plane, having power-law radial spectrum 

 

[ )
g

kk
( )

, , ,

, , ,
ρ

ρ ρ

ρ ρ ρ ρ
=

∈

⋅ > > >

⎧
⎨
⎪

⎩⎪

∗

−

∗ ∗

0 0

0 1const  
  (11) 

 

formula analogous to Eqs. (4) and (5) can be used to 
calculate ρn for the A2 model, that is, 
 

ρn = [δn b n
1$k + (1 $ δn) b n$1

1$k]1/(1$k), n = 1, ..., N $ 1,  
  

ρn = bN$1 δ N
1/(1$k) ,  b0 = ρ

*
, 

 

and for the model B2 
 

ρn = ρ
*
 δ n

1/(1$k), n = 1, ..., N, 
 

where δn are independent random variables uniformly 
distributed on [0, 1]. 

Now we give relationships between the spectral 
measure F(dλ) = f(λ)dλ of the stationary random 
process obtained as a trace of an isotropic homogeneous 
field on a certain straight line, that is, 

 

f(λ) = 
2
π ⌡⌠

0

∞

 B(r) cos(λr) dr , λ ∈ [0, +∞), 

 

and the radial spectral measure G(dρ) = g(ρ)dρ of the 
isotropic random field (see Refs. 3, 4, and 14$6): 

 

f(λ) = 
2
π ⌡⌠

⎜λ⎜

+∞

 
g(ρ)

ρ2 $ λ2
 dρ ,   λ ∈ [0, +), 

 

F(λ) = 
2
π ⌡⌠

0

π/2

 G⎝
⎛

⎠
⎞λ

sinθ  dθ = 

= G(λ) + 
2
π ⌡⌠

⎜λ⎜

+∞

 arcsin(λ/ρ)g(ρ)dρ , (12) 
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1 $ G(ρ) = ρ ⌡⌠
0

π/2

 
f(ρ/sinθ)

sin2θ  dθ , 

 

g(ρ) = 
ρ f(R)

R2 $ ρ2
 $ ρ ⌡⌠

⎜ρ⎜

R

 
f ′(λ)

λ2 $ ρ2
 dλ . 

 

The last expression assumed that f(λ) > 0 for 
λ ∈ [0, R) and f(λ) = 0 for λ ∈ [R, + ∞).  From 
formula (12) it follows in particular that if the radial 
spectrum is described by the power-law dependence, 
that is, Eq. (11) is fulfilled, the spectral density f(λ) 
will be also the power-law function for λ ≥ p

*
: 

 

G(ρ) = C1[1 $ (ρ/ρ
*
)$k+1] ,  ρ > ρ

*
,   (k > 1), 

 

F(λ) = 
2
π ⌡⌠

0

π/2

 C1
⎩
⎨
⎧

⎭
⎬
⎫

1 $ 
⎣
⎡

⎦
⎤λ/sinθ

ρ
*

$k+1

dθ = C2 + C3 λ$k+1,  

λ > ρ
*
, 

 

where C1, C2, and C3 are constants. 
For particular examples of correlation functions of 

homogeneous isotropic random fields on a plane and 
their associated radial spectral densities, see Ref. 14. 

 

4. MODELING OF HOMOGENEOUS RANDOM 

FIELD WITH THE LOGNORMAL 1-D 

DISTRIBUTION AND POWER-LAW SPECTRUM 

 

The random variable ν obeying the lognormal 
distribution with the parameters μ and σ can be 
represented as ν = exp(w), where w is the Gaussian 
variable with mean μ and variance σ2.  As is well 
known,  

 

Eν = exp⎝
⎛

⎠
⎞σ2

2
 + μ  ,   

 

Dν = Eν2 $ (Eν)2 = eσ
2

 

+
 

2μ [eσ
2
 $ 1] . 

 

We assume w(t) to be a Gaussian random function 
with mathematical expectation μ, variance σ2, and 
correlation function Kw(t, s) = Ew(t, s) w(s).  Then 
the random function 

 

ν(t) = exp(w(t)) (13) 
 

obeys the 1-D lognormal distribution with the 
parameters μ and σ and the correlation function 

 

Kν(t, s) = Rμσ(Kw(t, s)), 
 

where Rμσ is the function determining distortion of 

correlations due to nonlinear transformations (13) (see, 
for example, Refs. 17 and 18). The function Rμσ can be 

found as follows. We denote by K̂ν(t, s) the normalized 

correlation function of the ν(t) field 
 

K̂ν(t, s) = 
Kν(t, s) $ (Eν)2

Dν  ,  Dν = Kν(t, t) $ (Eν)2 

and by K̂w(t, s) the normalized correlation function of 
Gaussian field w(t) 
 

K̂w(t, s) = 
Kw(t, s) $ μ2

σ2  . 

