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Mathematical simulation is used to study the horizontal fluxes of solar 
radiation in stratocumulus clouds. Fractal cloud model with 1$D lognormal 
distribution and power-law spectrum is used, which correctly accounts for the 
distribution of liquid water in such clouds. It is shown that the radiative 
horizontal transfer, being zero in the plane-parallel model, is comparable (in the 
order of magnitude) with the other terms in the radiative energy balance equation. 
The horizontal transfer is responsible for non-unique dependence between the 
optical depth and the radiative properties of sampling volume (pixel). Slope β of 
the energy spectrum (or fractal dimension) of optical depth is one of the 
fundamental parameters governing the horizontal radiative transfer: as β increases, 
the horizontal transfer decreases. The 1$D distribution of horizontal transfer is 
well fitted by the Gaussian distribution with zero mean. 

 
1. INTRODUCTION 

 
Optical parameters of real clouds may have large 

horizontal gradients, so that a parallel solar flux 
incident on the top of the atmosphere is nonuniformly 
distributed in horizontal direction. This means that, 
within real clouds, simultaneously with upwelling 
and downwelling fluxes there may exist nonzero net 
horizontal flux coming out through sides of a 
sampling volume. Presently we know very little about 
this flux, poorly understanding its role in 
determining radiative transfer and its effect upon the 
accuracy of interpreting field data. 

Calculations of horizontal fluxes in clouds of 
finite extents, located regularly (nonrandomly) in 
space, are presented in Refs. 1 and 2. A model of fair 
weather cumulus clouds, generated by Poisson point 
fluxes in space,3 was used to study two-dimensional 
fields of albedo R, transmittance T, and their sum 
R + T. This model approximately accounts for the 
statistical nature of the effects caused by the cloud 
finite extents and approximates the clouds by 
inverted truncated paraboloids of rotation with 
exponential size distribution function. The net 
horizontal radiative flux, scaled to the incoming flux 
of visible solar radiation, is equal to 1 $ R $ Š. In 
absolute values this flux may be ~1 or greater, so it 
can play significant role in the interaction of 
radiation with clouds.  

In the models used in Refs. 1$3 it is assumed that 
optical parameters are constant within the clouds, so 
that any nonzero net horizontal flux is caused only by 
geometrical effects: the presence of gaps, shadowing, 

escape of radiation through cloud sides, and multiple 
scattering between individual clouds. These effects are 
major physical factor determining the radiative 
properties of broken clouds whose horizontal extents 
are comparable to their depth. For such cloud systems, 
the variability of optical properties inside individual 
clouds can be neglected to the first approximation. 

Also naturally occurring are clouds much larger 
horizontally than vertically. In this case, the 
geometrical effects listed above will only be essential 
for radiative transfer in a small (as compared to 
horizontal extent) region located near cloud side. For 
such clouds, the horizontal variability of radiative field 
is governed, on the average, by fluctuations of optical 
properties caused by liquid water content fluctuations, 
as well as by variations of cloud top and base heights. 

In the present work, we study the influence of 
liquid water content fluctuations in stratocumulus 
clouds, completely covering the sky, on radiative 
horizontal flux. 

 

2. ENERGY BALANCE EQUATION IN 

INHOMOGENEOUS CLOUDS 
 

For integrity and clarity of presentation, we shall 
derive energy balance equations in inhomogeneous 
clouds, in which the radiative transfer is described by 
the three-dimensional equation 
 

ω∇I(r, ω) + σ(r)I(r, ω) = 
 

= ω0(r)σ(r)⌡⌠
4π

 
 
g(r, ω, ω′)I(r, ω′)dω′,  (1) 
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where I(r, ω) is the intensity at the point r in direction 
ω, σ(r) is the extinction coefficient, ω0(r) is the single 
scattering albedo, and g(r, ω, ω′) is the scattering 
phase function. Cloud and radiation characteristics are 
all wavelength dependent, which for convenience is not 
indicated here. With regard for the normalization 
condition on the scattering phase function, integration 
of Eq. (1) over full solid angle 4π leads to the energy 
conservation law of the form 
 
divF(r) = $Fa(r),  (2) 
 
where the vector of power flux density 

F(r) = (Fx, Fy, Fz) =⌡⌠
4π

 
 
ωI(r, ω) dω (W⋅m$2) is equal 

to the sum of the net flux densities over three 

orthogonal coordinates; Fa(r) = σ=(r)⌡⌠
4π

 
 
I(r, ω) dω is 

the total absorbed power per unit volume; σ=(r) is the 
absorption coefficient. Let us discuss the energy balance 
equation (2) in more detail. 

