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We present here a study of propagation of a plane vertically directed laser 
beam through a gravitationally convective flow of an absorbing medium. The 
optical beam is considered in the paraxial approximation of the wave theory. The 
gravitational convection of the medium is treated based on Boussinesq equation. 
The comparison between regimes of the strong (developed) convection and 
moderate (viscous) one is made. The profiles of intensity, velocity and temperature 
are demonstrated for bottom, middle and top sections of the absorbing medium 
volume under study. The effect of diffraction and thermal blooming on the laser 
beam propagating under transient moderate (viscous) free convection regime is 
investigated. 

 
Natural gravitational convection in h o r i z o n t a l  

laser beams was examined theoretically (see Refs. 1$3) 
and experimentally (see Refs. 4$9). There are some 
experimental studies of free convection in v e r t i c a l  
beams in gases (see Refs.10, 11) and liquids (see 
Refs. 12$14). Approximate analytical solutions were 
considered in Ref. 15. Numerical solution for steady-
state convection in vertical column of radiation was 
obtained in Ref. 16, whereas those with the 
consideration of thermal blooming in the geometric 
optics approximation can be found in Ref. 17. In this 
paper, we study nonstationary thermal blooming of 
vertical laser beam propagating through an absorbing 
medium under gravitational convection conditions based 
on the wave optics. 

Small-scale perturbations of medium parameters 
resulting from absorption of radiation are considered.  
In this case the following Navier$Stokes equation in 
Boussinesq approximation are valid: 
 
divV = 0; (1a) 
 
d
dt V + 

1
ρ ∇p = gβ(T $ T0) + νΔV; 

d
dt = 

∂
∂t + (V, ∇);  ∇ = i 

∂
∂x + j 

∂
∂y + k

∂
∂z ; (1b) 

 
d
dt T = 

αI
ρ0Cp

 + χΔT;  Δ = 
∂2

∂x2 + 
∂2

∂y2 + 
∂2

∂z2 . (1c) 

 
Here t is time; V, ρ, p, and T are the velocity, density, 
pressure and temperature of the medium, respectively; ν 
is the coefficient of kinematic viscosity, g is strength of 
gravitational field (g is the acceleration due to 
gravity); χ is the thermal diffusivity; α is the 
absorption coefficient of the medium for radiation with 

the intensity I; Cp  is the specific heat capacity of the 
medium at constant pressure; β is the coefficient of 
thermal expansion (for gases β = 1/T), T0 is the initial 
temperature of the medium.  

Let us now normalize the transverse coordinate, x, 
to the initial beam radius r0, the vertical coordinate y 
to the path length L, and the velocity components v 
and u to the values VL and U = VL(r0/L) (to be 
defined below).  Besides, let us use time t normalized 
to the characteristic time of the gravitational 
convection development, τ = VL/L = U/r0.  Let also 
the temperature and pressure be normalized to T0 and 
p0, and the radiation intensity be normalized to the 

characteristic value I0 = W0/πr20, where W0 is the 
total initial power of the beam.  With these 
designations, Eqs.(1) take the following form: 
 
divV = 0;  T = 1 + QT1 + ...; 
 

p/p0 = 1 + (ρ0gL/p0)[(y0 $ y) + Qp2 + ...]; (2a) 
 
d
dt V = 

Q
Fr (jT1 $ ∇p2) + 

1
Re Δ′V; 

 

Δ′ = 
∂2

∂x2 + 
r20
L2

∂2

∂y2 + 
∂2

∂z2 ; (2b) 

 
d
dt T1 = I + 

1
Pe Δ′T1  (2c) 

 

Here Re = Ur0/ν = r20VL/νL is Reynolds number; 

