Vol. 35, issue 07, article # 5

Odintsov S. L., Gladkikh V. A., Kamardin A. P., Nevzorova I. V. Altitude of the mixing layer under conditions of temperature inversions: experimental data and model estimates. // Optika Atmosfery i Okeana. 2022. V. 35. No. 07. P. 549–558. DOI: 10.15372/AOO20220705 [in Russian].
Copy the reference to clipboard
Abstract:

Model estimates of the altitude of the mixing layer in the atmospheric boundary layer under conditions of temperature inversions are compared with the experimentally estimated altitude of the layer of intense turbulent heat exchange. The experimental data are received with the temperature-wind system consisting of meteorological acoustic lidar (sodar), meteorological temperature profilometer, and ultrasonic anemometers-thermometers. It is shown that under conditions of temperature inversions, the altitude of the mixing layer calculated by the model equations is usually much smaller than the altitude of the layer of turbulent heat exchange.

Keywords:

temperature inversion, atmospheric boundary layer, mixing layer, sodar, temperature profilometer, turbulent heat exchange, ultrasonic anemometer-thermometer

References:

  1. Odintsov S.L., Gladkih V.A., Kamardin A.P., Nevzorova I.V. Vysota oblasti intensivnogo turbulentnogo teploobmena v ustojchivo stratifitsirovannom pogranichnom sloe atmosfery. Part 1: Metodika otsenok i statistika // Optika atmosf. i okeana. 2020. V. 33, N 10. P. 782–790; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Height of the region of intense turbulent heat exchange in a stably stratified atmospheric boundary layer: Part 1 – Evaluation technique and statistics // Atmos. Ocean. Opt. 2021. V. 34, N 1. P. 34–44.
  2. Odintsov S.L., Gladkih V.A., Kamardin A.P., Nevzorova I.V. Vysota oblasti intensivnogo turbulentnogo teploobmena v ustojchivo stratifitsirovannom pogranichnom sloe atmosfery. Part 2: Vzaimosvyaz' s prizemnymi meteorologicheskimi parametrami // Optika atmosf. i okeana. 2020. V. 33, N 11. P. 880–889; Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Height of the region of intense turbulent heat exchange in a stably stratified boundary layer of the atmosphere. Part 2: Relationship with surface meteorological parameters // Atmos. Ocean. Opt. 2021. V. 34, N 2. P. 117–127.
  3. Kamardin A.P., Gladkikh V.A., Mamyshev V.P., Nevzorova I.V. Odintsov S.L., Trofimov I.V. Estimation of the height of intense turbulent heat exchange layer in the stably stratified atmospheric boundary layer // Proc. SPIE. 2020. V. 11560. DOI: 10.1117/12.2574268.
  4. Odintsov S.L., Gladkikh V.A., Kamardin A.P., Nevzorova I.V. Determination of the structure characteristic of refractive index of optical waves in the atmospheric boundary layer with remote acoustic sounding facilities // Atmosphere. 2019. V. 10, iss. 11. DOI: 10.3390/atmos10110711.
  5. Richardson H., Basu S., Holtslag A.A.M. Improving stable boundary-layer height estimation using a stability-dependent critical bulk Richardson number // Bound.-Lay. Meteorol. 2013. V. 148, N 1. P. 93–109. DOI: 10.1007/s10546-013-9812-3.
  6. Zhang Y., Gao Z., Li D., Li Y., Zhang N., Zhao X., Chen J. On the computation of planetary boundary-layer height using the bulk Richardson number method // Geoscie. Model Development. 2014. V. 7. P. 2599–2611. DOI: 10.5194/GMD-7-2599-2014.
