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This paper is devoted to numerical analysis of the stochastic problems of 

atmospheric optics. The effect of wind velocity pulsations and large-scale refractive 

index fluctuations on the energy characteristics of light beams is studied based on 

simple models of atmospheric turbulence. The feasibility of dynamic compensation 

for light beam nonlinear and turbulent distortions using the simplex method are 

presented. 
 
The problem on improvement of the 

characteristics of laser beams propagated through the 
atmosphere is of special interest for modern optics 
and its applications since high-efficiency 
potentialities of information, technological and 
measuring systems are essentially limited by the 
conditions of light wave propagation in real media. 
The influence of the atmosphere strongly manifests 
itself in the extended optical channels, for example, 
along the ground horizontal and slant paths. In this 
case the propagation of high-power radiation is 
accompanied not only by nonstationary thermal 
blooming, under conditions of wind velocity 
pulsations, but also by the refraction at large scale 
refractive index fluctuations. 

The technique of numerical simulation of 
nonstationary wind refraction is currently well 
developed. In Refs. 1$3 a model of wind velocity 
pulsations is proposed, which makes it possible to 
describe, in the simplest way, the influence of large-
scale turbulent vortices on the beam propagation along 
near ground paths. In Refs. 4$5 turbulent broadening 
of a beam and its thermal distortions are considered as 
additive effects. It is clear that the wind velocity 
pulsations and refractive index fluctuations jointly 
affect the structure of thermal channel induced by a 
beam, therefore for reliable prediction of the beam 
distortions these effects should be taken into account 
simultaneously. It should be noted that up to now no 
detailed studies have been published where such an 
account is successful.  

It happened so that for many years the problem on 
the development of algorithms of adaptive control of 
light beam has not been studied theoretically. The 
gradient method, being originally a basis for the 
aperture sounding systems, is still the only algorithm 
used in practice. However, in real systems for 
atmospheric optics, the fluctuations of radiation and 
medium parameters, restrict the applicability of the 
gradient method.6 This is mainly connected with the 
large errors when measuring, in real time, the gradients 
of an optimized functional. For this reason it is 

interesting to consider direct methods of nonlinear 
optimization. One of those is the simplex method whose 
applicability to the problems of laser radiation adaptive 
focusing in a nonlinear media is analyzed in our earlier 
papers.7$12 

This paper is devoted to further development of 
the simplex method and to analysis of its efficiency in 
the stochastic problems of atmospheric optics taking 
into account transient processes in the œbeam$mediumB 
system occurring both at variations of a controlled 
wave front and fluctuating wind velocity and large 
scale refractive index fluctuations. 

 
1. MATHEMATICAL MODEL OF LIGHT BEAM 

PROPAGATION IN NONLINEAR TURBULENT 

MEDIUM 
 
The description of light beam propagation in the 

atmosphere is conventionally based on the quasi-optical 
approximation of the diffraction theory, which is 
considered together with the material equation for 
perturbations of the medium temperature. The 
corresponding set of equations in the dimensionless 
form is written as 

 

2 i 
∂E
∂z  = Δ

⊥
E + n~ E + R0 TE , (1) 

 

∂T
∂t  + Vx 

∂T
∂x + Vy 

∂T
∂y = ⎜E⎜2 , (2) 

 

where E is the complex amplitude of the electric field 
of a light wave; T is the temperature perturbation 

induced by a beam; n~ is the random field of the 
atmospheric refractive index; Vx and Vy are the 
projections of wind velocity on the coordinate axes 0X, 
0Y. In Eqs. (1) and (2) standard normalization of 
variables is used,13 the nonlinearity parameter 
 

R0 = 
2k2 a

0
3
 α I0

n0 ρ Cp V0
 
∂n
∂T (3) 

 

is determined from the average wind velocity V0. 
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We consider the laser beam propagation along the 
horizontal path above a uniform underlying surface. In 
this case the random wind velocity field V(x, y, z, t) is 
statistically stationary. Since the vertical component of 
wind velocity Vy in the atmospheric boundary layer is 
small as compared to the horizontal Vx (Ref. 14), it is 
assumed that the average velocity is parallel to the 
surface. It has been known that the outer scale of 
turbulence L0 is comparable by the order of magnitude 
with the height h0 above the underlying surface, and 
the spectral maximum of fluctuations of the velocity 
vertical component is in the frequency range from the 
interval 0.1V0/h0 ≤ ν ≤ V0/h0. Thus, the characteristic 
period of the velocity pulsations TV = 1/ν can be 
determined as TV ≈ hτV/a0, where τV = a0/V0 is the 
convective time. 

