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In this paper I propose the regularization methods in application to solution 

of inverse problems of optics, namely, the method based on Riesz lemma in the 

problem on reconstruction of incoherent source from its noisy image and the 

amplitude modulation method in the problem on complex signal reconstruction 

based on its autocorrelation function. 

 

Reconstruction of the incoherent source from its 
noisy image. The intensity distribution of radiation 
from a source of monochromatic light I0(x0), 
x0 = (x0, y0) Œ E0 and the intensity distribution I(x), 
x = (x, y) Œ E of its noisy image are related by the 
superposition integral1 
 

I(x) = 

⌡⌠

  E0

 

 

⌡⌠
 

 

h(x,x0) I0(x0) dx0 + n(x),  x ∈ E ⊂ E0. (1) 

 

Here the kernel h(x, x0) is a given function and in 
the case of nonisoplanatic function of point scattering, 
the function n(x) describes the image noise. 

The problem on calculation of I0(x0) from Eq. (1) 
is an ill-posed problem.2  One of the regularization 
methods used to solve it consists in assuming certain 
properties of the solution sought a priori thus 
narrowing the set of solutions.  In addition to the 
property of nonnegative character, the solution is 
assumed to be smooth and certain limitations are 
imposed on this solution, which can be statistical.  
Such limitations can be taken into account by selecting 
the solution space. The Hilbert space is frequently used 
in this case.  The norm value of the Hilbert space 
serves as a regularizing factor. 

Since the noise n(x) is also unknown as I0(x0), it 
is natural to take for the solution of Eq. (1) a pair of 
functions (I0(x0), n(x)) with the given limitations: 

 

I0(x0) ∈ U ⊂ H,   n(x) ∈ V ⊂ H1, (2) 
 

where the Hilbert spaces H and H1 as well as the sets 
U and V (being normally convex) determine the type 
of regularization of Eq. (1).   

Analysis of the known regularization methods,2,3 
namely, the Tikhonov regularization using a 
regularizing functional, the method of maximum 
likelihood, the method of maximum entropy, has shown 
that the Eq. (1) can be solved much simpler if this 
equation is described in the terms of the scalar product 
of the Hilbert space. 

At a fixed value of x Œ E the function h(x, x0) of 
the variable x0 Œ E0 is given by the functional on H, 
and its type is determined by the integral term in 
Eq. (1).  We have a family of the functionals h

x
(I0) on 

H, depending on the parameter x.  According to the 
Riesz lemma,4 any continuous functional h(I) on H 
with the norm ║h║ has its single representation in the 
form of a scalar product (ϕh, I) of this space, in this 
case, ║h║2 = (ϕh, ϕh).  The proof of this lemma is 
constructive, it gives an explicit form of an element 
ϕh = h(ϕ1)(ϕ1, ϕ1)$2ϕ1, where ϕ1 belongs to an 
orthogonal complementary minor of the subspace of the 
functional h zeros: h(I) = 0. The element ϕh can be 
found as the solution of the problem 

 

(ϕ, ϕ) → min   at  h(ϕ) = 1. (3) 
 

The Riesz lemma enables one to represent the 
integral term in Eq. (1) in the form h

x
(I0) = (ϕ

x
, I0)H, 

where ϕ
x
 is the solution of the problem (3) at 

h
x
(ϕ) = 1. 

The noise n(x) can be also considered as the value 
of a certain series of functionals on H1, depending on 
the parameter x Œ E and all the considerations can be 
repeated for it.  But one can also follow different way.  
We shall restrict our consideration to the case when the 
set E is finite: E = {xk, k = 1,...,K}. The noise value 
n(xk) can be considered as the value of Euclidean scalar 
product of the vector n Œ RK and the basis vector 
ek = (0, 0,...,1,...,0) Œ RK, whose kth coordinate 
equals unity.  For RK another scalar product can be 
assigned, converting it to the space H1: 
(n1, n2)H = (Bn1, n2), where B is the positive definite 
matrix. According to the Riesz lemma there exists a 
single element φk Œ H1, such that n(xk) = (ek, n) = 
= (Bφk, n). It is evident that φk = B$1ek. The problem 
(1)$(2) is now written as 