 

The normalized correlation functions are related by the 
formula18 

 

K̂ν(t, s) = 
e
σ2

 

K̂w(t, s) $ 1

eσ
2
 $ 1

 , (14) 

 

from which the function Rμσ is readily found. 

Generally, modeling of random function with 
lognormal 1-D distribution and correlation function 
Kν(t, s) according to formula (13) calls for the 

precalculated correlation function 
 

Kw(t, s) = Rμσ
$1(Kν(t, s)). 

 

Distortion of the correlation function due to 
nonlinear transformation (13) is given by the parameter 

 

Δ = max
ρ

 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

ρ $ 
eσ

2
 ρ $ 1

eσ
2
 $ 1

 , 

 

where ρ runs through all possible values of the 

normalized correlation function K̂w(t, s). 

Given K̂ν(t, s) ≥ 0 and σ is small (e.g., σ ≤ 1), the 

distortion of the correlations can be neglected (see 
Ref. 17).  Then, as an approximate model of 
homogeneous isotropic random field ν(x, y) obeying the 
lognormal 1-D distribution with the parameters μ and σ 
and power-law spectrum (11), we can take 

 

ν(N)(x, y) = exp(w(N)(x, y)), 
 

where w(N) is spectral model (10) of homogeneous 
isotropic Gaussian field with mathematical expectation 

μ and power-law spectrum (11) with ⌡⌠
0

∞

 g(ρ)dρ = σ2. 

The approach based on the transformation of 
Gaussian functions is frequently used to model non-
Gaussian random processes and fields (see Refs. 3, 4, 
17$19 for details). 

 
5. MATHEMATICAL MODELS FOR OPTICAL 

THICKNESS OF STRATOCUMULUS CLOUDS 

 

Two-parametric fractal models generated by 
multiplicative cascade processes provide adequate 
description of the distribution of liquid water in 
stratocumulus clouds.20,21  In this case, the vertical 
optical thickness τν and the liquid water path W are 

related by the expression 
 

τν = 3W/2reff ,      (15) 
 



S.M. Prigarin and G.A. Titov Vol. 9,  No. 7 /July  1996/ Atmos. Oceanic Opt.  
 

 

633

where W is in g/m2 and the effective droplet radius 
reff is in μm (Ref. 22).  Typically, stratocumulus have 
W = 90 g/m2, reff = 10 μm, τν = 13, and cloud 

thickness of about 300 m.  According to Eq. (15), the 
distribution of the liquid water path is well 
approximated by the lognormal distribution and can be 
transformed into the optical thickness distribution 
necessary for discussion of radiative transfer. 

Of these model, we consider the simpler one 
reproducing fractal in only one direction with a scaling 
factor of 2. Extension to a higher dimension and other 
scaling factors is straightforward.  Model starts with a 
plane-parallel homogeneous cloud slab of finite extent 
in the vertical direction and in one horizontal direction 
and infinite in the other horizontal direction.  This slab 
is divided into two parts of equal lengths and a part of 
liquid water f0 is transferred from one half to the other, 
with the direction of transfer chosen randomly with 
equal probabilities.  At the next stage, each of the two 
parts is divided in the same way in halves, and a part 
of liquid water f1 is transferred from one quarter of the 
slab to the neighboring one, with the transfer directions 
chosen randomly and independently.  This procedure is 
applied to each quarter-slab, etc. 

Usually, n = 10$12 cascade steps are used to 
generate a cloud and the initial plane-parallel cloud 
slab is divided into cells (pixels) of equal extent and 
different optical thicknesses.  It is shown (e.g., see 
Ref. 20) that when 

 

 

 

fn = fc 

n ,                                      (16) 
 

the distribution of W (or optical thickness τ) will have 
a power-law spectrum f(λ) ∼ λ$k with the spectral 
exponent k = 1 $ log2c

2 independent of the value of f 
for c < 1.  Analysis of data obtained as part of the 
program FIRE for marine stratocumulus clouds over 
California revealed a λ$5/3 wavelength spectrum23 
corresponding to the Kolmogorov-Obukhov law and 
hence the spectral parameter c is 
 

c = 2$1/3 ≈ 0.8 .                                       (17) 
 

The sole free parameter f is specified empirically 
from the standard deviation of log W distribution and 
for marine Sc it is approximately 0.5 (Refs. 20 and 23). 