When using the proposed model on a computer, 
the velocities V on the phase screens are represented as 
a vector sum of the regular component V0, being 
parallel to the axis 0X, and the fluctuation components 
δVx, δVy, following the normal centered distribution 
law with the variance σ

V
2 . The wind velocity pulsations 

are imitated with a stepwise change of situations in a 
typical time TV. 

The refractive index fluctuations n~ are simulated 
on the basis of a modal approach,15$19 whereby the 
instantaneous random phase field ϕ(ρ, t) on the screen 
are represented as superposition of Zernike orthogonal 
polynomials Zj(ρ/R, ϑ) with the random coefficients 
αj(t): 

 

ϕ(ρ, ϑ, t) = ∑
j=1

J

 αj(t) Zj(ρ/R, ϑ), (4) 

 

where ρ = {x, y} = {ρ cos ϑ, ρ sin ϑ}; R is the radius of 
the phase screen. 

B ased on the estimates15 it is clear that for the 
reliable simulation of random walks and the beam 
turbulent broadening we need only five Zernike 
polynomials (subtracting the piston mode), i.e., tilts, 
defocusing and astigmatism of the wave front. The 
technique developed in Refs. 17 and 19 enables us to 
obtain time spectra and autocorrelation functions of 
random weighting factors αj(t) and to construct  a 
dynamic model of large scale phase distortions for an 
arbitrary spectrum of atmospheric turbulence. In this 
paper we use Karman model of turbulence with the 
spatial spectrum of the form: 

 

Φn(κ) = 0.033 Cn
2 (κ2 + κ0

2)$11/6, (5) 
 

where Cn
2 is the structure constant of the refractive 

index fluctuations; κ is the spatial frequency; 
κ0 = 2π/L0.  

In accordance with the principle of modal control, 
the wave front U(x, y, t) of a beam at the transmitting 
aperture (in the plane z = 0) is given as a  
superposition of the preset optical modes. Starting from 

the structure of the beam phase distortions in the  wind 
refraction mode, U(x, y, t) is selected in the form 

 

U(x, y, t) = θx(t) x + θy(t) y + Sx(t) 
x2

2
 + 

+ Sy(t) 
y2

2
 + Sxy(t) 2xy . (6) 

 

The control quality is estimated on the basis of the 
focusing test 

 

Jf(t) = 
1
P0

 ⌡⌠ ⌡⌠   σ(x, y)⎜E(x, y, z0)⎜2 dx dy , (7) 

 

where P0 is the total power of the beam; σ is the 
aperture function describing the region of the light 
field localization on the target; z0 is the path length. In 
the nonstationary problems, we can use the  
criterion of the relative control efficiency 
η(T) = W(T)/W0(T), where  
 

W(T) = ⌡⌠
0

T

 Jf (t) dt  (8) 

 

is the energy of a beam under control, coming into the 
aperture σ during the time T; W0 is this same value in 
the absence of control. 

In this paper we describe the study of propagation 
of the Gaussian beam of the initial radius a0 =10 cm at 
the height h0 = 1 m above the underlying surface. The 
other parameters of the numerical experiment are the 
following: the infrared radiation wavelength 
λ = 10. 6 μm, the mean wind velocity V0 = 1 m/s, the 

path length z0 = 3000 m that makes 0.5 ka0
2, the 

receiving aperture radius σ(x, y) in the observation 
plane is rt = 2ad, where ad is the radius of diffraction-
limited focal spot in vacuum. 