  7. Coen M.C., Praz C., Haefele A., Ruffieux D., Kaufmann P., Calpini B. Determination and climatology of the planetary boundary layer height above the Swiss plateau by in situ and remote sensing measurements as well as by the COSMO-2 model // Atmos. Chem. Phys. 2014. V. 14. P. 13205–13221. DOI: 10.5194/acp-14-13205-2014.
  8. Zilitinkevich S., Baklanov A. Calculation of the height of the stable boundary layer in practical applications // Bound.-Lay. Meteorol. 2002. V. 105, N 3. P. 389–409.
  9. Holdsworth A.M., Monahan A.H. Turbulent collapse and recover in the stable boundary layer using an idealized model of pressure-driven flow with a surface energy budget // J. Atmos. Sci. 2019. V. 76, N 5. P. 1307–1327.
  10. Pietroni I., Argentini S., Petenko I., Sozzi R. Measurements and parametrizations of the atmospheric boundary-layer height at dome C, Antarctica // Bound.-Lay. Meteorol. 2012. V. 143, N 1. P. 189–206.
  11. Banah V.A., Smaliho I.N., Falits A.V. Opredelenie vysoty sloya turbulentnogo peremeshivaniya vozduha iz lidarnyh dannyh o parametrah vetrovoj turbulentnosti. // Optika atmosf. i okeana. 2021. V. 34, N 3. P. 169–184. DOI: 10.15372/AOO20210303.
  12. Sun H., Shi H., Chen H., Tang G., Sheng C., Che K., Chen H. Evaluation of a method for calculating the height of the stable boundary layer based on wind profile lidar and turbulent fluxes // Remote Sens. 2021. V. 13. P. 3596. DOI: 10.3390/rs13183596.
  13. Huang M., Gao Z., Miao S., Chen F., LeMone M.A., Li J., Hu F., Wang L. Estimate of boundary-layer depth over Beijing, China, using Doppler lidar data during SURF-2015 // Bound.-Lay. Meteorol. 2017. V. 162, N 3. P. 503–522. DOI: 10.1007/s10546-016-0205-2.
  14. Zhong T., Wang N., Shen X., Xiao D., Xiang Z., Liu D. Determination of planetary boundary layer height with lidar signals using maximum limited height initialization and range restriction (MLHI-RR) // Remote Sens. 2020. V. 12. P. 2272. DOI: 10.3390/rs12142272.
  15. Kotthaus S., Haeffelin M., Drouin M.-A., Dupont J.-C., Grimmond S., Haefele A., Hervo M., Poltera Y., Wiegner M. Tailored algorithms for the detection of the atmospheric boundary layer height from common automatic lidars and ceilometers (ALC) // Remote Sens. 2020. V. 12. P. 3259. DOI: 10.3390/rs12193259.
  16. Schäfer K., Emeis S., Höß M, Cyrys J., Pitz M., Münkel C., Suppan P. On a relation between particle size distribution and mixing layer height // Proc. SPIE. 2011. V. 8177. P. 81770H-01–12. DOI: 10.1117/12.898194.
  17. Dang R., Yang Y., Hu X., Wang Z., Zhang S. A review of techniques for diagnosing the atmospheric boundary layer height (ABLH) using aerosol lidar data // Remote Sens. 2019. V. 11. P. 1590. DOI: 10.3390/rs11131590.
  18. Zhang H., Zhang X., Li Q., Cai X., Fan S., Song Y., Hu F., Che H., Quan J., Kang L., Zhu T. Research progress on estimation of the atmospheric boundary layer height // J. Meteorol. Res. 2020. V. 34, N 3. P. 482–498. DOI: 10.1007/s13351-020-9910-3.
  19. Emeis S., Schäfer K., Münkel C., Friedl R., Suppan P. Comparison of different remote sensing methods for mixing layer height monitoring // Proc. SPIE. 2010. V. 7827. P. 782707-01–09. DOI: 10.1117/12.865108.
  20. Seibert P., Beyrich F., Gryning S.-E., Joffre S., Rasmussen A., Tercier P. Review and intercomparison of operational methods for the determination of the mixing height // Atmos. Environ. 2000. V. 34, N 3. P. 1001–1027.
  21. Zilitinkevich S.S., Tyuryakov S.A., Troitskaya Yu.I., Mareev E.A. Teoreticheskie modeli vysoty pogranichnogo sloya atmosfery i turbulentnogo vovlecheniya na ego verhnej granitse // Izv. RAN. Fiz. atmosf. i okeana. 2012. V. 48, N 1. P. 150–160.