Instead of cascade processes, an algorithm for 
simulating random processes (fields) with the 1-D 
lognormal distribution and power-law spectrum 
described in Sec. 4 can be used to model numerical 
realizations of the distribution of optical thickness of 
marine Sc.  The model input parameters are now the 
mean <τ> and the variance Dτ of optical thickness 

(liquid water path) as well as the exponent k 
characterizing the slope of the power-law energy 
spectrum.  Figure 1 shows sampling realization  
of the 2-D field of optical thickness obtained with 
<τ> = 13, Dτ = 29, and k = 5/3 typical of marine Sc 

(Ref. 20). 

2000 4000 6000 8000 10000 12000

2000

4000

6000

8000

10000

12000  23  --  24

 22  --  23

 20  --  22

 19  --  20

 18  --  19

 17  --  18

 15  --  17

 14  --  15

 13  --  14

 12  --  13

 10  --  12

 9.0  --  10

 7.8  --  9.0

 6.5  --  7.8

 5.3  --  6.5

 4.0  --  5.3

 

 
FIG. 1. Computer realization of the 2-D field of optical thickness of marine stratocumulus clouds for <τ> = 13, 
Dτ = 29, and k = 5/3.  
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FIG. 2. Structure function of optical thickness of stratocumulus clouds. 

 
 
 
Structure functions of the order q = 1, 2, and 3 

calculated for the 1-D realization of the optical 
thickness are depicted in Fig. 2.  The exponent H1 for 
the first moment of the absolute increment of τ is 0.31 
and hence the fractal dimension D = 2 $ H1 = 1.69 (see 
Appendix A).  The exponent ζ(q) of the structure 
function is well approximated by the linear function 
ζ(q) = qH1, q = 1, 2, 3. This is in agreement with the 
results for the cascade cloud field model.  The exponent 
k of the power-law energy spectrum calculated as 
k = ζ(2) + 1 = 1.61 is close to a desired value of 5/3. 

The spectral model of Sc optical thickness field has 
some advantages over the cascade one.  The input 
parameters for the spectral model have more habitual  
statistical meaning: mean, variance, and exponent of 
the power-law energy spectrum.  For the cascade 
model, the piecewise-constant cloud field is constructed 
in the fixed horizontally bounded volume, whereas 
spectrum-based algorithms allow one to model 
continuous cloud fields in horizontally infinite volume. 
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APPENDIX A. STRUCTURE FUNCTIONS AND 

FRACTAL DIMENSION OF RANDOM PROCESSES 

 
Smoothness of any continuous function is well 

characterized by the Ho⋅⋅lder exponent α: 
 

⎜f(x + Δx) $ f(x)⎜ ≤ const⎜Δx⎜α ,  0 < α ≤ 1 , (A1) 
 

whose larger value implies smoother function f.  The 
limiting case α = 1 corresponds to the class of 
differentiable functions. 

For a stochastic process φ, it is possible to  
find a statistical analog α as the exponent H1 for  
the first moment of its absolute increment   
⎜Δφ(x, r)⎜= ⎜φ(x + r) $ φ(x)⎜, r > 0: 

 

〈⎜Δφ(x, r)⎜〉 ∝ r
$H1 ,  0 < H1 ≤ 1 ,  

 

where 〈⋅〉 denotes an ensemble average.  The exponent 
H1 is related to the fractal dimension of the plot of 
φ(x), considered as a random geometric object in 2-D 
space, by the expression24 

 

D = 2 $ H1 ,  1 ≤ D ≤ 2. (A2) 
 

Then the codimension of the plot H1 = 2$D changes 
from 0 (discontinuous process at each point) to 1  
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(differentiable process) and hence is a direct and 
natural measure of the smoothness. 

For structure functions of the q order we have 
 

〈⎜Δφ(x, r)⎜q〉 ∝ r$ζ(q) , (A3) 
 

where ζ(1) = H1.  "Simple" scaling, or monoscaling, 
means that ζ(q) is a linear function, 
ζ(q) = qζ(1) = qH1; in this case, H1 is the only 
quantity required for the two-point statistical 
description of the stochastic process.  A classical 
example of monoscaling is Brownian motion.24  If ζ(q) 
is a nonlinear function, the stochastic process will 
possess multiscaling, or multifractality,25 or 
multiaffinity26 and a variety of exponents ζ(q) is 
required to describe this process statistically. 

In their discussion of the relation between the 
structure function of the second order (q = 2) and 
energy spectrum f(λ), Monin and Yaglom27 have shown 
that 

 

k = ζ(2) + 1 > 1.   (A4) 
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