Pе = Ur0/χ = r20VL/χL = Pr Re is Pe ′clet number, 

Pr = ν/χ is Prandtl number, Fr = V2
L/gL is Froud 

number; Q = q0L/ρ0h0VL ≡ τ/τq is the scale of the 
medium temperature (density) perturbations; 
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τq = ρ0h0/q0 is the characteristic time of the medium 
temperature change being heated with a heat source of 
intensity q0 = αI0; h0 = q!Š0 is the enthalpy of 
unperturbed medium. From the equation of the 
transverse momentum conservation (1b) it follows that 
pressure perturbation function p2 in a narrow and 
extended beam (r0/L   <<  1) depends only on vertical 
coordinate y with an error n(r20/L2). If the side walls 
parallel to the beam are widely spaced, it is believed 
that p2 = 0. Therefore, we neglect p2 below. Notice that 
if we pass to current and vorticity functions, the 
pressure p can be in the general case canceled from 
Eq.(1b) since rot×grad p = 0. 

The wave equation describing laser beam 
propagation in the paraxial approximation (r0/L <   < 1) 
takes the form: 
 

$2iF 
∂f
∂y + Δ⊥f = $(iNαF + 2F2 NT1)f, (3) 

 

Here f is the complex amplitude of the electromagnetic 
field determining its intensity I = f*f; F = 2πr20/λL  
is the Fresnel number, λ is the radiation wavelength,  
Δ⊥ is the Laplacian with respect to transverse 
coordinates, i is the imaginary unit, Nα = αL is the 
radiation absorption parameter of the medium, 
N = (L/r20)Q($ ∂n/∂T T0)/n0 is the thermal 
blooming parameter, n0 is refraction index of 
unperturbed medium. Let us assume that the origin of 
coordinates is placed at the beam center and the volume 
of absorbing medium has a rectangular cross section of 
Lx×Ly size. Furthermore, it is assumed that along the 
direction of the coordinate axes normal to x and y axes 
the vessel is long enough for radiation distribution and 
medium flow to be considered plane. The initial 
radiation distribution at the entrance of the absorbing 
medium at 3 = 30 = $L/2 (propagation occurs from 
bottom to top) is given by Gaussian form: 
f3 = 3

0
 = exp($x2) for t ≥ 0. Condition of the field 

decay at a long transverse distance is assumed to be of 
the form f. → K∞ → 0.  

The velocity VL can be defined by two methods. 
By equalizing the Archimedes force in the right-hand 
side of Eq.(2b) to the inertial terms in its left-hand 
side (Q/Fr = 1) one can obtain regime of  s t r o n g   or 
d e v e l o p e d  convection described by the following 
expressions: 
 

VL = ⎝
⎛

⎠
⎞q0gβT0L2

ρ0 h0

1/3

; Q = ⎝
⎛

⎠
⎞q0

ρ0 h0

1/3

⎝
⎛

⎠
⎞L

gβ T0

1/3

; 

 

τ = ⎝
⎛

⎠
⎞ρ0 h0 L

q0 gβ T0

1/3

. (4) 

 
The d e v e l o p e d  convection occurs at Re ≥ 1 

and it is described by the equation of discontinuity (2a) 
along with the set of two transfer equations, (2b) and 
(2c), with (Re, Pe ∼ 1) or without (Rе, Pe   >>  1) the 

allowance for  viscosity and heat conductivity. In this 
regime there are two similarity parameters in addition 
to the elongation one, r0/L, namely, Reynolds number 

Re = (Gr)1/2(r0/L)2 (here Gr = gβT0QL3/ν2  is 

Grashof number) and Prandtl number Pr = ν/χ (or Pe ′
clet number Pe = Pr Re). 

At low Reynolds number Re <   < 1, the last term in 
the right-hand side of Eq.(2b) describing friction stress 
counterbalances Archimedes force, whereas the inertial 
terms can be ignored. Taking Archimedes force equal to 
the friction stress, QRe =Fr, one can obtain the 
following characteristic quantities for the m o d e r a t e  
v i s c o u s   convection regime: 
 

VL= ⎝
⎛

⎠
⎞q0gβT0 Lr20

ρ0 h0 ν

1/2

; Q = 
⎝
⎛

⎠
⎞q0 νL

r2
0
ρ0 h0 gβ T0

1/2

; 