 

Ik = (ϕk, I0) + (Bφk, n), I0 ∈ U, n ∈ V, k = 1, ..., K, (4) 
 

and can be considered as the problem on seeking of the 
functional, which is determined by the pair 
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(I0, n) Œ U¥VÃH¥H1 and for the given elements 
(ϕk, φk) Ã H¥H1 the functional takes the values Ik.  
This is the so-called finite-dimensional problem of 
moments (FDPM).5  The necessary and sufficient 
condition for the FDPM to be solved reduces to the 
solution of the inequality 

 

min
λ

 sup
(I0,n)∈U×V

 [(Φ(λ),I0) + (B Ψ(λ), n)] = γ ≥ 1 (5) 

 

at any λ = (λ1,...,λk) Œ RK satisfying the condition  

∑
k = 1

k

 λkIk = 1, where Φ(λ) and Ψ(λ) are the linear 

combinations of the functions {ϕk} and {φk} with the 
coefficients {λk}.  If λ0 is the point of minimum of the 
problem (5), then among the solutions of FDPM one 
can distinguish the solution (I0, n0) with an extremum 
property: 

 

(t (λ0), I0) + (bΨ(λ0), I0) = 
 

= sup
(I0,n)∈U×V

[(t (λ0), I0) + (bΨ(λ0), n)]. (6) 

 

Examples of regularizing spaces H, H1 and sets 
U, V.  

1. We shall seek the solution to the FDPM in the 
class of continuous functions. Then it is reasonable to 

assume that H is the Sobolev space W1
2(E0) with the 

scalar product 
 

(ϕ1, ϕ2) = 

⌡⌠

  E0

 

 

⌡⌠
 

 

(grad ϕ1⋅grad ϕ2) + μϕ1ϕ2)dx0,  μ ≥ 0. 

 

The elements ϕk of the problem (3) satisfy the 
necessary condition of extremum, which results in the 
equation 
 

$ Δϕ + μϕ = h(xk, x0) (7) 
 

with the boundary condition ∂ϕ/∂n = 0 to dE0, where 
Δ is the Laplacian operator.  If the limitation to the 
FDPM solution is taken as 
 

{(I0, n): I0 = Imed + u,  Imed > 0, 
 

f(u, n) = (u, u) + α(Bn, n) ≤ l2,   α > 0}, 
 

we obtain the solution, regularized by Tikhonov 
method using the functional f(u, n), which has an 
extremum property (6) and the structure 
u0 = Φ((l/γ)λ0), n0 = Ψ((l/γ)λ0). Thus, the pair 
(I0, n) = (Imed + Φ(λ),Ψ(λ)) is the solution of the 
system (4) and the system itself determines the vector 
of coefficients λ. 

The usefulness of the approach proposed is 
illustrated with a one-dimensional case.  Assuming that 
x0 = t and μ = α2, the problem (7) takes the form:  
 

$ ϕ′′ + α2ϕ = h(t),   ϕ′(a) = ϕ′(b) = 0. (8) 
 

The problem (8) has a unique solution in quadratures.  
So, only the value λ should yet be calculated from the 

set of linear algebraic equations to finally determine the 
solution (I0, n).  For a comparison, if the solution 
regularized by Tikhonov method is to be sought by 
minimizing the regularizing functional, it should be 
determined from the integro-differential equation. 

From the equation h(I0) = (ϕh, I0), following 
from the Riesz lemma, it is evident that the transform 
h → ϕh is linear and continuous.  In the first example it 
coincided with the inverse operator of the positive 
definite operator Aϕ of the problem (7).  This means 
that the Hilbert space H in the first example coincided 
with the energy space6 of the operator A: 
(ϕ, ϕ)H = (Aϕ, ϕ)L, where L = L2(E0) is the space of 
the functions with the summable squares on E0.  Hence 
it follows that the regularization of the problem (1) 
considered here amounts to the determination of I0 in 
the class of generalized solutions of a certain positive 
definite operator with a given or minimal energy norm 
of this operator. 