 
2. NONLINEAR DISTORTIONS OF LIGHT BEAMS 

IN THE PRESENCE OF WIND VELOCITY 

PULSATIONS AND REFRACTIVE INDEX 

FLUCTUATIONS 
 
First we consider the simplest turbulent model for 

analyzing the influence of atmospheric inhomogeneities 
on the light beam propagation under conditions of wind 
refraction. It is assumed that the main contribution 
from large scale atmospheric vortices manifests itself in 
the wind velocity pulsations. Therefore we start 
considering the beam propagation in a medium with the 
wind velocity pulsations along the path, described by 
Eqs. (1) and (2) ignoring natural fluctuations of the 

refractive index (n~ ≈ 0). It is assumed that the mean 
time of the pulsations freezing equals T = 5τV what 
makes, for the selected parameters of the numerical 
experiment, 0.5 s. Such a frequent change of the 
medium state enables one to determine the main 
regularities of the beam propagation and its wave front 
control at comparatively small computer costs. 
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In the wind velocity pulsation regime, the 
transient processes in œthe beam$mediumB system occur 
not only at the initial moment of the laser emission 
turn on, but also when changing the state of the 
medium. This is caused by the fact that the variation of 
wind velocity results in considerable variations of the 
medium effective nonlinearity along the propagation 
path and, as a consequence, in fluctuations of field 
parameters at an object it is focused on. 

 

 
FIG. 1. Typical dependences of the focusing 
criterion (a), shifts of the beam energy center (b), 
energy radius (c) on time. Solid lines are for the 
medium with wind velocity pulsations, dashed lines 
denote the regular medium. The propagation 
conditions are characterized by the following 
parameters: R0 = $20, σV = $0.3V0, TV = 5τV. 

Figure 1a presents typical dependences of the 
focusing criterion on time. The corresponding 
dependences of the efficient beam width and the shift 
of its center of gravity on time are presented in 
Figs. 1b and 1c.  

The presence of wind velocity pulsations along the 
propagation path results in a larger beam broadening and 
its random walks in the observation plane (for a 
comparison, Fig. 1 gives the variation of the beam 
parameters in a regular medium denoted by dashed lines). 
The beam behavior of this kind is a result of nonuniform 
heating of the medium. Figure 2a presents an example of 
the temperature field distribution along the propagation 
path. For a comparison Fig. 2b gives the temperature 
field induced by a beam in a stationary medium. 

 

 
FIG. 2. Lines of equal temperature on the plane XZ at 
time t = 7τV: a) in the presence of wind velocity 
pulsations (R0 = $20, σV = $0.3V0, TV = 5τV); b) in a 
stationary medium. Cross sections of the temperature 
field are given with the step of 0.1. 
 

Figure 3 shows the dependences of mean values 
and standard deviations of the focusing criterion, shift 
of the beam energy center and its energy radius on the 
variance of wind velocity fluctuations. These data are 
obtained using numerical simulation of the propagation 
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of a collimated beam during T = 25τV and averaging 
over 100 situations. It is clear that with the increase of 
σV the mean values of the focusing criterion and the 
beam energy radius continue to grow. 

 

 
FIG. 3. The influence of the variance of wind velocity 
fluctuations on the mean values of the focusing 
criterion (a), shifts of the beam energy center (b), and 
energy radius (c). Standard deviations of given 
characteristics are denoted by dashed lines. The 
propagation conditions are characterized by the 
following parameters: R0 = $20, T = 25τV, TV = 5τV. 
 

In the real atmosphere, large-scale vortices result 
not only in the wind velocity pulsations but in the 
refractive index fluctuations as well. Therefore, of 

interest is the investigation of joint influence of these 
factors on the beam statistical characteristics and 
focusing criterion. This problem is described by the 
set of equations (1) and (2) with the account for all 
terms. 

Table I presents the mean values of the focusing 
criterion, the beam energy center shift and its energy 

radius depending on Cn
2 and the variance of wind 

velocity fluctuations at R0 = $20. The data have been 
obtained by means of numerical simulation of the 
collimated beam propagation during T = 25τV and 
averaged over 100 situations.  
 
TABLE I. Average values of the focusing criterion, 
shift of the beam energy center, and energy radius. 
The conditions of propagation: R0 = $20, T = 25τV, 
TV = 5τV. 
 