 

τ = 
L
VL

 = 
⎝
⎛

⎠
⎞ρ0 h0 Lν

q0 gβ T0 r20

1/2

. (5) 

 
Let us now consider the m o d e r a t e  v i s c o u s  

convection regime in liquids with high Prandtl number 

Pr   >>  1, such that Pe ′clet number Pe = RePr / 1. This 
situation was investigated experimentally for PES-1, 
PES-4, PMS-20 and PMS-1000 organosilicon liquids in 
Ref.12-14. Some numerical solutions for steady process 
are given in Ref.17. According to energy conservation 
equation (2c) the process characteristic time is τ, which 
is described by Eq.(5). Equation (2b) states that at any 
time t ∼ τ the convection velocity is achieved  in a 

shorter, œviscous,B time τν = r
2
0/ν   <<  τ.  Finally, we 

have the following set of equations instead of Eqs.(2): 
 
div V = 0; (6a) 
 
Δ′v = $T1 ; (6b) 
 
d
dt T1 = I + 

1
Pe Δ′ T1. (6c) 

 

Parameter r0/L and Pe ′clet number 

Pe = Ur0/χ = gβT0Qr
4
0/νχL ≡ Ra(r0/L)4, where 

Ra = gβT0QL3/νχ is Reyleigh number (see Ref.18), are 
the similarity parameters of the problem. It can be 
shown that different Reynolds numbers, resulting from 
different characteristic velocities by Eqs.(4) and (5) for 
strong and moderate convection, are expressed through 
the same parameter, namely, heat complex A, used in 
Refs. 5 and 15: 
 

Reinvisc = A1/3;   Revisc = A1/2;   A = 
q0 gβT0 r

6
0

ρ0 h0 Lν3  . (7) 

 
Parameter A includes parameters that describe the 

beam and the medium. Condition ` ≥ 1 defines the 
regime of  s t r o n g   convection with low, moderate 
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and high heat conductivity in accordance with Prandtl 
number (or the substance of propagation medium), 
whereas condition ` <   < 1 defines that for a 
m o d e r a t e  ( v i s c o u s )  convection. 

Let us now use the functions of current, ψ, and 
vorticity, ω; 
 

u = 
∂ψ
∂y ;   v = 

∂ψ
∂x ; 

 

Ω = rotV = (0, 0, ω);   ω = ⎝
⎛

⎠
⎞∂v

∂x $ 
∂u
∂y  . (8) 

 
The discontinuity equation turns into identity, 

whereas the relations of vorticity with the velocity 
components (8) give rise to Poisson equation for the 
current function ψ. The following set of equations for 
dimensionless functions ψ, ω, and T1 can be derived 
from Eqs.(6) for the regime of moderate convection 
 
Δ′ψ = $ω; (9a) 
 

Δ′ω = $ x T1; (9b) 

 

d
dt T1 = I + 

1
Pe Δ′ T1. (9c) 

 
The set of equations for the regime of developed 

convection is similar to that presented in Ref.9. As to 
the horizontal laser beam (see Ref.9), evolution 
equation (9c) was solved by application of finite-
differences McCormack scheme  of the second order of 
approximation (see Ref.19). Poisson equations (9a) and 
(9b) along with paraxial ray equation (3) were solved 
using the expansion into Fourier series of the functions 
sought (see Refs. 20 and 21). In that case, terms with 
no less than second order were considered in the 
approximation. As to the velocities at the boundaries of 
a calculational region, we imposed here the conditions 
of sticking and leakage proof. The temperature at these 
boundaries was set to be of the initial value: 
 
(u, v, T1)|x = m Lx/2; y = m Ly/2 = 0. (10) 
 

In our calculations, parameter L = r0 was 
considered as a characteristic vertical size for 
normalizing. In this case, Laplacian in Poisson 

equations takes the common form: Δ = 2/ .2 + 

+ 2/ 32. Besides, the inverse dimensionless path 
length (vessel height) 1/Ly becomes the 
nonproportionality (lengthening) parameter r0/L. 