For simplicity, we will not consider the reflection 
from the underlying surface and scattering and 
absorption of solar radiation by aerosol and atmospheric 
gases. Let clouds occupy the layer h ≤ z ≤ H in the 
Cartesian coordinate system OXYZ. The parallel solar 
flux F0 (W m$2) is incident on the cloud top (plane 
z = H). We consider a spatial domain (pixel) bounded 
by the cloud upper and lower boundaries and the planes 
x = const, x + Δx = const, and y = const, 
y + Δy = const (Fig. 1). Let us integrate equation (2) 
over the pixel volume 
 

⌡⌠
x

x+Δx

 
 
  ⌡⌠

y

y+Δy

 
 
 ⌡⌠

h
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⎩
⎨
⎧

⎭
⎬
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= $ ⌡⌠
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y
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 ⌡⌠

h

H

 
 
Fa(x, y, z) dx dy dz.  (3) 

 

 
FIG. 1. Radiative fluxes coming out through the pixel 
top, base, and sides in the plane y = const. 
 

Using Gauss divergence theorem, we convert the 
volume integral in the left side of the above equation to 
the surface integral 
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⎨
⎧

⎭
⎬
⎫∂Fx

∂x  + 
 ∂Fy

∂y  + 
∂Fz

∂z  dx dy dz = 

= ⌡⌠

 S

 
 
⌡⌠ 

 
{Fxcos(n, x) + Fycos(n, y) + Fzcos(n, z)} dS, (4) 

 

where S is the closed surface bounding the pixel and n 
is the normal outward pointing vector. We introduce 
the following notations (Fig. 1):  

$ F↑(x, y, H) is the flux density of radiation 
reflected at the point (x, y, H); 

$ F↓(x, y, h) is the flux density of radiation 
transmitted at the point (x, y, h); 

$ Fe(x*, y, z) = F+(x*, y, z) $ F$(x*, y, z), x* = 

= x, x + Δx, is the net flux density of radiation passing 
through the pixel side (either plane x = const or 
x + Δx = const) at the point (x*, y, z);  

$ Fe(x, y*, z) = F+(x, y*, z) $ F$(x, y*, z), 

3* = 3, 3 + Δ3, is the net flux density of radiation 

passing through the pixel side (either plane 3 = const 
or 3 + Δ3 = const) at the point (x, y*, z).  

With regard for the notations and the above 
assumptions, the surface integral in Eq. (4) takes the 
form: 
 

⌡⌠

 S

 
 
⌡⌠ 

 
{Fxcos(n, x) + Fycos(n, y) + Fzcos(n, z)} dS = 

= ⌡⌠
y

y+Δy

  
 
  ⌡⌠

h

H

  
 
{Fe(x, y, z) + Fe(x + Δx, y, z)} dy dz + 

+ ⌡⌠
x

x+Δx

 
 
  ⌡⌠

h

H

 
 
{Fe(x, y, z) + Fe(x, y + Δy, z)} dx dz + 

+ ⌡⌠
x

x+Δx

 
 
  ⌡⌠

y

y+Δy

 
 
{F↑(x, y, H) $ F0} dx dy + 

+ ⌡⌠
x

x+Δx

 
 
  ⌡⌠

y

y+Δy

 
 
F↓(x, y, h) dx dy.  (5) 

 
As follows from Eqs. (3)$(5), the law of energy 

conservation in three-dimensional clouds can be written 
out as 
 

R(x, y) + T(x, y) + A(x, y) = 1 $ E(x, y).  (6) 
 

Here F0ΔxΔ3 has the meaning of the flux of solar 
radiation reaching the pixel;  



G.A. Titov Vol. 9,  No. 10 /October  1996/ Atmos. Oceanic Opt.  
 

