УДК 551.509.313

В.Н. Крупчатников, А.А. Фоменко

ПОЛУЛАГРАНЖЕВА СХЕМА ПЕРЕНОСА ТРАССЕРОВ В КЛИМАТИЧЕСКОЙ МОДЕЛИ ECSIB

Представлено описание полулагранжевой, полунеявной схемы переноса в климатической модели ECSib. Полулагранжев метод имеет ряд преимуществ по сравнению с эйлеровым подходом. Дается описание численной схемы модели для уравнений момента, температуры, приземного давления, влаги и химических трассеров.

1. Введение

В рамках всемирной климатической программы (WCRP) создан проект по моделированию распределения парниковых газов и влияния их на климат. Исследование парниковых газов в атмосфере проводится совместно специалистами по динамике атмосферы и специалистами по атмосферной химии. Первым этапом этого проекта было создание глобальных моделей переноса химических трассеров (описание таких моделей и сравнение результатов моделирования по ним можно найти, например, в [1–3]).

В данной работе предлагается описание полулагранжевой версии климатической модели ECSib [5–7], где полулагранжева схема переноса используется совместно с полунеявной схемой интегрирования по времени [4]. Формулировка полулагранжева метода не зависит от способа пространственной аппроксимации уравнений системы. Обсуждается результат тестового расчета переноса пассивной примеси на сфере через полюс.

2. Полулагранжева версия климатической модели ECSib. Численная схема

Рассмотрим систему уравнений динамики атмосферы в σ-системе координат на сфере [5]. Скорости изменения импульса, вызванные вертикальной мелкомасштабной диффузией и приземным напряжением трения, описываются уравнением диффузии и уравнениями теории Монина-Обухова. Параметрически учитываются процессы конвекции и мелкомасштабной диффузии тепла и влаги, процессы конденсации и испарения влаги, перенос радиации. В качестве краевых условий для динамического оператора ставятся условия периодичности по долготе, а также условие ограниченности решения на полюсах. По вертикали ставятся следующие краевые условия:

 $\dot{\sigma} = 0$ при $\sigma = 0,1$; $\Phi_s = gz_s$ при $\sigma = 1$, где z_s — превышение земной поверхности над уровнем моря;

σ – вертикальная составляющая скорости в σ-системе

координат; g — ускорение свободного падения. На поверхности Земли заданы географическое средне-климатическое распределение льдов, температуры поверхности океана, температуры и влажности почвы на глубине 2 м, широтное распределение угла склонения Солнца и концентрация озона. Влагосодержание почвы и толщина снежного покрова меняются во времени.

Систему уравнений запишем в векторном виде, более удобном для применения полулагранжева метода.

Уравнение для момента

$$\frac{d(\mathbf{v} + 2\mathbf{\Omega} \times \mathbf{r})}{dt} = -\nabla \Phi - RT\nabla(\ln p) + F_{\mathbf{v}},\tag{1}$$

где ${\bf v}$ — вектор горизонтальной скорости; T — температура; p — давление; Φ — геопотенциал; Ω — угловая скорость вращения Земли; ${\bf r}$ — радиус-вектор, равный по длине радиусу Земли; R — газовая постоянная сухого воздуха; $F_{\bf v}$ — скорости изменения момента количества движения, обусловленные напряжениями Рейнольдса.

Уравнения для температуры, пара, жидкой фракции, льда и пассивной примеси:

$$\frac{dT}{dt} = \frac{RT}{c_p} \frac{\omega}{p} + F_T, \tag{2}$$

$$\frac{dq}{dt} = F_q,\tag{3}$$

$$\frac{dq_l}{dt} = F_{ql},\tag{4}$$

$$\frac{dq_i}{dt} = F_{qi},\tag{5}$$

$$\frac{d\chi}{dt} = F_{\chi}. (6)$$

Здесь c_p – удельная теплоемкость воздуха при постоянном объеме; ω – вертикальная составляющая скорости в p-системе координат; F_q , F_{ql} , F_{qi} – неадиаба-

тические источники (стоки); F_{χ} – член, описывающий источник (сток) и диффузию примеси.