Another one similarity parameter, the Pe ′clet number, 
characteristic time, velocity, and the scale of 
temperature rise become equal to: 
 

Pe′= Pe(r0/L)1/2,  τ′= τ(r0/L)1/2, 

 

V ′
L
 = VL(r0/L)1/2,  Q′= Q(r0/L)1/2. 

 
Similarity parameters in paraxial ray equation (3) 

are transformed as follows: 
 
F′= F(L/r0);   N ′α = Nα(r0/L);   N′= N(r0/L)5/2. 

 
Similarly, the following parameters can be 

obtained in the regime of developed convection with r0 
in place of the path length L: 

 

Pe′= Pe(r0/L)1/3;  Q′= Q(r0/L)1/3; 
 

V ′
L
 = VL(r0/L)2/3; 

 

U′= UL(r0/L)5/3,   τ′= τ(r0/L)1/3; F′= F(L/r0); 
 

N ′α = Nα(r0/L);   N′= N(r0/L)7/3. 

 
The calculational results are presented in  

Figs. 1$4.  Plots depicted in Figs. 1(a and b) allow 
high convection regime (Re / 1) to be related to the 
moderate one (Re   <<  1) at the following similarity 
parameters: condition of thermal blooming N = 3, 19 
and diffraction F = 1.04 of a beam.  Both velocity 
components, u and v, are considerably higher for the 
developed convection regime (Fig. 1,a) as compared to 
those for the viscous one (Fig. 1,b). The velocity 
profile v(x) is close in shape to the intensity 
distribution for the developed convection regime and 
becomes diffuse due to viscosity under moderate 
convection. Agitation in the convection regime gives a 
more smooth temperature profile and substantially 
reduces thermal blooming of the beam by the moment 
of quasi-established process, t/τ′ = 20, as compared to 
those in the transient flow at t/τ′ = 4 and 12.  As 
illustrated by Fig. 2, an increase in the velocity and 
medium temperature at the initial time is evident in 
both regimes to be compared. 

By the instant t/τ′ = 4, local perturbation peak is 
achieved in the middle and in the major part of the 
absorbing medium volume considered except for small 
regions in its lower and/or upper parts. Rate and 
amplitude of changes in velocity, medium density 
(temperature), beam intensity  and beam average radius 
later significantly decrease, that is, slow quasi-
establishment of the medium and beam parameters 
occurs. But at the given boundary conditions, in a 
limited, while reasonably large, volume 
Lx×L3 = 9.6×9.6 no complete establishment is achieved 
over extended periods t/τ′ = 20÷40. 

The trends to slow temperature decrease under 
moderate (viscous) convection regime and velocity 
increase in a strong (developed) one  are seen in Fig. 2. 
Both trends keep on in time. Quasi-establishment of the 
velocity and temperature with  
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deviations about several per cent of their average values 
are evident for moderate and developed convection 
regimes, respectively. For these regimes, temperature 
(density) perturbations at the symmetry axis x = 0 and 
at the initial time are peaking in the bottom part of the 
vessel. The peak of temperature perturbations in those 
regimes moves above one-half of  
 

the height of the vessel by t/τ′ = 4, and reaches its 
upper boundary by t/τ′ ≥ 8 and then keeps maximum 
value under the regimes of strong and moderate 
convection (see Fig. 3). Similar variations of 
temperature profile with height are also evident in the 
case of thermally isolated upper boundary 
(∂T/∂y)⏐y=Ly/2= 0) of the vessel. 

 
 a  b 
 

FIG. 1. Distribution of dimensionless temperature perturbations (curve 1) and velocity components 
v = vph/VL