2. Supplementary information on the source I0(x0) 
is often of statistical character.  The function I0(x0) is 
considered as realization of a certain random process 
with a preset mathematical expectation MI0(x0) and 

the correlation function RI(x0
¢, x≤0). Then one can take 

the energy space as the space H corresponding to an 
operator inverse to the integral operator: 

 

Ah = 
⌡⌠

  E0

 

 

⌡⌠
 

 

RI(x′, x″)h(x″)dx″ + μh(x′),  μ > 0,  

 

with the scalar product (ϕ, I0)H = (A$1ϕ, I0)L. 
If the noise is also given by the mathematical 

expectation Mnk and the correlation matrix RK, then 

the scalar product in H1 can be given, as earlier, by the 

matrix B = R$1
K . 

In the final analysis the problem (1) amounts to 
FDPM 

 

ck = (A$1ϕk, 
°
I0) + (R$1

K  φk,n),   k = 1,...,K, (9) 
 

where ck = Ik $ hk(MI0); ϕk = Ahk; 
°
I0 is the deviation 

of I0 from MI0. 
If the source I0 and the noise are independent 

normal random processes, then the square of the pair 
(I0, n) norm on H¥H1 is determined by the equality 

 

⏐( °I0, n)⏐
2
 = (A$1 

°
I0, 

°
I0) + (R$1

K  n, n) (10) 
 

and is an analog of a quadratic form in the exponent, 
determining a posteriori density of finite-dimensional 
distributions in the Bayes formula.2  According to the 
Bayes approach, the best estimate of the source I0 
will correspond to the solution of equation (1), where 
the value of Eq. (10) is minimal.  Thus, the problem 
(1) is reduced to seeking a solution to FDPM with a 
minimal norm.  Reasonings in example 1 show that 
the solution (I0, n) is a linear combination of pairs 
(ϕk, φk) whose coefficients are defined by the 
equalities (9). 
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3. Let the space H = L2(E0).  Then the integral 
term in Eq. (1) sets the scalar product in L2(E0) at 
once without any transforms of the elements hk.  The 
sets U and V are determined by the expressions 

 

U(l) = {I0: I0 = 0.5Imax + 0.5Imaxu, ⏐u⏐ ≤ 1,  

⌡⌠

  E0

 

 

⌡⌠
 

 

⏐u(x0)⏐
p
dx0 ≤ l 

p
}, (11) 

 

V = {n:(Bn, n) ≤ δ2}, (12) 
 

where Imax = Imax(x0) is the estimate of the source 
intensity maximum at the point x0; the limitation 
⏐u⏐ ≤ 1 provides the nonnegative character of I0(x0); δ 
is the assigned value, characterizing the noise intensity.   

Let lmin be the least value of l, at which FDPM is 
solvable at (u, n) ∈ U(l)×V.  The solution of FDPM 
on U(lmin)×V is regularized.  The reconstructed source 
I0(x0) at limitations (11) and (12) has the feature that 
among negative functions on E0 it has the least 
deviation from Imax/2 in the metrics, determined by 
the second inequality in Eq. (11).  This type of 
regularization is similar to the regularization using the 
method of maximal entropy.2  

Now we write the condition for the FDPM (5) to 
be solved in equivalent form 

 

max
(Bλ,λ)<<    1

 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

∑
k=1

K

 ckλk $ max
u∈U(l)

 (0.5Imax ∑
k=1

K

 hkλk, u)  = δ0 << δ,  

 

where ck = Ik $ (hk, 0.5Imax). 
The value Imin is found from the condition δ0 = δ.  