  22. Steeneveld G.J., van de Wiel B.J.H., Holtslag A.A.M. Diagnostic equations for the stable boundary layer height: Evaluation and dimensional analysis // J. Appl. Meteorol. Climatol. 2007. V. 46, N 2. P. 212–225.
  23. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Struktura poryvov vetra v prizemnom sloe atmosfery // Optika atmosf. i okeana. 2019. V. 32, N 4. P. 304–308. DOI: 10.15372/AOO20190408.
  24. Kamardin A.P., Gladkih V.A., Odintsov S.L., Fedorov V.A. Meteorologicheskij akusticheskij doplerovskij lokator (sodar) «VOLNA-4M-ST» // Pribory. 2017. N 4. P. 37–44.
  25. Kadygrov E.N., Kuznetsova I.N. Metodicheskie rekomendatsii po ispol'zovaniyu dannyh distantsionnyh izmerenij profilej temperatury v pogranichnom sloe mikrovolnovymi profilemerami: teoriya i praktika. Dolgoprudnyj: Fizmatkniga, 2015. 171 p.
  26. Kadygrov E.N., Ganshin E.V., Miller E.A., Tochilkina T.A. Nazemnye mikrovolnovye temperaturnye profilemery: Potentsial i real'nost' // Optika atmosf. i okeana. 2015. V. 28, N 6. P. 521–528. DOI: 10.15372/AOO20150604; Kadygrov E.N., Ganshin E.V., Miller E.A., Tochilkina T.A. Ground-based microwave temperature profilers: Potential and experimental data // Atmos. Ocean. Opt. 2015. V. 28, N 6. P. 598–605. DOI: 10.1134/S102485601506007X.
  27. Gladkih V.A., Makienko A.E. Tsifrovaya ul'trazvukovaya meteostantsiya // Pribory. 2009. N 7. P. 21–25.
  28. Odintsov S., Miller E., Kamardin A., Nevzorova I., Troitsky A., Schröder M. Investigation of the mixing height in the planetary boundary layer by using sodar and microwave radiometer data // Environments. 2021. V. 8, N 115. DOI: 10.3390/environments8110115.
  29. Arshinov M.Yu., Belan D.B., Davydov D.K., Savkin D.E., Sklyadneva T.K., Tolmachev G.N., Fofonov A.V. Mezomasshtabnye razlichiya v kontsentratsii ozona v prizemnom sloe vozduha v Tomskom regione (2010–2012 years) // Tr. IOFAN. 2015. V. 71. P. 106–117.
  30. Kamardin A.P., Nevzorova I.V., Odintsov S.L. Statistics of air temperature inversions in the atmospheric boundary layer // Proc. SPIE. 2021. V. 11916. DOI: 10.1117/12.2602482.
  31. Kamardin A.P., Gladkih V.A., Dervoedov A.S., Nevzorova I.V., Odintsov S.L., Fedorov V.A. K voprosu o vzaimosvyazi vertikal'nyh i gorizontal'nyh turbulentnyh potokov tepla v pogranichnom sloe atmosfery // Tr. XXV Mezhdunar. simpoz. «Optika atmosfery i okeana. Fizika atmosfery». 30 june – 5 july 2019 year, Novosibirsk. Tomsk: Izd-vo IOA SO RAN, 2019. P. D263–D266. URL: https://symp.iao.ru/files/symp/aoo/25/D.pdf.
  32. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Potoki tepla v prizemnom sloe atmosfery s razlozheniem iskhodnyh komponentov na razlichnye masshtaby // Optika atmosf. i okeana. 2021. V. 34, N 2. P. 129–142. DOI: 10.15372/AOO20210208; Gladkikh V.A., Odintsov S.L., Nevzorova I.V. Heat fluxes in the surface air layer with decomposition of initial components onto different scales // Atmos. Ocean. Opt. 2021. V. 34, N 6. P. 668–681. DOI: 10.1134/S1024856021060130.
  33. Gladkih V.A., Nevzorova I.V., Odintsov S.L. Osobye sluchai vertikal'nyh turbulentnyh potokov tepla na blizkih vysotah v prizemnom sloe atmosfery v zimnij period // Optika atmosf. i okeana. Fizika atmosfery: Materialy XXVII Mezhdunarodnogo simpoziuma. 5–09 july 2021 year, Moskva. Tomsk: Izd-vo IOA SO RAN, 2021. С. D285–D288. https://symp.iao.ru/files/symp/aoo/27/D.pdf.