′ (curve 2), u = uph/UL
′ (curve 3) over transverse coordinate x at t/τ′ = 20 for strong (a) and 

moderate (b) convection at the bottom (height H = y – y0 = 0.6r0; the lower row of plots), at the center 
(H = L/2; y = 0; the second row) and at the top of the vessel under consideration (H = L – 0.9r0; 
y = L/2 – 3Δy; the third row). Dimensionless beam intensity I(x) at the end of the path (H = L; y = Ly/2) 
at: t/τ′ = 0 (curve 4), 4 (curve 5), 12 (curve 6), 20 (curve 7) is plotted in the upper row. The following 
similarity parameters were used: r0/L = 0.104; Pe = 15, F = 1.04; N = 3.19; Nα = 0.0104; along with 
a) Reynolds number Re' = 20.8 (Pr = 0.72) and b) Re   <<  1. The calculational domain size and the number of 
grid nodes used are Lx = Ly = 9.6, Nx = 64; Ny = 32. 
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Dynamics in the development of the convection 
velocities is qualitatively different in these two regimes. 
Under moderate convection, velocity peak is at the 
point lower than half height of the vessel at the initial 
time moment, and shifts higher (y > 0) by t/τ′ = 4 
and then keeps its position near the height H > L/2 
(see Fig. 3). Under developed convection, the peak of 
v(y) is initially close to the bottom of the vessel, shifts 
to higher than one-half height (depending on 
parameters of the problem and, in particular, on the 
size of the vessel) later at t/τ′ > 4 and falls below 
middle the level 3 = 0 at t/τ′ ≥ 12. 

 
FIG. 2. Convection velocity v (curves 2), 
temperature T1 (curves 1, 2, 3), intensity I(x = 0) 
(curves 4) and average beam radius rave (curve 5) at 
the end of the path versus time for moderate 
convection (solid lines) and strong convection 
(dashed lines) regimes at the height of H = 0.6r0 (1), 
H = L/2 (2), H = L – 0.9r0 (3), H = L (4, 5). 
Similarity parameters and parameters of calculation 
grid are identical to those in Fig. 1. 
 

As indicated in Fig. 3 (dot-and-dash lines), 
increase in relative height of the vessel L/r0 results in 
an increase of convection velocity in strong and 
moderate convection regimes and a comparative 
decrease of temperature perturbations under strong 
convection regime. Besides, the temperature is 
practically constant under moderate (viscous) 
convection regime. Distributions of the velocity (v(y)) 
and temperature (Š1(y)) with height weakly depend on 
an increase in L/r0, other parameters being the same. 
Doubling of the vessel height results in the changes in 
the average beam radius, expressed as:  

 

rave/r0 = ⌡⌠
$∞

∞
 
 x

2I(x, y, t)dx/W  

(here W =⌡⌠
$∞

∞
 
 I(x, y, t)dx is a dimensionless function of 

full power), by 0.5% and 5.9% under strong convection 
regime (see Fig. 1,a) and 9.5% and 7.8% under 
moderate convection (see Fig. 1,b) at t/τ′ = 4 and 
t/τ′ = 20, respectively. 

 
FIG. 3. Distribution of the velocity v(õ = 0) and 
temperature T1 (õ = 0) with height in the case of 
strong (curves 1) and moderate (curves 2) 
convection at t/τ′ = 20. The following similarity 
parameters were used: Pe' = 15, N = 3.19, 
Nα = 0.0104, F = 1.04 (solid lines), r0/L = 0.052 
(dot-and-dash lines). The following calculation grid 
was used: Lx = 9.6 (Nx = 64, Δõ = 0.15), Ly = 9.6 
(Ny = 32, Δó = 0.3 – solid lines) and 19.2 
(Ny = 32, Δó = 0.6 – dot-and-dash lines). 

