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In the framework of unified approach, a method is discussed for 
reconstruction of the primary hydrooptical characteristics from a light field 
produced in a medium by a point source with a wide directional pattern.  The data 
are presented of in situ measurements of the scattering coefficient, absorption 
coefficient, and scattering phase function of water of Lake Baykal. 

 
1. INTRODUCTION 

 
The study of optical properties of some media is of 

scientific and practical interest.  The most important 
optical characteristics are so-called primary parameters 
that do not depend on illumination and observation 
conditions.  As known, among them are the absorption 
coefficient i, extinction coefficient ε (connected with 
the scattering coefficient by the relation ε = i + σ), 
and the scattering phase function χ(α).  In addition, 
one often uses the single scattering albedo Λ = σ/ε, 
differential scattering coefficient in the given direction 
σ(α) = σχ(α), and a number of the other parameters, 
which, in their turn, can be obtained from the 
aforementioned basis set of the primary characteristics.1  
Various methods are applied for obtaining these 
parameters.  In this paper, we consider the approach 
that allows one to obtain all aforementioned 
characteristics in a unified way, from a light field 
produced in a homogeneous medium by a  point source 
with a wide directional pattern. 

The propagation of radiation in a medium is 
described by the kinetic equation, with the coefficients 
being the well-known functions of the primary optical 
characteristics.  We consider here the inverse problem: 
to derive the primary optical parameters knowing the 
spatiotemporal distribution of brightness measured in 
the experiment.  It is easy to show2 that in the single 

scattering approximation the number of photons N
⋅
, 

coming from elementary solid angle Ω per unit time to 
the detector tilted at angle α to the source$detector 
axis, is equal to 
 

N
⋅
=
⎩
⎨
⎧ >N

⋅
0 for the direction toward the source (α=0),

N
⋅

s(α) for α > 0,
  

(1.1) 
where 
 

N
⋅

0 = I0 F(0) (SD/R2) e$εR,  (1.2) 

N
⋅

s(α) = I0 
dΩ

sin(α) 
SD

R2
 (σR) × 

× ⌡⌠
0

π$α
 

 
χ(α + β) F(β) e$εR(α,β) dβ. (1.3) 

 

Here, I0 is the source intensity, F(β) is the directional 
pattern (for example, F(β) = 1/4π for an isotropic 

source and F(β) =
⎩
⎨
⎧ 

 

cos(β)/π for β ≤ π/2
0 for β > π/2  for a 

Lambert source), SD is the area of the detector, R is 
the distance between the source and the detector, and 
R(α, β) is the photon path length from the source to 
the detector 
 

R(α, β) = R 
sin(α) + sin(β)

sin(α + β)  . (1.4) 

 

In Eq. (1.1), N
⋅

0 describes the contribution of the 

directly transmitted light and N
⋅
s - of the scattered 

light.3$5  The result does not depend on the azimuth 
angle φ due to the axial symmetry.  The scattering 
phase function χ in Eq. (1.3) is normalized by the 
condition 
 

⌡⌠
4π

 

 
χ(Ω) dΩ = 2π ⌡⌠

0

π
 

 
χ(γ) sin(γ) dγ = 1. (1.5) 

 

To measure the brightness field, we used a device 
described in detail in Ref. 6.  The variable baseline of 
the device allowed us to measure at distances R varying 
from 1.2 to 15 m.  Scanning in the angle α could be 
performed in the range up to 180° with a minimum step 
of 2′.  The aperture angle of the device in the scanning 
mode did not exceed 1.5°.  The device was equipped 
with a quasi-isotropic source of light with a wide 
spectrum of radiation in the visible wavelength range.  
A set of changeable narrow-band (with a bandwidth of 
~5 nm at half maximum) light filters was used for 
selection of the wanted wavelength.  The device was 
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controlled by a microprocessor that made it possible to 
use it for in situ measurements.  Measurements were 
carried out in Lake Baykal (in its southern part) at a 
distance of 3.5 km from the coast at a depth of 1000$
1100 m (the position of a neutrino telescope). 

