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We propose here a universal algorithm indented for calculation of the optical 
characteristics of two-layer spherical particles with homogeneous core and cover. 
The algorithm allows calculating without any limitation on the radius and values 
of the complex refractive indices of the core and the cover, while being sufficiently 
accurate for simulations of the optical properties of atmospheric aerosol. The 
algorithm is based on the conversion of formulas for the coefficients of Mie series 
which allows to avoid calculations of the Riccati-Bessel functions of the complex 
argument, that provides its stability when computing. The asymptotic formulas 
have been derived for the case of big particles with strongly absorbing cover. The 
algorithm has been tested by comparing with independent calculations as well as 
using special tests for the cases of very small and very big particles. 

 
The algorithms for calculating optical characteristics 

of two-layer spherical particles of the "sphere in a shell" 
type have a great significance for simulating optical 
properties of the atmospheric aerosol along with the 
algorithms for calculating the characteristics of 
homogeneous spheres based on the classical Mie theory. 
Such particles can appear, for example, as a result of the 
processes of moistening aerosol particles in humid air and, 
as calculations show, have optical characteristics 
essentially different from those of dry particles.1  
Theoretical solution of the problem on scattering of 
electromagnetic waves on two-layer spheres was obtained 
long ago (for example, see formulas in Ref. 2). 

However, big difficulties arise when trying to reduce 
these solutions to computer programs.  Below we analyze 
the causes of these difficulties.  It finally results in the 
fact that all the algorithms2$5 available have a limited 
applicability, one can not use them for big particles and 
for particles with strongly absorbing cover.  Such 
limitations restrict our abilities to simulate optical 
characteristics of the atmospheric aerosol.  In this paper 
we propose a new algorithm free of any limitations on the 
parameters calculated in the range of their possible values 
in the problems of the numerical simulation of the 
atmospheric aerosol optical characteristics. 

The model of a two-layer particle is two 
homogeneous concentric spheres. The inner sphere is the 
core, and the external one is the cover. the particle is 
characterized by the following parameters: r is the 
outer radius (radius of the cover); g is the ratio of the 
inner to outer radii of the sphere (0 < g < 1); M1 is 
the complex refractive index of the core; M2 is the  
 

complex refractive index of the cover and M is the 
refractive index of the surrounding medium (let it be 
real). Following Ref. 2, let us set the complex refractive 
indices in the form of two different parameters: real and 
imaginary parts, and formally unite them by the plus 
sign: M1 = n1 + iκ1, and M2 = n2 + iκ2. Such a 
nonstandard form of the expression for the complex 
refractive index has some advantages for practical 
programming. 

The difference between the cases with two-layer 
spheres and the homogeneous ones is only in the formulas 
used for calculation of the coefficients an and bn of the 
Mie series. The structure of the scattering phase matrices, 
formulas for calculation of the scattering and extinction 
cross-sections, elements of the scattering phase matrix and 
the coefficients of the expansion of the scattering phase 
functions into the series over the Legendre polynomials 
are unchanged.2,6 

Absorption and scattering of light by the sphere with 
cover are characterized by six dimensionless parameters: 

 

y = 2π M r/λ  x = gy  m1 = M1/M   m2 = M2/M, (1) 
 
where λ is the wavelength (the values x and y are real, 
the complex numbers are the pair of parameters). 

Let us write the initial formulas presented in Ref. 2 
on the page 609 for calculation of an and bn in the form 
convenient for practical calculations, by slightly 
modifying the designations 

 

An = ψn(m2 x) 
mDn(m1 x) $ Dn(m2 x)

mDn(m1 x) χn(m2 x) $ χ′n(m2 x) , 
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Bn = ψn(m2 x) 
mDn(m2 x) $ Dn(m1 x)

m χ′n(m2 x) $ Dn(m1 x) χn(m2 x) , (2) 

 

cn = 
Dn(m2 y) $ An χ′n(m2 y)/ψn(m2 y)

1 $ An χn(m2 y)/ψn(m2 y)  , 

 

dn = 
Dn(m2 y) $ Bn χ′n(m2 y)/ψn(m2 y)

1 $ Bn χn(m2 y)/ψn(m2 y)  , (3) 

