
926  Atmos. Oceanic Opt.  /November  1996/  Vol. 9,  No. 11 V.A. Tartakovskii and N.N. Mayer 
 

0235-6880/96/11  926-04  $02.00  © 1996 Institute of Atmospheric Optics 
 

PHASE DISLOCATIONS AND FOCAL SPOT 

 

V.A. Tartakovskii and N.N. Mayer 
 

Institute of Atmospheric Optics,  

Siberian Branch of the Russian Academy of Sciences, Tomsk 

Received July 10, 1996  
 

Phase dislocations and the corresponding zeros of the wave function modulus 

are most likely due to the use of the complex wave model as Gabor's analytical 

signal.  However, the azimuth oscillations observable around possible zero points1 

and the concomitant energy transfer as well as the dichotomy of the interference 

fringes demonstrate the existence of new and more complicated properties of the 

wave process irrespective of the way its phase and envelope are determined.  One 

more objective manifestation of that complication is the focal spots formed by a 

wave with dislocations passed through a Fourier lens which we study in this paper.  

 

The phase dislocations of light waves propagated 
through a randomly inhomogeneous medium have been 
studied in quasimonochromatic and parabolic 
approximations.  The numerical model from Ref. 2 was 
used for solving the wave equation by the splitting 
method and FFT according to the Singleton algorithm.  
The Gaussian beam and its spatial-frequency spectrum 
were approximated by periodic functions and entered 
into a computer as two-dimensional matrices of their 
readouts. The order of these matrices was equal to 90 in 
order for the discrete representation be adequate to the 
continuous process. 

Two phase-screens were used when modeling a 
randomly inhomogeneous medium with the spectral 
density of the refractive index corresponding to 
Kolmogorov turbulence.  The law of energy 
conservation is held in the model with the computer 
accuracy.  The spectral density Fs of the phase 
fluctuations of light and other model parameters are: 

 

Fs(i) = 0.489 r$5/3
0  (i2 + i20)

$11/6, i0 = 2π/L0, 
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Here r0 is the Fried’s coherence radius; the outer scale 

of the turbulence, L0, equals 1 m; the path length, L, 

equals 3 km; i  is the spatial frequency; k = 2π/λ is 

the wave number; λ is the wavelength (0.6328 μm); C2
n  

is the refractive index structure constant. 
The presence of dislocation was determined by 

calculating the phase gradient between adjacent points 
on a closed path drawn around each phase analyzed 
point.  The phase dislocation was considered to be  
 
 

detected when the phase gradient was greater than or 
equal to 2π and less than or equal to $2π. 

As seen from Fig. 1a, the phase dislocations appear 
at the points where the intensity reaches its minimum. 
These points correspond to zeros of the wave function. 
In the vicinity of these points the phase varies spirally. 
Along the whole length of the boundaries between 
white and black areas in Fig. 1b between two points of 
dislocation formation, the phase surface undergoes 
discontinuity of @ 2π. Such a discontinuity cannot be 
removed with the use of translations of surface 
fragments. 

These dislocations are of the first order. The focal 
spots from subaperture without dislocations, Fig. 1d, 
essentially differs from the spots formed by waves with 
dislocations, Figs. 1e$h.  These spots have greater size 

and are doubled, and the line of minimums between 
two parts of the spot is directed along the tangent to 
the zero line of the wave imaginary part. Earlier, the 
double peak of the intensity function was recognized on 
the focal plane of Hartmann’s wave-front sensor after 
the phase dislocation had appeared in the reference 
beam.3 