It is seen from Eqs. (1.1)$(1.3) that the full basis 
set of the aforementioned parameters ε, σ and χ are 
included into the magnitude of the brightness field.  In 
general case, there are some difficulties in solving 
Eqs. (1.1)$(1.3).  Below we consider a solution to 
these equations with additional assumption about the 
strong elongation of the scattering phase function in 
the forward direction - the property characteristic of 
the scattering phase functions of natural waters. 

 

2. ABSORPTION COEFFICIENT 
 

Equation (1.1) was derived for the number of 
photons coming to the detector from the elementary 
solid angle dΩ.  After summing up the contributions 
from all possible directions of photon arrival, we derive 
for the corresponding integral parameter 
 

N
⋅

t = N
⋅

0 + ⌡⌠
0

2π
 

 
dϕ ⌡⌠

0

π
 

 
N
⋅

s(α) sin(α) dα. (2.1) 

 

Let us consider the case of an isotropic source of 
radiation for simplicity.  From Eqs. (1.2) and (1.3) we 
derive 
 

N
⋅

t = I0 
SD

4π R2 e
$εR × 

 

× 

⎝⎜
⎜⎛

⎠⎟
⎟⎞1 + σR 2π ⌡⌠

0

π
 

 
dα ⌡⌠

0

π$α
 

 
dβ χ(α + β) e ε(R$R(α,β))  . (2.2) 

 

After replacing the variable γ = α + β in the 
second integral in the right side of Eq. (2.2) and 
changing the order of integration, we obtain 
 

⌡⌠
0

π
 

 
 dα ⌡⌠

0

π$α
 

 
dβ χ(α + β) e ε(R$R(α,β)) = 

= ⌡⌠
0

π
 

 
dγ χ(γ) ⌡⌠

0

γ
 

 
dα e ε(R$R(α,γ$α)). (2.3) 

 

Integration in Eq. (2.3) is actually performed over 
small angles due to strong elongation of the scattering 
phase function in the forward direction.  It follows 
from Eq. (1.4) that in this case R(α, β) ≈ R and hence 
 

⌡⌠
0

π
 

 
dγ χ(γ) ⌡⌠

0

γ
 

 
dα e ε(R$R(α,γ$α)) ≈ ⌡⌠

0

π
 

 
 χ(γ) γ dγ. (2.4) 

 

Taking into account normalization condition (1.5), 
we obtain 

⌡⌠
0

π
 

 
χ(γ) γ dγ = 

1
2π (1 + Kχ), (2.5) 

 

where 

Kχ = 2π ⌡⌠
0

π
 

 
χ(γ) (γ $ sin(γ)) dγ. (2.6) 

 

The condition 
 

Kχ <<  1. (2.7) 
 

is satisfied for strongly forward-peaked scattering phase 
function. 

Upon substituting Eqs. (2.3)$(2.7) in Eq. (2.2), 
we obtain 
 

N
⋅

t ≈ I0 [SD/(4π R2)] e$εR (1 + σR). (2.8) 
 

Initial Eq. (2.2) was derived in the single 
scattering approximation, when only the first power of 
σR was taken into account.  The approximate equality 
 

1 + σR ≈ eσR (2.9) 
 

is fulfilled to the given accuracy. 
We finally obtain from Eqs. (2.8) and (2.9) 

 

N
⋅

t ≈ I0 [SD/(4π R2)] e$iR. (2.10) 
 

The accuracy of fulfilling Eq. (2.7) depends on the 
specific type of scattering phase function. 

The condition Kχ ≤ 0.015 was obtained for our 
case (see Sec. 3) and thus, relation (2.7) is actually 
fulfilled. 

Although we have taken into account the light 
scattering for the first order of the constant σR, it is 
easy to show that taking into account higher scattering 
orders will lead to appearance of additional terms 
(σR)2

2!  + 
(σR)3

3!  + ... in the right side of Eq. (2.8) and 

hence Eq. (2.9) will be replaced by the exact equality 
in this case.  Equation (2.10) will be also fulfilled 
when one cannot ignore the multiple scattering, if the 
coefficient Kχ (correspondingly modified) remains 
small. 