In this connection it is useful to note that at l = 0 the 
value δ0 = (Bc, c)1/2 is maximum.  Therefore the value 
of δ must be less than the above value.  By varying 
Imax we can gain the fulfillment of the conditions 
δ0 < δ at l = +∞, i.e., when the second limitation in 
Eq. (11) is lacking.  Introduction of the second 
limitation in Eq. (11) suggested that with the decrease 
of l the set U(I) narrows and δ0 increases, therefore 
lmin exists at which δ0 = δ.  One can show that the 
function u ∈ U(lmin) having an extremum property (6) 
is a solution of the FDPM, which continuously depends 
on ck, i.e., on the initial data on the norm in Lp(E0). 

Reconstruction of the complex function based on 
its autocorrelation function.  This is one of the 
frequently occurring inverse problems in optics: the 
complex function G(ξ′, η′), (ξ′, η′) ∈ Ω is found from 
the equation 

 

⌡⌠

  Ω

 

 

⌡⌠
 

 

G(ξ + ξ′, η + η′) G*(ξ′, η′) dξ′dη′ = H(ξ, η), (13) 

 

where H(ξ, η) is known and has the complex conjugate 
symmetry. 

The question on uniqueness of the solution to 
Eq. (13) has been studied completely. If G(ξ′, η′) is 
the solution of Eq. (1) then, except for rare cases, its 

set of solutions {G(ξ′, η′)exp(ϕ), G*($ξ′, $η′) exp($ϕ),  
ϕ $ const} has unessential manifold. 

Equation (1) has square nonlinearity and is solved 
by iteration methods.  Such important problems as the 
choice of initial approximation, regularization of the 
problem on seeking of solution are mainly solved using 
simulations.  There is a case when these questions can 
be answered on the basis of the developed theory.  
Here, we are dealing with a holographic approach,7 
when Ω = W1 + ω, in this case the areas W1 and ω are 
well fairly spaced.  If the function G is set on ω, 
Eq. (13) becomes linear relative to G on W1 given a 
corresponding selection of the shift vector (ξ, n). 

This example shows also that the aperture 
configuration Ω affects the method of the equation 
solution.  Below we develop this approach.  Such 
configurations apertures were obtained, which enable 
one to construct new methods for solving Eq. (13). 

Let the original aperture Ω be the square with the 
side 2a. We divide it into N vertical bands Ωs of width 
Δ = 2a/N (Fig. 1). Narrowing of the function G(ξ′, η′) 
on Ωs is denoted by Gs(ξ′, η′) and the set of the shift 
vectors is given as follows 

 

E0 = {(ξk, η):ξk = $ kΔ,  k = 0, ..., N $ 1 and ⏐η⏐ ≤ 2a}. 
 

 
 

FIG. 1. 
 

Equation (13) with respect to the function 
G(ξ′, η′) reduces to the set of equations relative to 
Gs(ξ′, η′): 

 

H($ kΔ,η) = ∑
p = 0

N$1$k
 

 

  
⌡⌠

0

Δ
 

 

dξ′
⌡⌠

0

2a
 

 

Gp(Δp + ξ′, η + η′) × 

 

× G 

*
p+k (Δ(p + k) + ξ′, η′)dη′,   k = 0, ..., N $1. (14) 

 

If the external integral in Eq. (14) is calculated 
approximately using the method of mean rectangles and 
the following designations are introduced, then 

 

Gp(η′) = Gp(Δ(p + 0.5), η′) and H($ kΔ, η) = Hk(η), 
 

the set of equations (14) is transformed to the form: 

⌡⌠

0

2a
 

 

G0(η + η′)G 

*
N$1(η′)dη′ = HN$1(η)/Δ,  (k = 0); (15) 
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⌡⌠

0

2a
 

 

G0(η+η′)G 

*
N$2(η′)dη′ + 

⌡⌠

0

2a
 

 

G1(η + η′)G*
N$1 (η′)dη′ = 

 

= HN$2(η)/Δ,  (k = 1); (16) 
 

 

⌡⌠

0

2a
 

 

G0(η + η′)G 

*
N$1$k(η′)dη′ + 

 

+ 
⌡⌠

0

2a
 

 

Gk(η + η′)G*
N$1(η′)dη′ = HN$1$k(η)/Δ + 

 

+ ∑
p=1

k$1
 

 

 
⌡⌠

0

2a
 

 