2.1. Полулагранжева схема с вертикальной интерполяцией. Общий случай

Когда мы численно решаем уравнения динамики атмосферы, записанные в эйлеровой форме, мы вычисляем значение любой искомой величины $X(t+\Delta t)$ в момент времени $t+\Delta t$ в некоторой точке F области, зная значение $X(t-\Delta t)$ в этой же точке в момент времени $t-\Delta t$. При решении уравнений, записанных в лагранжевой форме, мы вычисляем $X(t+\Delta t)$ в точке F, зная $X(t-\Delta t)$ в некоторой другой точке G. Траектория, соединяющая точку G и точку G, является частью большого круга на сфере. Среднюю точку траектории будем обозначать буквой G. Точки G и G и минаходятся как решение нелинейной системы уравнений характеристик итерационным методом. В общем случае любое уравнение из системы G можно записать в виле

$$\frac{dX}{dt} = \mathcal{A} + \mathcal{F},$$

где \mathcal{A} – суммарный вклад динамических источников; \mathcal{F} – суммарный вклад физических источников, при этом в динамическом источнике \mathcal{A} соответственно выделяется часть \mathcal{E} , которая аппроксимируется по полунеявной схеме. Если обозначить нижними индексами (F, O, M) геометрическое положение точки, а верхними (+, -, 0) – время $(t + \Delta t, t - \Delta t, t)$ соответственно, то аппроксимация указанного уравнения примет вид

$$(X - (1 + \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{Z})_{F}^{+} = \{X^{-} + [(1 - \varepsilon_{\mathcal{A}}) \Delta t \mathcal{A} - (1 - \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{Z}]^{\pm 0} + [(1 - \varepsilon_{\Box}) \Delta t \beta \mathcal{Z} + 2\Delta t \mathcal{Z}]^{-}\}_{F,O,M} + \{[(1 + \varepsilon_{\mathcal{A}}) \Delta t \mathcal{A} - (1 + \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{Z}]^{\pm 0}\}_{F},$$

если явные члены в момент времени t вычисляются как среднее значение в конечной F и исходной O точках. Значения соответствующих величин в указанных точках находятся с помощью процедур изогеометрической интерполяции [2].

Если явные члены в момент времени t вычисляются в средней точке M (значения величин в этой точке также находятся путем интерполяции), то

$$(X - (1 + \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{B})_{F}^{+} = \{ X^{-} + [(1 - \varepsilon_{\mathcal{E}}) \Delta \beta \mathcal{B} + 2\Delta t \mathcal{F}]^{-} - [(1 - \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{B}]^{\pm 0} \}_{F,O,M} +$$

$$+ \{ [2\Delta t \mathcal{H}]^{\pm 0} \}_{M} + \{ - [(1 + \varepsilon_{\mathcal{E}}) \Delta t \beta \mathcal{B}]^{\pm 0} \}_{F},$$

 $\varepsilon_{\mathcal{A}}$ и $\varepsilon_{\mathcal{E}}$ — параметры усреднения вдоль траектории для полунеявной схемы. Операция усреднения позволяет

убрать шум (гравитационные волны). Полунеявные члены входят в уравнения с весом β.

2.2. Уравнения для момента, температуры, влажности и пассивной примеси

В дальнейшем изложении все обозначения соответствуют тем, что приняты в [5–7].

Члены в момент времени t вычисляются следующим способом:

$$\left[..\right]^{\pm 0} = \frac{(1 - \varepsilon_{\mathcal{A}}) \left[..\right]_{F,O,M}^{\pm 0} + (1 + \varepsilon_{\mathcal{A}}) \left[..\right]_{F}^{\pm 0}}{2}$$

для явных членов и

$$\left[..\right]^{\pm 0} = \frac{\left(1 - \varepsilon_{\mathcal{Z}}\right)\left[..\right]_{F,O,M}^{\pm 0} + \left(1 + \varepsilon_{\mathcal{Z}}\right)\left[..\right]_{F}^{\pm 0}}{2}$$

для полунеявных членов.

Уравнение для момента

Определение X, A, \mathcal{E} и \mathcal{F} и условия на верхней и нижней границах:

$$X = \mathbf{V} + \delta_{\mathbf{v}}(2\mathbf{\Omega} \times \mathbf{r}),$$

$$\mathcal{A} = -2(1 - \delta_{\mathbf{v}}) (\mathbf{\Omega} \times \mathbf{V}) - \nabla \Phi - RT\nabla(\ln(p)),$$

$$\mathcal{E} = -\nabla \left[\gamma T + \frac{R_a \overline{T}}{\overline{P}} \Pi \right], \quad \mathcal{F} = \mathbf{F}_{\mathbf{v}},$$

$$\mathbf{V}_{\eta=0} = \mathbf{V}_{l=1}, \quad \mathbf{V}_{\eta=1} = \mathbf{V}_{l=L};$$

 $\Phi = \gamma T$ — соотношение квазистатики; $\eta = f(p, p_s)$ — обобщенная (гибридная) вертикальная координата (например, σ), при этом давление на уровнях η определяется следующим образом: $p = A + B\Pi$; $\Pi = p_s$; A и B — функции η ; L — количество слоев по вертикали в модели.