σV/V0
Cn

2,  
cm$2/3

<Jf> <xc>/a0 <ae>/a0

0 0 0.188 $0.48 1.56 
0.1 0 0.186±0.032 $0.50±0.08 1.57±0.08
0.1 6.4⋅10$15 0.188±0.033 $0.48±0.08 1.57±0.09
0.1 6.4⋅10$14 0.193±0.034 $0.43±0.10 1.58±0.09
0.1 6.4⋅10$13 0.209±0.038 $0.27±0.16 1.62±0.11
0.3 0 0.183±0.081 $0.56±0.26 1.65±0.29
0.3 6.4⋅10$15 0.184±0.075 $0.52±0.25 1.65±0.28
0.3 6.4⋅10$14 0.185±0.079 $0.49±0.25 1.68±0.29
0.3 6.4⋅10$13 0.195±0.077 $0.34±0.28 1.70±0.28
0.5 0 0.215±0.091 $0.36±0.23 1.52±0.27
0.5 6.4⋅10$15 0.210±0.093 $0.36±0.26 1.73±0.43
0.5 6.4⋅10$14 0.210±0.093 $0.33±0.26 1.74±0.42
0.5 6.4⋅10$13 0.210±0.092 $0.21±0.31 1.75±0.41

 

Analysis has shown that the combined effect of the 
refractive index fluctuations and wind velocity 
pulsations results, on the average, in a more uniform 
heating of the medium, and consequently, in the 
decrease of the beam random walks. In this case the 
main contribution to the beam broadening comes from 
wind velocity pulsations. Nevertheless, in specific cases, 
the large-scale refractive index fluctuations can enhance 
the transient processes in changing the medium states 
resulting in a sharp decrease of the focusing criterion. 
To prevent the loss of the control stability under these 
conditions, we need to conduct a more comprehensive 
analysis of the adaptive correction characteristics and to 
develop an algorithm insensitive to sharp changes of the 
medium states. 

 

3. COMPENSATION FOR TURBULENT 

DISTORTIONS OF HIGH-POWER LIGHT BEAMS 

BASED ON THE SIMPLEX METHOD 

 
We start the analysis of the efficiency of dynamic 

compensation for high-power light beam distortions in 
the atmosphere with the simplest model, allowing for 
the wind velocity pulsations. Ignoring the refractive 
index fluctuations, on the basis of the character of 
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nonlinear beam distortions in a medium with wind 
velocity pulsations, the controlled wave front could be 
presented by Eq. (6). However, with a considerable 
body of coordinates to be controlled it is difficult to 
perform a priori analysis of a trajectory of searching for 
optimum, being very useful, in particular, for 
determining the initial simplex configuration. This is 
especially important in the presence of transient 
processes since the first steps of the search must be in 
the correct direction (for example, a beam should start 
its focusing, and not the reverse). It is difficult to 
determine this direction in the five-dimensional space. 
Therefore it is important to try to decrease the number 
of coordinates to be controlled that simultaneously 
enables one to increase the response speed of an 
adaptive system. 

 

 
 
FIG. 4. Dynamics of the coordinates controlled when 
compensating for the wind refraction using the simplex 
method. The propagation conditions are characterized 
by R0 = $20, T = 12τV, TV = 2τV, σV = 0.3 V0. 

 

Figure 4 presents as an example the dynamics of 
the coordinates controlled in the basis (6) in the course 
of dynamic correction for wind refraction in the 
turbulent atmosphere. It is  evident that adaptive 
correction by the simplex method gives rise to a 
compulsory beam scanning due to the stepwise variation 
of the coordinates controlled, especially tilts. Taking 
into account the fact that in the presence of random 
wind velocity pulsations beam defocusing is axially 
symmetric, the number of variables controlled should 
be decreased by using the combined mode 
(x2/2 + y2/2), i.e., assuming that 

 
U(x, y, t) = θx(t) x + θy(t) y + 
 

+ S(t) ⎝
⎛

⎠
⎞x2

2
 + 

y2

2
 + Sxy(t) 2xy . (9) 

 
Considering that the variable Sxy rapidly decreases 

with time, it may be excluded in some problems. In this 
case the wave front is of the form: 

U(x, y, t) = θx(t) x + θy(t) y + S(t) ⎝
⎛

⎠
⎞x2

2
 + 

y2

2
 . (10) 

 
In the subsequent numerical experiments, the 

beam control was considered in a time T = 12τV since 
the turning on the laser source. Efficiency of the 
search was estimated by the parameter η(T). The 
results of numerical simulation have shown that the 
optimal size, L, of the simplex can be estimated based 
on the recommendations given in Refs. 9 and 12.  