 

827

R(x, y)= ⌡⌠
x

x+Δx

 
 
  ⌡⌠

y

y+Δy

 
 
F↑(x, y, H)dxdy/F0 Δx Δ3 is albedo; 

T(x, y) = ⌡⌠
x

x+Δx

 
 
 ⌡⌠

y

y+Δy

 
 
F↓(x, y, H) dx dy/F0 Δx Δ3 

 
is transmittance; 
 

A(x, y) = ⌡⌠
x

x+Δx

 
 
 ⌡⌠

y

y+Δy

 
 
 ⌡⌠

h

H

 
 
Fa(x, y, z) dx dy dz/F0 Δx Δ3  

 
is absorptance; and  
 

e (x, y) = ⌡⌠
y

y+Δy

 
 
  ⌡⌠

h

H

 
 
{Fe(x, y, z) + 

+ Fe(x + Δx, y, z) dy dz/F0 Δx Δ3 + 

+ ⌡⌠
x

x+Δx

 
 
  ⌡⌠

h

H

 
 
{Fe(x, y, z) + 

+  Fe(x, y + Δy, z)} dx dz/F0 Δx Δ3  
 
is the ratio of the net radiative flux, lost (e (x, y) > 0) 
or gained (e (x, y) < 0) through the pixel sides, to the 
incoming flux. For convenience, e (x, y) will be termed 
the horizontal transfer. According to Eq. (6), the 
amount of radiative energy reflected, transmitted, and 
absorbed by a pixel may be either greater or less than 
unity, depending on the sign of e (x, y). Dependence of 
this sign on the optical parameters of a given pixel and 
neighboring ones, as well as on the solar zenith angle, 
is discussed in Section 4. 

Radiative flux densities are limited functions, 
hence it follows from the definitions of albedo, 
transmittance, absorptance, and horizontal transfer that 
lim

Δx → ∞
Δy → ∞

R(x, y) = 〈R〉, lim
Δx → ∞
Δy → ∞

T(x, y) = 〈T〉, lim
Δx → ∞
Δy → ∞

A(x, y) = 〈A〉 

and lim
Δx → ∞
Δy → ∞

E(x, y) = 0. Here and below, 〈⋅〉 denotes an 

average over space. 
We let L denote the mean length of photon lateral 

migration in clouds. Major contributors to e (x, y) are 
the sections of a pixel located near pixel sides and having 
lengths on the order of L. As pixel extents grow, F0ΔxΔ3 
increases linearly in each of Δx and Δ3, whereas integrals 
used to define the horizontal transfer increase for 
Δx, Δ3 ≤ L and are almost unchanged when Δx, Δ3 > L. 
For this reason, at Δx, Δ3   >>  L the horizontal transfer 
e (x, y)   <<  1, and equation (6) can be written as 
 
R(x, y) + T(x, y) + A(x, y) = 1.  (7) 
 

Given Δx, Δ3 ∼ L, averaging Eq. (6) over such 
number NxN3 of pixels that Nx Δx   >>  L, Ny Δy   >>  L 

gives 〈e 〉 = 
1

NxNy
 ∑
k=1

Nx

 
 
 ∑
m=1

Ny

 
 
E(xk, ym) ≈ 0, so that 

equation of the type of Eq. (7) is again valid 
 
〈R〉 + 〈T〉 + 〈A〉 = 1.  (8) 
 

As seen, space averaging is equivalent to pixel 
stretching. This result stems from albedo, 
transmittance, absorptance, and radiative horizontal 
transfer definitions. In the presence of reflecting 
surface, the transmittance in Eqs. (6)$(8) must be 
replaced by the net transmitted flux scaled to the 
incoming solar radiation flux. 

The radiative transfer in inhomogeneous clouds is 
calculated using independent pixel approximation 
(IPA),4,5 whose accuracy is estimated in Ref. 6. The 
essence of this approximation is that the radiative 
properties of each pixel depend only on its own vertical 
optical thickness, and not on the optical thickness of 
neighboring pixels. In other words, in IPA we neglect 
the horizontal radiative transfer, i.e., for any pixel we 
assume e (x, y) ≡ 0 and always use energy balance 
equation (7). In Ref. 7 we show that the neglect of 
horizontal transfer leads to uncontrollable errors when 
determining cloud absorption from field data. 
 

3. CLOUD MODEL AND METHOD  

OF SOLUTION 

 
Two-parameterical fractal models generated by 

multiplicative cascade processes provide realistic 
simulation of the observed distribution of liquid water 
in marine stratocumulus clouds Sc.4$6,8 Analysis of 
FIRE data for Sc over California has shown that the 
field of optical depth has one-point lognormal 
distribution and power-law energy spectrum f(k) ∼ k$β 
with exponent β = 5/3 corresponding to the 
Kolmogorov$Obukhov law. 

Instead of cascade processes, for constructing 
numerical realizations of the distribution of optical 
depth we used spectral methods of simulating random 
processes (fields) with one-dimensional lognormal 
distribution and power-law.9 The spectral model of 
optical depth field has the following advantages over 
the cascade one. 