 

an = 
(cn/m2 + n/y) ψn(y) $ ψn$1(y)
(cn/m2 + n/y) ξn(y) $ ξn$1(y)  , 

 

bn = 
(m2 dn + n/y) ψn(y) $ ψn$1(y)
(m2 dn + n/y) ξn(y) $ ξn$1(y)  , (4) 

 
where m = m2/m1; ψn(z), ψn′(z), χn(z), χn′(z), ξn(z) 
are the Riccati-Bessel functions of the complex 
argument and their derivatives; Dn(z) = ψn′(z)/ψn(z). 
The below recursion formulas2 are valid for the Riccati-
Bessel functions: 
 

ψn+1(z) = 
2n + 1

z  ψn(z) $ ψn$1(z),  ψ$1(z) = cos z,   

ψ0(z) = sin z, 

 

χn+1(z) = 
2n + 1

z  χn(z) $ χn$1(z),  χ$1(z) = $ sin z,   

 

χ0(z) = cos z, 
 

ξn(z) = ψn(z) $ i χn(z), (5) 
 

ψ′n(z) = ψn$1(z) $ 
nψn(z)

z  , 

 

χ ′n(z) = χn$1(z) $ 
nχn(z)

z  . (6) 

 
The main difficulty in calculations is the necessity of 
calculating the Riccati-Bessel function of the complex 
argument, because the overflow or fast accumulation of 
the calculational error appears at big imaginary part, z. 
One can overcome these problems in the case of 
homogeneous spheres by introducing the logarithmic 
derivative, i.e. the function Dn(z). the following 
relationship can be derived for it from Eqs. (5) and 
(6): 

 

Dn(z) = $ 
n
z + 

1
n/z $ Dn$1(z)

 D0(z) = cot z. (7) 

 

This relationship makes it possible to calculate 
Dn(z) using the inverse recurrence formula2,7: 

 

Dn$1(z) = 
n
z $ 

1
n/z + Dn(z)

 , (8) 

 

that is sufficiently stable to the accumulation of the 
error in calculations. 

By introducing the additional function αn(z), 
according to Ref. 7 

 

αn(z) = z 
ψn$1(z)
ψn(z)

 ,    Dn(z) = 
αn(z) $ n

z  , (9) 

 

we obtain from Eqs. (5) and (6): 
 

αn(z) = 2n + 1 $ 
z2

αn+1(z)
 , (10) 

 

from which the expansion of αn(z) into the continuous 
fraction7 follows 

 

αn(z) =  

= 2n + 1 $ 
z2

2n + 3 $ z2/{2n + 5 $ [z2/(2n + 7 $ ...)]}
 . (11) 

 

In order to practically calculate the continuous 
fraction (11), the authors of Ref. 7 suggested an 
alternative form for it, which leads to the following 
scheme taking into account the known recursion 
algorithm for calculation of the continuous fractions: 

 
αn(z) = lim

k→∞
 (Pk/Qk); 

 

Pk = tk Pk$1 + Pk$2 ,  Qk = tk Qk$1 + Qk$2 , 
 

P$1 = 1,  Q$1 = 0,  P0 = 2n + 1,  Q0 = 1, 
 

tk = 2n + 2k + 1 for even k,  
 

tk = $ (2n + 2k + 1)/z2   for   odd  k. (12) 
 

Iterations are being done, when calculating by 
Eq. (12), until the difference between the ratio of the 
absolute values αn(z) obtained for the values k $ 1 and 
k and is less then a preset small value.  We took this 
value 10$9, that provided practical coincidence of the 
results of calculation of Dn(z) by the formula of inverse 
recursion (8) and by the continuous fraction (12). 

Using the functions Dn(z) and αn(z) makes it 
possible to calculate for homogeneous spheres at any 
possible values of radius and complex refractive index. 
Our experience of such calculations shows that it is 
optimal to use the combination of the inverse recursion 
(8) and the direct calculation of Dn(z) by Eqs. (9) and 
(12) both for the initial start of the inverse recursion 
and for repeated (reference) starts after some thousand 
iterations of the inverse recursion. 

Let us apply similar approach to the case with 
two-layer spheres.  Let us introduce the function 
Cn(z) = χn′(z)/χn(z) in addition to Dn(z). The 
recursion formulas analogous to Eqs. (7) and (8) 
follows for the function Cn(z) from Eqs. (5) and (6). 
But there are additional calculation difficulties here, 
because one can not start the inverse recursion for 
Cn(z) from zero, otherwise we obtain Cn(z) = Dn(z) for 
any n, what is not valid. 
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Let us note that the formula of the inverse 
recursion (8) makes it possible to formally consider 
both positive and negative values of the index n. Then 
from the relation between the initial values 

 

C0(z) = $ tan z = $ 1/cot z = $ 1/D0(z) = D$1(z)  
 

for formula (8) and the recursion formula analogous to 
Eq. (7) it follows, for the function Cn(z), that 
 

Cn(z) = D$n$1(z). (13) 
 

This makes it possible to consider the function 
Dn(z) only with any integer values of the index. 