Gp(η + η′) G*
N$1$ (k$p)(η′)dη′.   (k ≥ 2). (17) 

 

Let us assume that the function GN$1(η′) is known.  
Then Eq. (15) is linear relative to the function G0(η′) 
and can serve for its determination. Equation (16) is 
linear relative to the functions G1(η′) and GN$2(η′).  If 
the aperture configuration is chosen so that Eq. (16), 
depending on the variation interval η, is dependent only 
on G1(η′) and GN$2(η′), then this equation is decisive for 
these functions. The same is true for the left-hand sides of 
Eq. (17) at different k.  It should be noted that the right-
hand side of Eq. (17) depends on the functions Gp(η′), 
which are calculated from the foregoing equations. 

The aperture configurations, when Eqs. (15)$(17) 
satisfy the above characteristics, can be constructed as 
follows.  We subdivide the bands Ωs into three parts Ωs,j, 
j = 0, 1, 2 (Fig. 1). The part ΩN$1,1 is denoted by ω.  It 
is essential that some parts do not transmit the light.  
The remaining parts form the new aperture configuration, 
denoted by W1 + ω. The introduction of the region 
W0 = Ω\(W1 + ω), which does not transmit the light, is 
equivalent to the setting of the function G(ξ′, η′) = 0.  
Setting of a new aperture configuration is accomplished 
by enumerating those parts of Ωs,j, which appear in W0.  
If the region W0 is denoted by W0(N) at a given N, then 

 

W0(3) = {ΩN$1,0, ΩN$1,2},  
 

W0(6) = {W0(3),Ω2,0, ΩN$2,1}, 
 

W0(9) = {W0(6), Ω3,2},  
 

W0(12) = {W0(9), Ω5,0, ΩN$5,1}, 
 

W0(15) = {W0(12), Ω6,2},  
 

W0(18) = {W0(15), Ω8,0, ΩN$8,1}, 
 

W0(21) = (W0(18), Ω9,2},  
 

W0(24) = {W0(21), Ω11,0, ΩN$11,1}, etc. 

The ratios of areas of the regions W0(N) and Ω are 
(2 + 3n)/3N at N = 3(2n + 1) and (1 + 3n)/3N at 
N = 3⋅2n.  At large N this ratio is close to 1/6.  
Figure 1 corresponds to N = 9. 

It can be directly verified that at given aperture 
configurations the equations (16) and (17) are the 
Volterra integral equations of the first kind relative to 
the functions Gk(η′) and the like convolution equation 
relative to functions GN$1$k(η′). 

At a given function GN$1(η′) on ω, setting 
sequentially k = 0, 1,..., K, K = (N + 1)/2 at odd N 
numbers and K = N/2 at even N, one can find all the 
functions of Gs(η′) on W1 from linear equations 
resulting from (16) and (17).  Thus, the set of 
displacement vectors 

 
E = {(ξk,η): ξk = $ kΔ,   k = 0, ..., K and ⏐η⏐ ≤ 2a} 

 
is sufficient for determining Gs(η′) on W1 by the 
function GN$1(η′) on ω.  The remaining set of 
displacement vectors E0\E can serve for determining 
GN$1(η′) on ω from the set (17) at k = K + 1,...,N $ 1.  
For every k = K + 1,..., N $ 1, Eq. (17) is defined by a 
certain operator, transforming the functions  
GN$1(η′).  HN$1$p(η)(h), (p = 0, 1,...,K), and  
HN$1$k(η) to the function GN$1(η′): 
 
GN$1 = ϕk(GN$1, HN$1, HN$2,...,HN$1$K, HN$1$k). (18) 
 

No matter how HN $1$k(η) are given, properly or 
with an error, we have their estimate.  Therefore we 
can allow their small variations.  Excess of the set 
(18) and small variations of the functions HN$1$k(η) 
can be used for obtaining an acceptable solution  
GN$1(η′).  The function GN$1(η′) and the 
corresponding functions Gs(η′) on W1 should be 
considered as a solution to Eq. (1). 
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