Equation (2.10) was tested for the case of multiple 
scattering in Ref. 7, where the experimental data were 
compared with the results of Monte Carlo simulation.  
It was pointed out that the deviations from Eq. (2.10) 
remain small even for very large distances R 
(R ~ 3/σ). 

Then it is easy to obtain the absorption coefficient 
χ.  Writing Eq. (2.10) for two different baselines R1 
and R2, we obtain 
 

i ≈ ln 

⎝
⎜
⎛

⎠
⎟
⎞

 

N
⋅

t(R1) R2
1

N
⋅
t(R2) R2

2

  / (R2 $ R1). (2.11) 
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FIG. 1. Absorption coefficient (Lake Baykal, depth 
H = 1100 m, August of 1993), data of in situ 
experiment. 

 
The results of calculation of the absorption 

coefficient from the data of measurement of the integral 
brightness field at different wavelengths are shown in 
Fig. 1.  It is seen from Fig. 1 that there is a 
characteristic transmittance window with the maximum 
transmittance at the wavelength λ ≈ 490 nm, where the 
absorption length 1/i reaches 18$20 m. 

 
3. SCATTERING PHASE FUNCTION 

 
According to Eq. (1.3), the number of photons of 

the scattered light coming to a collimated detector 
tilted at the angle α to the source$detector axis is 
described by the following expression: 
 

N
⋅

s(α) = I0 
SD

R2 (σR) ⌡⌠
ΩD

 

 

dΩ
sin(α) × 

× ⌡⌠
0

π$α
 

 
χ(α + β) F(β) e$εR(α,β) dβ. (3.1) 

 
For the angles α such that sinα >> Δα (2Δα is the 

aperture angle of the detector), we can consider the 
simple estimate of the first integral in Eq. (3.1) 
assuming the integrand function to be constant on the 
small interval ΩD (ΩD/4π << 1).  Introducing the 
coefficients, independent of the scattering angles, into 

the constant factor q = I0(SD/R2)(σR)ΩD, we obtain: 
 

N
⋅

s(α) = 
C

sin(α) ⌡⌠
0

π$α
 

 
χ(α + β) F(β) e$εR(α,β) dβ. (3.2) 

 

One can consider Eq. (3.2) as an equation for the 
unknown function χ.  It is difficult to determine the 
constant C directly from the experiment; however, it is 
not incorporated into the resultant solution due to the 

normalization condition for scattering phase function 
(1.5). 

To solve Eq. (3.2), we used the method described 
in our previous paper.5  The comparison of the results 
of calculation of the scattering phase function from the 
brightness field by Eq.(3.2) with the results of 
measuring χ(α) by the standard technique was also 
made there.  In particular, it was obtained that the 
differences between the scattering phase function 
reconstructed from the brightness field and the 
measured one did not exceed the errors of the 
experiment. 

The stability of the method, the influence of the 
measurement errors on the accuracy of reconstruction of 
the scattering phase function, as well as the problems 
related to ill-posed integral equation (3.2) were also 
discussed in Ref. 5 in detail. 

The scattering phase function of water of Lake 
Baykal is shown in Fig. 2.  It is seen that the 
scattering at the small angles is prevalent due to the 
strong elongation of the scattering phase function.  
The full range of variations of χ(α) at scattering 
angles shown in the figure is approximately five 
orders of magnitude.  The characteristic angles, at 
which the scattering phase function becomes more 
gently sloping, are α ~ 15$20°. 

 

 
 

FIG. 2.  Scattering phase function (Lake Baykal, 
depth H = 1000 m, wavelength λ = 497 nm, March of 
1988), data of in situ experiment. 