To calculate Dn(z) at negative values n, the 
formula of inverse recursion (8) was used. the stability 
of calculations by Eq. (8) was examined by the 
comparison of the results with that obtained by means 
of the continuous fraction (12). The coincidence of 
practically all significant digits was obtained at any 
actual values of real and imaginary parts of z. 

To pass from positive to negative n values when 
calculating Dn(z), it is better not to use the values D0(z) 
and D$1(z) (cotz and $ tanz, respectively), since when 
calculating them for some values z the overflowing or the 
loss of accuracy can occur. The explicit formula is 
recommended for passing from D1(z) to D$2(z): 

 

D$2(z) = 
z2 $ z4 $ zD1(z) $ 1

z + z2 (1 + z2 D1(z))
 . 

 

Then, by introducing an additional function 

Fn(z1, z2) = 
ψn(z1)χn(z2)
ψn(z2)χn(z1)

, dividing the nominator and 

denominator in Eq. (2) by χn(m2x) and taking into 
account that χn′(z)/ψn(z) = Cn(z)χn(z)/ψn(z), we can 
write Eqs. (2) and (3) in the form: 

 

An = 
mDn(m1 x) $ Dn(m2 x)

mDn(m1 x) $ D$n$1(m2 x) ; 

 

Bn = 
Dn(m1 x)/m $ Dn(m2 x)

Dn(m1 x)/m $ D$n$1(m2 x) ; 

 

cn = 
Dn(m2 y) $ D$n$1(m2 y) An Fn(m2 x, m2 y)

1 $ An Fn(m2 x, m2 y)  ; 

 

dn = 
Dn(m2 y) $ D$n$1(m2 y) Bn Fn(m2 x, m2 y)

1 $ Bn Fn(m2 x, m2 y) . (14) 

 

Thus, using Eqs. (4) and (14) is avoiding the 
calculations of the Riccati-Bessel functions of the 
complex argument. 

The recursion relationship for Fn(z1, z2) follows 
from Eqs. (5) and (6) 

 

Fn+1(z1, z2) =  

= Fn(z1, z2) 
(D$n$1(z1) + n/z1) (Dn(z2) + n/z2)
(Dn(z1) + n/z1) (D$n$1(z2) + n/z2)

 . (15) 

 

Then we obtain for calculating the initial value 
F1(z1, z2) from D0(z) = cot z, Eqs. (5), and (8), 
taking into account that z1 = m2 x and z2 = m2 y, 

 

F1(z1, z2) = g3 
1 + (z2 + z3

2) D1(z2)

1 + (z1 + z3
1) D1(z1)

 . 

 
According to Ref. 2, the number of terms to be 

summed in the Mie series for a two$layer sphere is 
selected in the same way for a homogeneous sphere of 
the radius r, by the empirical formula 
 
N = 2 + y + 4 y1/3. 

 
The accumulation of the computer error can occur 

when calculating the values An and Bn at small values 
of the parameter g, i.e. when the core radius is much 
less then the cover radius.  It is the result of the 
recursion going beyond the limits of the appropriate 
values of the index.  So, using the recommendations 
from Ref. 2, let us introduce the parameter 

 

Nx = p (2 + x + 4 x1/3) , 

 
where p is some "amplifying" coefficient, for which the 
value p = 2 is recommended. We have selected it by 
tracking the process of approaching of the expressions 
AnFn(m2 x, m2 y) and BnFn(m2 x, m2 y) to zero. Then, 
starting with the numbers n > Nx, let us assume that 
An Fn(m2 x, m2 y) = 0, Bn Fn(m2 x, m2 y) = 0, and 
Eqs. (4) for an and bn coincide with the formulas for 
uniform particles. Therefore, using this asymptotics for 
small g, the sphere inhomogeneity is taken into account 
only for the first Nx coefficients of the series, i.e. as a 
small correction of the case of a uniform sphere, that 
agrees with the physical meaning of the phenomena 
under consideration. 

Let us also note that from Eq. (14) it follows that 
if m1 = m2, then An = 0 and Bn = 0, i.e. the formulas 
for an and bn are also transformed to the formulas for a 
homogeneous particle. 