If the wave function is raised to the second power, 
the order of the phase dislocations will also be raised.  
The wave function from Fig. 1 was squared and the 
results of the transformation are shown in Fig. 2. It 
was found that the second-order dislocations have the 
following properties: 
− the focal spots from apertures with dislocations of the 

second order form the triplet, Figs. 2e$h; 
− the zero lines of real and imaginary parts of the wave 

cross each other twice at the points of dislocations, 

Figs. 2c and 2d; 
− the phase shift along the closed path around the 

dislocation point reaches  ±4π, Fig. 2b. 
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FIG. 1.  First order phase dislocations and focal spots 
(Log scale) created by them.  Crosses denote the 
intensity zeros and the points of phase dislocation 
appearance. Wave intensity (a), wave phase (b), zero-
lines of the real (black) and imaginary (white) parts 
of the wave function (c); the focal spot for subaperture 
without dislocations (d); see square (#) in (a) and 
(b); focal spots when the dislocation points are at the 
following subapertures, see crosses (+): the upper 
left (e), the upper right (f), bottom left (g),  
bottom right (h). 

 
 
 
 
 

 
 

 
 

FIG. 2. Second-order phase dislocations and focal 
spots (Log scale) created by them.  Crosses (+) 

denote the intensity zeros and the points of phase 
dislocation appearance.  Wave intensity (a), wave 
phase (b), imaginary part of the wave function (c), 
real part of the wave function (d); focal spots when 
the dislocation points are at the following 
subapertures, see crosses (+): upper left (e), upper 
right (f), bottom left (g), bottom right (h). 
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The experiment has been conducted to confirm  
the existence of the second-order phase dislocations  
in a wave propagated through a linear randomly 
inhomogeneous medium. The results of this experiment 
are shown in Fig. 3.  The conditions of propagation and 
the model of the medium were the same as in previous 
experiment. These dislocations were recognized using 
the above-mentioned features.  
The second-order phase dislocations appear when  
the spatial-frequency spectrum of the wave is 
sufficiently wide. In that case zero-lines are closer to 
each other. 

Also, it is interesting that the dislocation of the 
second order formed without a co-dislocation of the 
same order but surrounded with dislocations of the first 
order, see Fig. 3. Therefore a second-order phase 
dislocation may be considered as a combined pair of the 
first-order dislocations. 

The above wave functions with dislocations can be 
simulated using two or three quasiplane waves because 
these wave functions have two or three peaks in the 
spatial-frequency plane. 

The focal spot width was estimated as a function 
of the turbulence strength for the cases when the 
phase dislocations were observed in the subaperture, 
when there were no dislocations, and for the 
alternating case.  The estimations were calculated as 
average values. The number of experiments varied 
from 20 to 300 depending on the presence of the 
dislocation points within the subaperture during the 
numerical experiments.  

 
 

FIG. 3. Second-order phase dislocations in an 
inhomogeneous medium:  random phase of the wave 
function (a), zero-lines of the real part (b) and 
imaginary part (c) of the wave function.  A magnified 
image of the large circular area from Fig. 3a is shown in 
Fig. 3d. Point of the second-order phase dislocation is in 
the small white circles (b, c) and at the circle  
center (d).  Crosses (+) denote the points of the first-
order phase dislocations. 
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FIG. 4.  Estimates of the normalized width of the focal spot versus turbulence intensity.  Normalization is done by 
the subaperture diameter.  The ratios of the Hartmann subapertures size to the matrix order are: 0.05 (a) and  
0.1 (b). Estimated are subapertures with dislocations (⎯!⎯), all subapertures (⎯Q⎯), subapertures without 

dislocations (⎯"⎯).  Bars in the figures show the standard deviations. The number of the experiments varied from 

20 to 300. 
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Results of these experiments are shown in Figs. 4= 
and b. The width of the focal spots or the width of 
spatial frequency spectrum of the wave with 
dislocations increases monotonically in the entire region 
of the variance of Fried's coherence radius (from weak 
to strong fluctuations). This fact demonstrates that the 
number of readouts used is quite sufficient for the wave 
representation.  

The tendency to saturation of the width of the 
focal spots, created by subapertures without 
dislocations, demonstrates the fact that the probability 

of dislocation occurrence becomes high when the width 
of the spatial spectrum reaches a certain value.  
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