 
Let us obtain now the numerical estimate of the 

parameter Kχ from Eq. (2.6). 
By definition, 

 

Kχ = 

⌡⌠
0

π
 

 
χ(α) (α $ sin(α)) dα

⌡⌠
0

π
 

 
χ(α) sin(α) dα

 (3.3) 
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(we have obviously taken into account the 
normalization condition for scattering phase function 
(1.5) in this formula).  To calculate Kχ by Eq. (3.3), it 
is necessary to know the scattering phase function for 
the entire angular range.  However, usually the 
experimental data allow one to determining the 
scattering phase function only beginning with a certain 
minimum angle α0 > 0 (for example, α0 = 2° for 
Fig. 2).  Let us show how we can construct the 
estimate of Kχ in this case. 

Let us divide the interval of integration in the 
nominator of Eq. (3.3) into two subintervals: from 0 to 
α0 and from α0 to π.  Then we obtain 
 

Kχ = K1 + K2. (3.4) 
 

For K1 we derive 
 

K1 = 

⌡⌠
0

α0
 

 
χ(α) (α $ sin(α)) dα

 ⌡⌠
0

π
 

 
χ(α) sin(α) dα

 = 

= 

⌡⌠
0

α0
 

 
χ(α) ⎝

⎛
⎠
⎞α $ sin(α)

sin(α)  sin(α) dα

 ⌡⌠
0

π

 
 

 
χ(α) sin(α) dα

 ≤ 

≤ max
α∈(0,α0)

 ⎝
⎛

⎠
⎞α $ sin(α)

sin(α)  

⌡⌠
0

α0
 

 
χ(α) sin(α) dα

 ⌡⌠
0

π
 

 
χ(α) sin(α) dα

 ≤ 

≤ 
α0 $ sin(α0)

sin(α0)
 . (3.5) 

 

Then we have for K2 
 

K2 = 

⌡⌠
α0

π
 

 
χ(α)(α $ sin(α)) dα

⌡⌠
0

π
 

 
χ(α) sin(α) dα

 = 

= 

⌡⌠
α0

π
 

 
χ(α) (α $ sin(α))dα

⌡⌠
0

α0
 

 
χ(α) sin(α) dα + ⌡⌠

α0

π
 

 
χ(α) sin(α) dα

 ≤ 

≤ 

⌡⌠
α0

π
 

 
χ(α)

 
(α $ sin(α)) dα

 ⌡⌠
α0

π
 

 
χ(α) sin(α) dα

 . (3.6) 

 

 
When calculating by Eq. (3.6), we can ignore the 

contribution at very large angles.  It is seen from Fig. 2 
that this range cannot significantly affect the result of 
calculation. 

 
TABLE I. 

 

Kχ, see Eq. (2.6) 〈α〉 〈α2〉1/2 〈α3〉1/3 〈cos α〉

≤ 0.015 ≤ 8° ≤ 16° ≤ 24° ≥ 0.96
 
Using Eqs. (3.4)$(3.6) and the data on the 

scattering phase function (Fig. 2), we obtain the 
upper estimate of the coefficient Kχ considered in the 
previous section.  In such a way, we can obtain the 
estimates of different parameters, for example, of the 
average scattering angles.  The results of such 
calculations are given in Table I. 

 
4. SCATTERING AND EXTINCTION 

COEFFICIENTS 
 

Simple technique for determining the extinction 
coefficient ε can be obtained from Eq. (1.1) at α = 0.  
However, to separate the contribution of only 
directly transmitted light, one should apply the 
narrow-aperture collimator, that makes the 
adjustment of the device when finding the direction 
α = 0 much more difficult. Furthermore, even small 
errors in determining the direction toward the source 
in this case can result in noticeable errors in 
measuring the parameter ε.  The problem becomes 
dramatically difficult for the device operating in situ, 
when automated adjustment is needed.  The use of a 
wide collimator leads to signal averaging over the 
collimator width and we have the situation already 
considered in Section 2. 