The case of big particles with strongly absorbing 
cover is most difficult for calculations. Let us consider 
it separately. 

As follows from the explicit expressions for real and 
imaginary parts of tangent and cotangent of a complex 
argument at big imaginary parts, m2 x, (and then m2 y) 
the initial values of the functions D0(m2x) and  
D$1(m2 x) are different from the value $ i by the term of 
the order of exp ($ 2x κ2) that becomes vanishing and 
can be much less than the computer error in calculation 
as x and κ2 increase. The recursion formula for the 
difference Dn(z) $ D$n$1(z) follows from Eq. (7): 
 

Dn(z) $ D$n$1(z) = (Dn$1(z) $ D$n(z)) × 
 

× (Dn(z) + n/z) (D$n$1(z) + n/z) , 
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i.e. the difference Dn(z) $ D$n$1(z) remains small in 
the case considered. So, if the value 2xκ2 is sufficiently 
big, for example xκ2 > R, where R is some value, the 
choice of which we will discuss below, then one can 
suppose D$n$1(m2 x) = Dn(m2 x) and D$n$1(m2 y) = 
= Dn(m2 y) without any loss of the calculations 
accuracy. 

But, in this case the uncertainty of the type of 
0/0 appears when calculating the values cn and dn. To 
remove it, let us take the difference of D$1(m2x) from 
D0(m2x) and D$1(m2y) from D0(m2y) in Eqs. (14) and 
(15) in the explicit form and consider only the terms of 
the first order of smallness. As a result, we obtain, 
after the transformations, that 

 

cn = Dn(m2 y) + 
V(mDn(m1x) $ Dn(m2 x))

Tn(m2y)
Tn(m2 x) + (mDn(m1x) $ Dn(m2x)) (Sn(m2x) $ VSn(m2y)) Tn(m2y)

 ; 

 

dn = Dn(m2 y) + 
V(Dn(m1 x)/m $ Dn(m2 x))

Tn(m2 y)
Tn(m2 x) + (Dn(m1 x)/m $ Dn(m2 x)) (Sn(m2 x) $ VSn(m2 y)) Tn(m2 y)

 ; 

 
V = (cos (2y (1 $ g) n2) + i sin (2y (1 $ g) n2)) exp ($ 2y (1 $ g) κ2); 

 

Tn(z) = 
Tn$1(z)

(Dn(z) + n/z)2 , T0(z) = 1; 

 

Sn(z) = Sn$1(z) + 
1

Tn(z) (Dn(z) + n/z) ,   S0(z) = i/2. (16) 

 
The formulas (16) are the asymptotic formulas for 

the big particles with strongly absorbing cover and 
have a simple physical meaning. The fraction in the 
expressions for cn and dn determines the effect of the 
particle core. It is proportional to the value 
exp($2y(1 $ g)κ2). Hence, the thicker is the cover, the 
less is the effect of the core on the optical properties of 
the particle. In particular, if the value y(1 $ g)κ2 is 
sufficiently big, namely y(1 $ g)κ2 > R, one can ignore 
the effect of the core and consider cn = dn = Dn(m2y). 
As a result, Eq. (4) reduces to formulas for a uniform 
particle. 

One can finally formulate the following logical 
order of the algorithm proposed.  If yκ2 > 2R and 
y(1 $ g)κ2 > R, one should make calculations in the 
same way as in the case with uniform particles without 
taking into account the core, i.e. assuming 
cn = dn = Dn(m2 y) in Eq. (4).  On the contrary, if 
xκ2 > R, one should make calculations by Eqs. (16) 
and (4) and if xκ2 < R Eqs (14) and (4) should be 
used. 

The value of the parameter R was specially 
selected.  It should not be too big, because the false 
results can appear at xκ2 < R, but it also should not be 
too small, otherwise we leave the frameworks of the 
applicability limits of asymptotic formulas.  When 
testing the algorithm, we selected the value R = 6. The 
error in passing to the asymptotic formulas estimated 
from the results of numerical simulation was about 1% 
for this value, what is quite acceptable for practical 
calculations of the optical characteristics of ensembles 
of aerosol particles. 

But, in spite of all contrivances, the cases of 
incorrect operation of the algorithms appear at 

y > 30000, for nonabsorbing cores and xκ2 less but 
close to R. it is connected with the fact that the 
imaginary part of the functions Dn(z) and D$n$1(z) 
was close to 1 in these cases, and the imaginary part of 
the value n/z was too small; the smallest digits of n/z 
are lost when summing.  That finally results in the 
enhanced values of the imaginary parts of the 
coefficients an and bn,, and, hence, in negative 
absorption.  As it was revealed during tests, this error 
appears already in the coefficients an and bn, with small 
numbers, (starting with the first one), i.e. it is the 
result of the aforementioned peculiarity, and not the 
accumulation of the error during the recursions. 