Подробное описание аппроксимации уравнения для момента в модели ECSib дано в работе [7].

Уравнение для температуры

Определение X, A, B и P и условия на верхней и нижней границах:

$$X = T$$
, $\mathcal{F} = F_T$,
 $\mathcal{A} = \frac{RT}{c_p} \frac{\omega}{p}$, $\mathcal{E} = -\frac{m'^2}{m^2} \tau D$,

 τ — матрица вклада дивергенции в тенденцию температуры; m, m' — метрические коэффициенты в картографической системе координат.

На верхней границе

$$T_{n=0} = T_{l=1}$$
.

На нижней границе

$$T_{n=1} = T_{l=L}$$
.

Полулагранжева аппроксимация уравнения для температуры при интерполяции в среднюю точку траектории

$$\begin{split} \left\{ T - \left(1 + \varepsilon_{\mathcal{E}} \right) \beta \Delta t \left(- \frac{{m'}^2}{m^2} \tau D \right) \right\}_F^+ &= \\ &= \left\{ \left[T + \left(1 - \varepsilon_{\mathcal{E}} \right) \beta \Delta t \left(- \frac{{m'}^2}{m^2} \tau D \right) + 2 \Delta t F_T \right]^- + \\ &+ \left(1 - \varepsilon_{\mathcal{E}} \right) \Delta t \left[-\beta \left(- \frac{{m'}^2}{m^2} \tau D \right) \right]^{\pm 0} \right\}_{F,O,M} + \\ &+ \left\{ \left[2 \Delta t \frac{RT}{c_p} \frac{\omega}{p} \right]^{\pm 0} \right\}_M + \left\{ \left(1 + \varepsilon_{\mathcal{E}} \right) \Delta t \left[-\beta \left(- \frac{{m'}^2}{m^2} \tau D \right) \right]^{\pm 0} \right\}_F. \end{split}$$

Уравнение для влажности q и пассивной примеси х

Определение X, A, B и F и условия на верхней и нижней границах:

$$X = (q, \chi), \mathcal{A} = 0,$$

 $\mathcal{B} = 0, \mathcal{F} = F_a.$

Верхняя граница:

$$(q_{\eta=0}, \chi_{\eta=0}) = (q_{l=1}, \chi_{l=1}).$$

Нижняя граница:

$$(q_{\eta=1}, \chi_{\eta=1}) = (q_{l=L}, \chi_{l=1}).$$

Полулагранжева аппроксимация уравнения для водяного пара

$${q}_F = {[q + 2\Delta t F_q]^-}_{F,O,M}.$$

Жидкая вода, лед и пассивная примесь χ. Схема аппроксимации такая же, как и для водяного пара:

$$\{q_l\}_F = \{[q_l + 2\Delta t F_{al}]^-\}_{F,O,M}$$

– для жидкой воды,

$$\{q_i\}_F = \{[q_i + 2\Delta t \ Fq_i]^-\}_{F,O,M}$$

– для льда,

$$\{\chi\}_F = \{ [\chi + 2\Delta t F_{\chi}]^- \}_{F,O,M}$$

для примеси.

2.3. Уравнение неразрывности с $\Pi = p_s$ в качестве прогностической переменной

$$\frac{d}{dt}\left(\frac{\partial p}{\partial \eta}\right) = -\frac{\partial p}{\partial \eta}\left(D + \frac{\partial \dot{\eta}}{\partial \eta}\right) + F'_{m},\tag{7}$$

 F_m' – вклад физических процессов в изменчивость приземного давления. Имеем следующие равенства:

$$p = A(\eta) + B(\eta) \Pi, \quad \frac{d}{dt} \left(\frac{\partial A}{\partial \eta} \right) = 0, \quad \nabla \left(\frac{\partial A}{\partial \eta} \right) = 0, \quad \frac{\partial \Pi}{\partial \eta} = 0, \quad (8)$$