$ Input parameters in spectral model have more 

customary statistical meaning: mean 〈τ〉, variance Dτ, 
and the exponent of the power-law energy spectrum β.  

$ In cascade model the peacewise constant cloud 
field is constructed in a fixed, horizontally finite 
volume, whereas algorithms based on spectral methods 
determine continuous cloud fields in a horizontally 
infinite volume. 
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$ Spectral methods allow simulation of random 
fields with an arbitrary exponent β of the power-law 
energy spectrum, whereas with the use of cascade 
processes one can construct realizations of the random 
fields with β ≤ 2.  

For less expensive computation of cloud radiative 
properties, we use one-dimensional model of optical 
depth that depends on the horizontal coordinate x 
alone. In other words, the optical depth is modeled as a 
random process with one-dimensional lognormal 
distribution and power-law spectrum. A continuous 
realization of this process is divided into Nx = 2nx 
pixels of the same horizontal extent Δ.  = 0.05 km. For 
each pixel an optical depth τi, i = 1, ..., Nx, is assigned 
as a value of the random process at the point 
corresponding to the left-hand side of the pixel, and 
then the pixel extinction coefficient is calculated as 
σi = τi/ΔH, where ΔH = H $ h is the cloud layer 
thickness. In calculations we used 〈τ〉 = 13, Dτ = 29, 
β = 5/3, h = 1.0 km and ΔH = 0.3 km, which are 
typical for marine Sc.5 unless otherwise specified. 

Numerical simulation of the interaction of solar 
radiation with inhomogeneous stratocumulus clouds is 
performed with the following assumptions and 
parameter values. The underlying surface has albedo As 
and reflects according to Lambert's law. The 
calculation results presented are for As = 0 and 0.4 that 
correspond roughly to albedo of ocean and desert, 
respectively. Scattering phase function for C1 cloud10 is 
calculated from the Mie theory for a wavelength of 
0.69 μm and a single scattering albedo of ω0 =1.0. 
Atmospheric aerosol is optically thin as compared to 〈τ〉 
of clouds, so its influence was neglected. The number of 
pixels is Nx = 212 = 4096 and the length of the cloud 
realization is 204.8 km. The equation of radiative 
transfer in inhomogeneous clouds was solved by the 
Monte Carlo method using periodic boundary 

conditions. The solar incidence is defined by zenith ξu 

and azimuthal ϕu angles. The latter is measured from 

OX-axis and set to zero throughout the computation. 
For each pixel we calculated albedo and transmittance 
Tb at the cloud top (plane z = H) and base (plane 
z = h) heights, respectively; and additionally we 
calculated transmittance T0 at the underlying surface 
level. The mean relative error in albedo, transmittance, 
and absorptance computations did not exceed  
0.6$0.7%, while the maximum error was within 1.0  
to 1.5%. 
 

4. HORIZONTAL RADIATIVE TRANSFER 

 
In the plane-parallel model, the radiative 

properties of clouds are uniquely determined by their 
optical parameters. Obviously, this unique dependence 
will also hold in IPA4,5, since it calculates the radiative 
properties of each pixel using radiative transfer 
equation within plane-parallel model while ignoring 
interaction of radiative fields of individual pixels. In 
IPA, the albedo RIPA and transmittance TIPA can be 

calculated for each pixel using the formula which for 
conservative scattering has the form5 
 

RIPA(τ; ξu, g) = 1 $ TIPA(τ; ξu, g);  
 

 

TIPA(τ; ξu, g) = 
 

= 
δ(ξu) + [1 $ δ(ξu)]exp[$τ/⏐=(ξu)⏐]

1 + γ(g)τ  ,  (9) 

 

where τ is the pixel optical depth, ξu is the solar zenith 

angle, and g is the asymmetry parameter of the 
scattering phase function. Below we use the following 
values of the functions: δ(60°) = 0.8, =(60°) = 0.8 and 
γ(g) = 0.13. 

Quite the contrary situation occurs for real 
inhomogeneous clouds when the pixel size is less than 
or nearly equal to the mean length of photon horizontal 
migration. Owing to the inhomogeneity of radiative 
horizontal fluxes, two pixels having the same optical 
thickness but different optical parameters of 
neighboring pixels may possess different albedos and 
transmittances (Figs. 2a,b). For instance, for pixels 
with an optical depth of 10, T0 may differ by almost a 
factor of two.  