To avoid the consequence of this peculiarity in the 
algorithm, we applied a mathematically incorrect but 
practically justified approach.  If the contribution from 
absorption into the sum of the series is negative, then 
the imaginary parts of an and bn, are multiplied by the 
coefficient less than 1 that is selected so that the 
contribution coming from the term of the series is equal 
to 1 $ exp($2(1 $ g)yκ2), i.e., the asymptotic value 
obtained based on geometric optics. Justification of 
such a fitting is in the fact that it makes it possible to 
obtain correct values of the scattering parameters and 
does not affect the value of the extinction factor. The 
error in the scattering and extinction factors is just a 
few percent, as the calculation estimates showed, that 
is quite acceptable for practical calculations, especially 
if one takes into account that when calculating the 
optical characteristics of aerosol particles in the 
atmosphere, the integration is performed over the 
ensemble where the region y > 30000 either is not 
included into the integral, or its contribution is very 
small. Moreover, the correction is not always necessary 
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even for y > 30000, but only in some cases of the 
particles with nonabsorbing core and thin absorbing 
cover. 

The comparison of calculations by the algorithm 
proposed with the results from Ref. 8 was used as a 
formal test of the algorithm. Good agreement between 
the results was obtained (the coincidence was estimated 
visually for the plots, the difference for tables was no 
larger than 2%, except for two wavelengths where it 
was of the order of 10%). In addition, we compared our 
data with the results of calculations by the FORTRAN 
program from Ref. 2 was carried out. The comparison 
was carried out for different values of the parameters, 
and the results coincided accurate to the 5th digit in 
the range of stable operation of the program from 
Ref. 2 (including the cases of disagreement with 
Ref. 8). 

In addition to formal tests of the algorithm, it is 
important to establish the boundaries of its 
applicability both in the range of small values of the 
parameter y and for the big ones also. 

The asymptotic approximation derived similarly to 
the asymptotic formulas for uniform spheres presented in 
Ref. 2 was used for testing in the range of small particles.  
As to the uniform spheres, the term of the series a1 has 

the order 33, b1 and a2 are of the order of y5, and b2 is of 

the order of y7. Hence, for testing the algorithm at small 
y it is sufficient to compare only the term a1 with its 
asymptotic value that has the following form, accurate to 

the terms of the order of y5: 
 

a1 = 
2
3 iy3 × 

 

× 
(1 $ m2

2) (2 m
2
2 + m2

1) + g3 (m2
2 $ m2

1) (1 + 2 m2
2)

(2 + m2
2) (2 m

2
2 + m2

1) $ 2 g3 (m2
2 $ m2

1) (2 m
2
2 $ 1)

 .  

  (17) 
 

The results obtained by the algorithm proposed start to 
differ from Eq. (17) at some value of the parameters by 

more than 5% for y < 7⋅10$6, that is out of the lowest 
threshold of possible y values for practical calculations 
(it is interesting to note that for uniform particles this 
threshold is approximately one order of magnitude less, 
its increase occurs at big values g, very close to 1). 

The system of tests based on the tests from Ref. 2 
was used in the range of big y. 

Test 1. the extinction and scattering factors Qe 
and Qs should be positive at any values of the 
parameters, and the conditions Qe > Qs, if κ1 ≠ 0 and 
κ2 ≠0, and Qe = Qs if κ1 = κ2 = 0 should be fulfilled. 

Test 2. The elements S12 and S34 of the scattering 
phase matrix should equal zero at the scattering angles 
of 0 and 180°. 

Test 3. The identity 
 

S12

S11
 + 

S33

S11
 + 

S34

S11
 = 1 

should hold for all elements of the scattering phase 
matrix at all angles. 

Test 4. The alternative relationship for the 
expression of the extinction factor through the real part 
of the element of the complex scattering phase matrix 
should hold (see Ref. 2). 

Test 5. The extinction factor should approach 2 as 
y increases, except for the case of the hollow particles 
(n1 = 1, κ1 = 0) with thin cover (see test 9). 

Test 6. The asymptotic relationship obtained in 
Ref. 2 for the backscattering factor should hold at big 
y for particles with a sufficiently thick absorbing cover: 

 

Qb = 
(n2 $ 1)2 + κ2

2

(n2 + 1)2 + κ2
2
 . 