где p — давление на соответствующем уровне; η — обобщенная вертикальная координата (может быть и σ , как в модели ECSib), которые дают

$$\frac{\partial B}{\partial \eta} \frac{\partial \Pi}{\partial t} + \frac{\partial p}{\partial \eta} D + \frac{\partial}{\partial \eta} \left(\dot{\eta} \frac{\partial p}{\partial \eta} \right) = F'_m. \tag{9}$$

А п п р о к с и м а ц и я . Обозначим $F_m = F'_m \Delta \eta$. Теперь рассмотрим вертикальную аппроксимацию для каждого слоя l (слой l расположен между промежуточными слоями \overline{l} и \overline{l} – 1). (9) будет иметь вид

$$\Delta B_{l} \frac{\partial \Pi}{\partial t} + \Delta p_{l} D_{l} + \left(\dot{\eta} \frac{\partial p}{\partial \eta} \right)_{\overline{l}} - \left(\dot{\eta} \frac{\partial p}{\partial \eta} \right)_{\overline{l}_{-1}} = F_{m}.$$
 (10)

Дискретные значения для $\eta \frac{\partial p}{\partial \eta}$ определяются на промежуточных уровнях \overline{l} :

$$\left(\dot{\eta}\frac{\partial p}{\partial \eta}\right)_{-l} = -\left[B_{-l}\frac{\partial \Pi}{\partial t} + \sum_{j=1}^{l} \left\{D_{j}\Delta p_{j} + (\mathbf{V}_{j}\nabla\Pi)\Delta B_{j}\right\}\right] + \mathcal{C}_{-l},$$
(11)

где

$$\frac{\partial \Pi}{\partial t} = -\sum_{l=1}^{L} \left\{ D_l \, \Delta p_l + (\mathbf{V}_l \, \nabla \Pi) \, \Delta B_l \right\} \tag{12}$$

V

$$e^{-l} = 0$$
,

если мы предполагаем, что объем воздуха, занятый дождевыми каплями, не замещается сухим воздухом, когда капли падают, и $\mathcal{E}_{\overline{l}} = gB_{\overline{l}}(P+E) - gF_{n\overline{l}}$,

 $\mathcal{Q}_{\eta=0}=0,\ \mathcal{Q}_{\eta=1}=gE,$ если замещается.

Подставляя (11) в (12), получим

$$\Delta B_{l} \frac{\partial \Pi}{\partial t} - \Delta B_{l} \left\{ \frac{\partial \Pi}{\partial t} + \mathbf{V}_{l} \nabla \Pi \right\} + \Delta \mathcal{C}_{l} = F_{m}, \tag{13}$$

где
$$\frac{\partial \Pi}{\partial t}$$
 из (12).

Интегрируя (13) по вертикали и используя $\sum_{l=1}^{L} \Delta B_l = 1,\, \text{получим}$

$$\Pi^{+} = \sum_{l=1}^{L} \Delta B_{l} \left\{ \Pi^{-} + 2\Delta t \left(\frac{\partial \Pi}{\partial t} + \mathbf{V}_{l} \, \mathbf{\nabla} \Pi \right)^{\pm 0} \right\} - 2\Delta t \, \boldsymbol{\mathcal{C}}_{\eta=1}^{\pm 0} +$$

$$+ 2\Delta t \sum_{l=1}^{L} F_{m}^{-}. \tag{14}$$

Используя $\sum_{l=1}^{L} \Delta B_l = 1$, F_m можно переписать как $\sum_{l=1}^{L} \Delta B_l (\sum_{l=1}^{L} F_m)$ и $\boldsymbol{\mathcal{C}}_{\eta=1}^{\pm 0}$ как $\sum_{l=1}^{L} \Delta B_l (\boldsymbol{\mathcal{C}}_{\eta=1}^{\pm 0})$.

$$\sum\limits_{l=1}^{L}\Delta B_{l}(\sum\limits_{l=1}^{L}F_{m})$$
и $\boldsymbol{\mathcal{C}}_{\eta=1}^{\pm0}$ как $\sum\limits_{l=1}^{L}\Delta B_{l}(\boldsymbol{\mathcal{C}}_{\eta=1}^{\pm0})$

При использовании полунеявной схемы *t*-члены либо интерполируются в среднюю точку, либо берутся как средние значения в исходной и конечной точках.