In absolute values, the horizontal transfer may 
reach 20% of solar irradiance (Fig. 2c), i.e., be of about 
the same order as the other terms in the energy balance 
equation (6). Noteworthy, so high E values are 
obtained for overcast stratocumulus clouds, whose 
optical properties vary only due to fluctuations in 
liquid water content. Inclusion of the stochastic 
geometry of cloud upper and lower boundaries will 
increase the horizontal gradients of optical parameters 
and, hence, will result in higher peak values of |E|. This 
seems to be very important result for it clearly 
illustrates the fact that the horizontal radiative transfer 
may play significant role in any cloud systems: an 
isolated cloud of finite extents, field of broken clouds 
including cumulus, and stratiform clouds with 
horizontally variable optical properties. 

Pixels with τi < 5 have horizontal optical 
thickness τi,. = τi⋅Δx/ΔH < 1, i.e., they are optically 
thin in the horizontal direction. Most photons traverse 
such pixels without scatter, so they predominantly 
loose (e (xi) > 0) radiation through their sides 
(Fig. 2c). The reverse is true for optically thick pixels, 
with τi > 25 and τi,. > 5. From Fig. 2 we see that the 
horizontal transfer gives rise to nonunique dependence 
of R and T0 on the pixel optical depth: the maximum 
"scatter" in R and T0 occurs in pixels having largest 
⏐e ⏐ values. The larger the pixel optical depth, the 
smaller the region located near pixel sides and playing 
major part in the radiation interaction of pixels; thus 
the less both ⏐e ⏐ and, hence, the "spread" in R and T0 
values. 

To better understand the dependence of horizontal 
transfer on the optical thickness of a given pixel and 
neighboring ones, in E realization we found the pixels 
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with E reaching its maximum (e max > 0) and minimum 
(e min < 0) values. Fragments of E and τ realizations 
including such pixels are shown in Fig. 3. Pixels 
loosing radiative energy most are optically thin and 

located in shadows (ξu = 60°) of neighboring, optically 

dense pixels (Fig. 3a). This can be explained by the 
fact that, due to large optical depth of the "shadowing" 
pixels, only a small fraction of radiation incident on 
their tops reaches the pixels with e max. The reverse is 
true for pixels with e max: because of the small optical 
thickness and strong forward peak of the scattering 
 

phase function, major portion of solar radiation 
impinging on the tops of such pixels leaks through their 
sides, predominately into the neighboring pixels located 
"on the way" of the incident solar radiation.  

Horizontal transfer reaches its minimum values on 
sunlit sides of the pixels possessing relatively large 
optical thicknesses and having an optically thin region 
in front of them (Fig. 3b). The incoming solar radiation 
passes through this region, adding substantially to the 
amount of radiative energy available for scattering and 
absorption by the optically thick pixels. 

 

 
FIG. 2. Albedo R (a), transmittance Š0 at the underlying surface level (b), and the horizontal transfer e  (c) as 
functions of pixel optical depth for solar zenith angle ξ

u
 = 60° and surface albedo As = 0 (ocean). Solid lines are for 

albedo and transmittance calculated in IPA by formula (9). 
 

Figure 3 clearly illustrates how the horizontal 
transfer is affected by the optical parameters of the 
neighboring pixels. Optically dense pixels presented in 
Figs. 3a and 3b have approximately the same optical 
depth. In the first instance (Fig. 3a), they predominantly 
loose radiation (e  > 0), due to the optically thick region 
in front of them. In the second instance (Fig. 3b), they 
gain (e  < 0) extra radiation from the optically thin 
region in front of them. Note that the scale on which E 
changes its sign ranges from hundreds of meters to 1$2 km. 

Figure 4 shows one-point probability densities of 
horizontal transfer obtained using statistical analysis 
of numerical realizations e (. i), i = 1, ..., 4096. We 
recall that, when averaged over complete realization, 
〈e 〉 = 0 for any problem parameters. Strong 
anisotropy of the cloud scattering phase   function is 
responsible for the fact that, as the solar zenith angle 
increases, the distribution of E broadens, i.e., the 
variance of E increases. The probability density !(e ) 
is well fitted by the Gaussian function. The results of  
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FIG. 3. Segments of the cloud realization on which horizontal transfer reaches its maximum (a) and minimum (b) 
values, with solar zenith angle ξ

u
 = 60° and surface albedo As = 0 (ocean). 