It should be noted that the modification of the 
algorithm of simplex search9 normally used cannot 
provide stability of the control under pulsation 
conditions because here the approach of simplex to 
œdriftingB objective is provided. Therefore it occurred 
so that the search should be used with variable 
strategy,11 which can be subdivided into two stages. 
The first stage is the control at the initial phase of 
medium heating (during the time 2τV) with the use of 
an algorithm with a forced vertex reflection20 that 
makes it possible to avoid œrecyclingB of the simplex. 
Then, at the second stage, when of fundamental 
importance are the random beam walks and transient 
processes, appearing when changing the medium states, 
an algorithm with free vertex reflection should be used. 
Its main rule is in the reflection of the worst simplex 
vertex without any supplementary conditions. As is 
shown below, such a control organization enables one 
to compensate for the random mean walks and to avoid 
the unstable regimes of search. 

In the problem considered we assume that the time 
of freezing of wind velocity pulsations is TV = 2τV. 
Although this regime is unrealistic, it enables us to study 
in detail the simplex method algorithm stability in 
stochastic problems at acceptable calculation costs. 
Table II shows the control efficiency based on the use of 
the simplex method in the bases (6), (9), (10). The 
values of η(T) presented have been obtained in one and 
the same situations of the wind velocity pulsation 
distribution along the path and averaged over 20 events. 
From the table values we see that the control efficiency 
in different bases is determined by such factors as the 
nonlinearity parameter and the wind velocity variance. 
For example, in the case of weak nonlinearity <⎜R⎜> ≤ 10 
the three-dimensional basis (10) reveals considerable 
advantages at 0.1 ≤ σV/V0 ≤ 0.5. At a moderate 
nonlinearity (20 ≤ <⎜R⎜> ≤ 30) the control efficiency in 
the bases (6) and (9) is the same. Thus, under the 
considered conditions the four-dimensional basis (9) is 
sufficient and there is no need to use a five-dimensional 
one (6). 

It should be noted that the mean values of the 
relative control efficiency parameter η(T) increase 
with the growth of both the medium nonlinearity and 
the variance of wind velocity fluctuations. It is 
evident, as in the case of stationary medium, this 
occurs because of a more uniform heating of the 
propagation channel due to temperature mixing 
achieved by scanning with a controlled beam. This 
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effect also influences the statistical characteristics of 
the beam and the goal function being optimized. Under 
conditions of wind velocity pulsations in the range 
0.1 ≤ σV/V0 ≤ 0.5, the simplex search algorithm is 
stable, and with the increase of σV/V0 the standard 
deviation of the focusing criterion does not grow. 
Evidently, this is explained by the fact that the 
algorithm used provides steady beam scanning in the 
mutually perpendicular planes. As a result, the mean 
shift of the beam center of gravity does not exceed 
a0/2 within a wide range of variation of the 
nonlinearity parameter 20 ≤ <⎜R⎜> ≤ 30; in this case, 
for the values 20 ≤ <⎜R⎜> ≤ 30, the control based on the 
simplex method enables one to increase the energy 
W0(T) over the control period by 1.5 times, on the 
average, as compared with the cases of propagation of a 
collimated or focused beams. 

 

TABLE II. Relative control efficiency η(12τV) 
depending on the nonlinearity parameter and the 
variance of wind velocity pulsations. 
 

Control ⎜R0⎜ 
basis and 10 20 30 

the number σV/V0 

of variables 0.1 0.3 0.5 0.1 0.3 0.5 0.1 0.3 0.5

(6) N = 5 1.34 1.37 1.33 1.49 1.45 1.38 1.55 1.56 1.61

(9) N = 4 1.38 1.51 1.46 1.50 1.52 1.47 1.46 1.58 1.68

(10) N = 3 1.54 1.58 1.56 1.49 1.49 1.50 1.51 1.61 1.65

 

Let us now consider the problem on control of a 
beam propagating in a randomly inhomogeneous 
nonlinear medium, described by Eqs. (1) and (2) with 
regard for all terms. The correction efficiency is  
estimated, as previously, based on the normalized total 
light energy coming to a receiving aperture during the 
control time T. First we need to determine the manner 
in which the control basis dimension influences its 
efficiency. The results of numerical simulation of the 
light beam phase control in this problem are presented 
in Table III. 