 
Test 7. All optical characteristics of a two-layer 

particle should equal the corresponding characteristics 
of a uniform particle at any values g and y, if n1 = n2 
and κ1 = κ2. 

Test 8 (taken from Ref. 3). Let a particle have an 
absorbing core κ1 ≠ 0 and nonabsorbing cover κ2 = 0. 
Then, as the cover increases at the constant core radius, 

the absorption cross-section (the product of πy2 and the 
extinction factor) asymptotically approaches some 
constant value only depending on the core radius, n1, 
κ1 and n2. 

Test 9. Let us assume that we have a big hollow 
particle (n1 = 1, κ1 = 0) with a very thin cover. Then, 
if the cover thickness is much less than the light 
wavelength, the extinction factor should approach zero. 
The interference phenomena in the thin cover should be 
observed at the growth of the cover to the thickness 
comparable with the light wavelength. The dependence 
of the extinction factor on the cover thickness should 
be oscillating. The extinction factor should approach 2 
for the cover thickness much greater than the 
wavelength. 

The results of operation of the algorithm proposed 
were examined at different values of the parameters up 
to y = 400000. The examination showed full agreement 
with all criteria. 

The tests 1, 8 and 9 are most "strong". Test 1 was 
the test, the results of which were the base for the 
development of the technique for correction of the 
values an and bn at y > 30000. The absorption factor in 
the test 8 decreases as the cover increases.  So the 
absorption cross-section is the product of a very small 
value by a very big one, but the test 8 perfectly holds 
even at y = 400000. Moreover, we obtained practically 
full coincidence between the asymptotic values of the 
absorption cross-section with the values presented in 
Ref. 3 for this test. The test 6 that is considered as 
most "strong" for the uniform particles, is not 
illustrative in our case, because in the case of thick 
strongly absorbing cover the calculations are performed 
by formulas for uniform particles, for which the 
validity of this test is proved. 
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Let us present the results of the model 
calculations as an illustration of the algorithm 
operation. The wavelength was taken to be equal to 
0.35 μm in all calculations. 

Dependence of the extinction, scattering and 
absorption factors of big water particles with thin 
soot cover (model of the urban fog) r = 10 μm, 
n1 = 1.33, κ1 = 0, n2 = 1.74, κ2 = 0.73 on the cover 
thickness (parameter 1 $ g) is shown in Fig. 1. 

 
FIG. 1 Dependence of the extinction, scattering, and 
absorption factors of the particle with r = 10 μm, 
n1 = 1.33, κ1 = 0, n2 = 1.74, κ2 = 0.73 on the cover 
thickness;  1) extinction factor; 2) scattering factor; 3) 
absorption factor. 
 

Figure 2 shows the dependence of the scattering 
and absorption factors of very big ice particles with 
thin soot cover (model of the comet substance) 
n1 = 1.33, κ1 = 0, n2 = 1.74, κ2 = 0.73 on the cover 
thickness (parameter 1 $ g) for three values of the 
particle size r = 25, 250 and 2500 μm. 

An example of the interference in thin films is 
shown in Fig. 3. It is the dependence of the 
extinction factor of the hollow particle with the 
cover of the hardened magma (model of the volcanic 
aerosol) n2 = 1.52, κ2 = 0 for two radii r = 5 and 50 
μm on the cover thickness. 

Thus, the algorithm proposed makes it possible 
to calculate the optical characteristics of the two-
layer spherical aerosol particles with homogeneous 
core and the cover at any values of the parameters 
with the accuracy sufficient for the practical 
calculations. Let us note for care, that big number of 
the parameters of the problem makes it impossible a 
detailed consideration of their combinations when 
testing the algorithm, so no full guarantee can be 
provided that there is no such values of the 
parameters for which the algorithm proposed give too 
big errors or false results. 
 

 
 

FIG. 2. Dependence of the scattering (curves above 
unit level) and absorption (curves below unit level) 
factors of particles with n1 = 1.33, κ1 = 0, n2 = 1.74, 
κ2 = 0.73 on the cover thickness 1)  r = 25 μm; 
2) r = 250 μm; 3) r = 2500 μm. 
 

 
 

FIG. 3. Dependence of the extinction factor of the 
hollow particle with n1 = 1, κ1 = 0, n2 = 1.52, κ2 = 0 
on the cover thickness  1) r = 5 μm; 2) r = 50 μm. 
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