 

 
 

FIG. 4. Probability densities of the horizontal transfer 
for As = 0 (ocean) and solar zenith angles of 0 (1) and 
60° (2); a fit by the Gaussian probability density 
function (ξ

u
 = 0°) (3). 

numerical simulation show that !(e ) depends weakly 
on the underlying surface albedo. 

Figure 5 presents numerical realizations of the 
random functions τ(. ), R(x), T0(x) and e (x), obtained 
with fixed parameters of the one-point lognormal 
distribution and different values of the exponent β, 
characterizing the slope of the power-law energy spectrum 
of optical depth. It is well known11 that fractal 
dimension D of the plot of τ(. ), considered as a random 
geometrical object in the two-dimensional space, changes 
from one (differentiable process) to two (everywhere 
discontinuous process). The fractal dimension is a 
measure of smoothness: the greater D, the less smooth is 
the function τ(. ). At β = 5/3, D = (5 $ β)/2 = 5/3 
(Ref. 8), and the plot of τ(. ) appears as some envelope, 
defining the variability of τ(. ) at macroscales (~10 km 
and larger), upon which small-scale fluctuations (from 
hundreds of meters to several kilometers) are 
superimposed. We see that τ(. ) may have large "jumps" 
for small increments in the argument (Fig. 5a). When 
β = 2.9, τ(. ) appears as much smoother function; while 
at β = 3.0, D = 1, so that τ(. ) would be a differentiable 
function. 

As β increases from 5/3 to 2.9, the functions R(. ) 
and Š0(. ), being nonlinear transformations of τ(. ), 
also become smoother (Figs. 5b,c). The form of this  
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transformation is determined by the radiative transfer 
equation. Albedo and transmittance are sensitive to 
both macro- and microscale fluctuations of τ(. ). It 
should be noted that, at β = 5/3, R(. ) appears much 
less smooth function  
than Š0(. ). This effect can be explained as follows. 
First, multiple scattering smoothes out the  
radiative field, thus causing scaling breaks in  
the energy spectra of albedo12 and transmittance.13 

Second, the radiative field smoothness depends on  
the distance between detector measuring radiation  
and a corresponding cloud boundary (geometrical 
factor). As the distance increases, so too does the 
spatial volume falling within the detector field of view, 
therefore the radiative field is additionally smoothed. 
The geometrical factor can explain the above effect: 
R(. ) is "measured" at the cloud top altitude, while 
Š0(. ) is œmeasuredB at the underlying surface level.  

 

 
FIG. 5. Numerical realizations of optical depth (a), albedo (b), transmittance Š0 (c), and horizontal transfer (d), 
for ξ

u
 = 60°, As = 0 (ocean), and different slopes β of the power-law energy spectrum of τ. 

 

Because of the large cloud optical depth, radiation 
leaking out through the pixel sides interacts with 
nearby pixels only, and cannot interact with pixels 
~10 km or more apart. This explains the insensitivity of 
e (. ) to the macroscale fluctuations of optical depth 
(Fig. 5d). Further, at β = 2.9, τ(. ) is a smooth 
function, and the neighboring pixels differ little in 
optical depth. For each pixel, the loss and gain of 
radiative energy through pixel sides nearly compensate 
each other, e (. ) ≈ 0, so that simpler energy balance 
equation (7) can be used. Thus, the slope of the energy 
spectrum (or the fractal dimension) of cloud optical 
depth represents one of the fundamental parameters 
governing the radiative horizontal transfer in 
inhomogeneous clouds. 

5. CONCLUSION 

 
The energy balance equation in inhomogeneous 

clouds contains a term (the radiative horizontal 
transfer) that describes the net radiative flux lost or 
gained through the sides of a sampling volume (pixel). 
Because of the horizontal transfer, the uniform incident 
solar flux is nonuniformly distributed over space. 

In typical stratocumulus clouds, the radiative 
horizontal transfer, being zero in the plane-parallel model 
and IPA, is comparable (in the order of magnitude) with 
albedo, transmittance, and absorptance. The horizontal 
transfer is responsible for the fact that the radiative field 
depends on optical properties of both a given pixel and 
neighboring ones. In other words, because of the 
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horizontal transfer, there is no one-to-one dependence 
between the optical depth and radiative properties of a 
given pixel. One of the key parameters governing the 
radiative horizontal transfer is the slope β of the energy 
spectrum (or the fractal dimension) of cloud optical 
depth: as β increases, the horizontal transfer diminishes. 
One-point distribution of horizontal transfer is well fitted 
by the Gaussian distribution with zero mean. 
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