 
Results of investigation of the beam perturbations 

under conditions of thermal blooming ranging from 
weak to strong (N = 0$3.19) for Fresnel number 
varying in the range of F = 1 ÷ 7 are presented in 
Figs. 4 a,b. The intensity of a plane Gaussian beam on 
the axis x = 0 changes in vacuum along the path z ≡ H 
according to the following expression: 

I/I0 = 1/ 1 + (z/LF)2. When F ≈ 1, a decrease of 
the intensity by about 30% in vacuum and by more 
than 60% under moderate convection regime at self-
refraction in free-convective flow is observed (see 
Fig. 1,b). If Fresnel number is in the range from 2 to 7 
(see Fig. 4,a), a circular distribution of the intensity 
with a deep fall at its center instead of a bell-shaped 
distribution is observed as a result of thermal blooming. 
Circular peak of the intensity with the radius slightly 
exceeding the exponential one is observed at F > 3. 
The maximum difference between the intensity at the 
center of the fall and that on the circle is observed at 
t/τ′ = 4. If F > 5, intensity at the center, average 
beam radius and average intensity, 

Iave(3, t)/I0 = Wr0/rave π, do not change. When 
F = 1, the fall is slightly seen even at maximum 
perturbations of the medium and the beam (t/τ′ ≅ 4) 
and at F < 1 it disappears at all. 
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Changes in the thermal blooming parameter N 
under conditions of diffraction blooming in the case of 
F ≈ 1 normally provides extra blooming of the beam. 
As illustrated in Fig. 4, varying of N at a considerably 
high Fresnel number F = 5÷7 affects not only the 
intensity distribution shape, but the average parameters 
as well. 

 
a 

 
b 

 

FIG. 4. Intensity at the center of the beam I(x = 0) 
(curve 1), peak intensity Imax (curve 2) and average 
radius of the beam rave (curve 3) at the end of the 
path H = L at t/τ′ = 4 (solid lines) and t/τ′ = 20 
(dot-and-dash lines) versus Fresnel number at 
N = 3.19 (a) and thermal blooming parameter N at 
F = 7 (b). Calculation grid parameters were as 
follows: Nx = 64, Ny = 32, Δõ = 0.15, Δó = 0.3, 
Lx = Ly = 9.6; Nα = 0, Pe' = 15, r0/L = 0.104. 
 

Once N is as low as 0.25, a noticeable fall appears 
at the center of intensity distribution about several per 
cent develops and reaches more than 70% at N = 3.19. 
Note that average radius increases linearly with N in 
the range of N under study. Besides, in the case of the 
initially collimated beam (in the present paper) and 
low absorbing parameter (Nα ≅ 0), the parameter N is 
identical to the thermal blooming factor b2(z) (see 
 

Refs. 22, 23), which normally describes multifrequency 
beams of a variable radius. The data presented in 
Ref.24 demonstrate average radius of a horizontal beam 
to be linear with the factor B2(z) and, in particular, 
with the parameter N under conditions of gravitational 
convection. In this paper, similar linear dependence of 
rave(N) in vertical laser beam is shown.  

Thus, the following conclusions can be drawn from 
the above: 

1. Free convection regime in a vertical laser beam 
is determined by the magnitude of the heat complex 

A = α0 I0 gβ T0 r
6
0/(ρ0 h0 ν3 L). D e v e l o p e d  s t r o n g  

convection regime is realized at ` / 1 (Re =`1/3), 
whereas m o d e r a t e  ( v i s c o u s )  convection regime 

is achieved at A   <<  1 (Re = `1/2). 
2. The elongation parameter r0/L along with 

a) Reynolds number Re = (Gr)1/2(r0/L)2 and Prandtl 

number under strong convection regime and b) Pe ′clet 
number proportional to Rayleigh number 

pе ≡ Ra(r0/L)4 = gβT0Qr
4
0/νχL under moderate 

convection regime are similarity parameters. 
3. The height profiles of hydrodynamic quantities 

and the average beam radius at the end of the path 
weakly vary as the relative height L3 = L/r0 increases 
in the range from 9.6 to 19.2, other similarity 
parameters being the same. 

4. Thermal blooming of the beam provides its 
initial bell-shaped intensity distribution to be 
transformed into that with the fall at the center. 
Moreover, the fall becomes deeper as Fresnel number 
and the thermal blooming parameter increase. 

5. The average radius of the vertical laser beam 
under moderate (viscous) convection regime increases 
linearly with the thermal blooming parameter N. 
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