 

TABLE III. Average values and standard deviations 
of the control efficiency η(12τV). The conditions of 
propagation are characterized by R0 = $20, 
σV/V0 = 0.3, TV = 2τV. 
 

 Control basis 

Parameter (6) 
N = 5 

(9) 
N = 4 

(10) 
N = 3

U = 0, 
N= 0 

σ
η
 0.34 0.39 0.46 0.46 

<η> 1.60 1.57 1.68 1.00 

 

The values of the relative control efficiency, 
calculated in the interval T = 12τV, are averaged over 
10 realizations. It is clear that the most effective  
 

control is in the three-dimensional basis although five-
dimensional basis enables one to achieve less spread of 
energy coming to the receiving aperture. As a whole, 
one can state that the phase correction based on the 
simplex method is efficient in a wide range of the 

parameter Cn
2. This is confirmed by the results of 

numerical simulations given in Table IV. 

 

TABLE IV. Average values of the focusing criterion, 
the shift of the beam energy center, and energy radius 
when controlling based on the simplex search 
algorithm. The conditions of propagation are 
characterized by the parameters R0 = $20, T = 25τV, 
TV = 5τV. 
 

σV/V0
Cn

2,  
cm$2/3

<Jf> <xc>/a0 <ae>/a0

0.1 6.4⋅10$14 0.33±0.06 $0.30±0.15 1.36±0.05

0.1 6.4⋅10$13 0.32±0.02 $0.27±0.12 1.37±0.05

0.1 6.4⋅10$12 0.31±0.02 $0.27±0.16 1.36±0.05

0.3 6.4⋅10$14 0.330±0.02 $0.27±0.15 1.36±0.05

0.3 6.4⋅10$13 0.32±0.03 $0.25±0.16 1.35±0.04

0.3 6.4⋅10$12 0.33±0.03 $0.21±0.12 1.32±0.04

0.5 6.4⋅10$14 0.32±0.02 $0.33±0.12 1.50±0.03

0.5 6.4⋅10$13 0.31±0.02 $0.33±0.11 1.51±0.04

0.5 6.4⋅10$12 0.32±0.03 $0.30±0.10 1.53±0.03

 

CONCLUSION 

 

This paper describes the analysis of propagation of 
high-power light beams in the turbulent atmosphere, 
which makes it possible to conclude that: 

1. Wind velocity pulsations along the path, caused 
by the large scale atmospheric vortices, result in the 
improvement of propagation conditions as compared 
with the case of stationary medium, despite of the 
increase of the root-mean-square beam radius with the 
growth of the wind velocity fluctuation intensity. The 
observed decrease of the mean shift of its center of 
gravity results, on the average, in the increase of the 
light field concentration on the target. Thus, with the 
increase of standard deviation of wind velocity from 
zero up to the half of mean value of wind velocity, the 
focusing criterion, averaged over the time and 
realizations, increased by 10 or 15%. Simultaneously 
with this the standard deviations of the focusing 
criterion, the shifts of the beam center of gravity and 
its radius increased by a factor of two or three. 

2. Within a wide range of values of the structural 

constant Cn
2, the large scale refractive index 

fluctuations, occurring simultaneously with the wind 
velocity pulsations, do not practically result in the 
variation of the light field mean concentration on the 
target causing a slight increase (up to 10%) of 
statistical variance of the focusing criterion and a 
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marked increase (by 10$60%) of the variance of the 
shift of the beam center of gravity and its rms radius. 

3. Adaptive compensation for high-power light 
beam distortions in the turbulent atmosphere based on 
the simplex method with optimized parameters makes it 
possible to increase the mean light energy coming to 
the target, as compared with the case of uncontrolled 
beam (collimated or focused), on the average, by 70 or 
80%. This effect is mainly due to a decrease in the 
controlled mean beam shift (by 20$60%) and its energy 
radius (by 15$30%). Simultaneously in the control we 
observe a considerable decrease of variances of the beam 
energy parameter fluctuations. 
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