We can avoid these difficulties with the use of 

signal N
⋅

s(α) of the scattered light alone for 
reconstructing ε.  For strongly forward-peaked 
scattering phase function and two different baselines R1 
and R2, we obtain 
 

N
⋅

s(α;
 
R1) R1

N
⋅
s(α; R2) R2

 = 

⌡⌠
0

π$α
 

 
χ(α + β) F(β) e$εR1(α,β) dβ

⌡⌠
0

π$α
 

 
χ(α + β) F(β) e$εR2(α,β) dβ

 ≈ 
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≈ 

e$εR1(α,0) ⌡⌠
0

π$α
 

 
χ(α + β) F(β) dβ

e$εR2(α,0) ⌡⌠
0

π$α
 

 
χ(α + β) F(β) dβ

 = 

 

= e ε(R2(α,0)$R1(α,0)) = e ε(R2$R1) (4.1) 
 

(we have taken into account that, according to 
Eq. (1.4), R(α, 0) = R). 

It follows from Eq. (4.1) that the extinction 
coefficient can be estimated as 
 

ε∼(α) = ln 
⎝
⎜
⎛

⎠
⎟
⎞

 
N
⋅
s(α, R1) R1

N
⋅
s(α; R2) R2

  /(R2 $ R1), (4.2) 

 

where, as follows from the derivation, 

ε∼(α = +0) = ε, (4.3) 
 

ε∼(α) ≈ ε (4.4) 
 

for α > 0, if the scattering at small angles is prevalent. 
To examine the accuracy of Eq. (4.4) for different 

angles α, let us do as follows.  Let us select a certain 
initial value of the extinction coefficient and calculate 

N
⋅

s(α, R) for two different baselines R1 and R2 by 
Eq. (1.3) using the data on the scattering phase 
function from Section 3.  The specific value of the 
extinction coefficient has a little significance here, 
because it is seen from Eqs. (1.3) and (1.4) that ε is 
included only in combination with the factor R, where 
R is the baseline of the device, i.e., the parameter that 
can be selected by our choice.  Then let us calculate the 

parameter ~ε(α) by Eq. (4.2) and compare it with the 
initial parameter ε. 

The results of calculation for ε = 0.1 m$1, 
R1 = 1.5 m, and R2 = 3 m are shown in Fig. 3.  As 
seen, there is a plateau (framed) at angles varying from 

0 to 10$12°, where ~ε(α) is practically no different from 
ε.  It is also seen that the difference between the 
estimate of the extinction coefficient by Eq. (4.2) and 
the true extinction coefficient does not exceed 10% at 
large angles α ~ 10$30°. 

 

 
 

FIG. 3.  Comparison of ε with its estimate ~ε(α) by 
Eq. (4.2).  The following values of the input 
parameters were taken for calculation: ε = 0.1 m$1, 
R1 = 1.5 m, and R2 = 3 m. 

 
FIG. 4.  Scattering coefficient (Lake Baykal, depth 
H = 1100 m, October$November of 1993), data of 
in situ experiment. 

 
We have calculated the extinction coefficient ε at 

several wavelengths λ from the data on the brightness 
field at α = 4° for different baselines, using Eq. (4.2).  
Using the results obtained in Section 2, we can obtain 
the scattering coefficient σλ.  The results of calculations 
are shown in Fig. 4.  It is seen that the scattering 
length 1/σ is approximately 15 m for the maximum 
transmission. 

 
5. CONCLUSION 

 
In this paper, we have considered the approach 

that has allowed us to determine the primary 
hydrooptical characteristics in a unified way, from the 
light field produced by a point source of radiation. 

The following characteristics were obtained using 
Eq. (1.1) and the data on the spatial-angular 
distribution of brightness in the single scattering 
approximation when the scattering at small angles was 
prevalent: the absorption coefficient i (Fig. 1), 
scattering phase function χ(α) (Fig. 2), and the 
scattering coefficient σ (Fig. 4).  To solve Eq. (1.1) for 
three unknown parameters i, χ, and σ, it was written 
in the form of the system of equations for two different 
baselines R1 and R2.  Normalization condition (1.5) 
was used as the third equation. 

Determination of each parameter was accompanied 
with discussion of the employed assumptions and 
accuracy of the calculation technique. 

This method for determining the primary 
hydrooptical characteristics is used for the study of the 
conditions of deep-water recording of elementary 
particles in Lake Baykal. 
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