3. Случай адвекции скалярного поля с локальной структурой через полюс

Для проверки схемы переноса и различных процедур изогеометрической интерполяции был выбран тест, предложенный в [2]. В этом тесте скорость горизонтальной адвекции задается формулами:

$$u = U[\cos\beta \cos\phi + \sin\beta \sin\phi \cos\lambda], \quad v = -U\sin\beta \sin\lambda,$$

где β – угол между осью твердого вращения и полярной осью; $U = (\pi/46)/2$ радиан за один временной шаг Δt на сферической сетке 72×46 в модели ECSib, $\Delta t = 35 \text{ мин.}$

В качестве переносимой субстанции рассматривается скалярное поле с локальной структурой, которая в начальный момент распределена в окрестности с центром в точке ($\lambda = 3\pi/2$, $\phi = 0$):

$$f(\lambda, \phi) = \begin{cases} 0.5 \ (1 + \cos(\pi r/R)), & \text{при } r < R, \\ 0 & \text{иначе,} \end{cases}$$

 $r = \arccos[\cos(\lambda - 3\pi/2)\cos\phi]$ $|\lambda - 3\pi/2| < \pi/2$; $R = 7(2\pi)/72$ радиан.

На рис. 1-3 показаны распределения поля f в момент времени, предшествующий переносу локальной структуры через полюс, в момент переноса структуры через полюс и в момент после прохождения ею полюса. Из рисунков видно, что перенос осуществляется без изменения формы.

4. Заключение

Трехмерные модели переноса химических трассеров необходимы для оценки глобального баланса парниковых и других газов, а также, что существенно, они позволяют интерпретировать ряды измерений в различных точках. В работе предложено описание трехмерной полулагранжевой версии климатической модели ECSib ИВМиМГ СО РАН, которая позволяет также моделировать распределения химических трассеров в атмосфере.

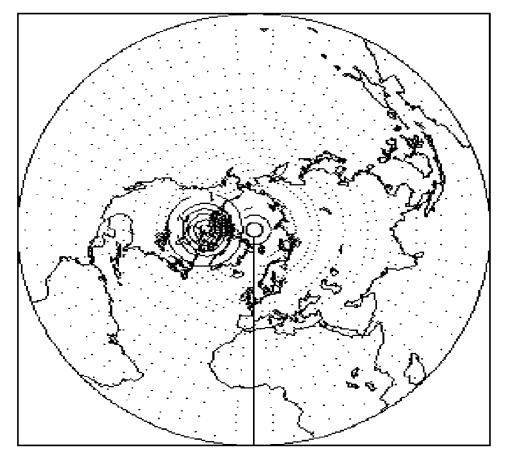


Рис. 1. Распределение поля f в момент времени, предшествующий переносу локальной структуры через полюс

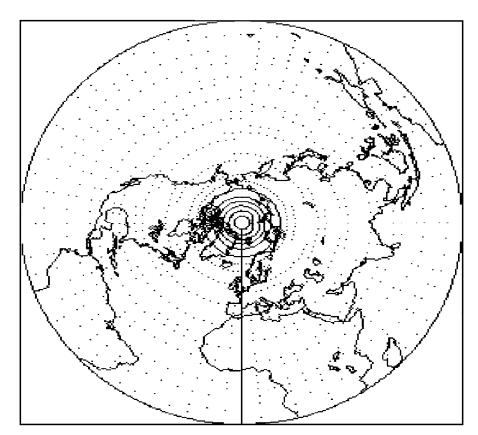


Рис. 2. Распределение поля f в момент переноса структуры через полюс

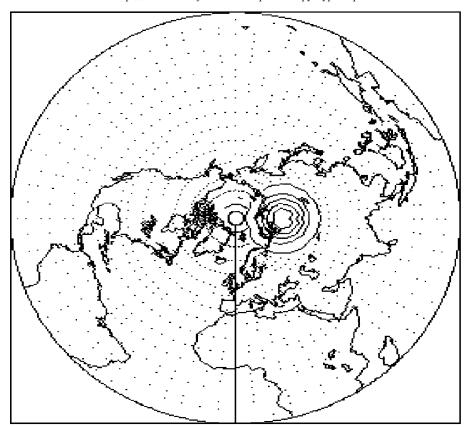


Рис. 3. Распределение поля f в момент времени после прохождения локальной структуры через полюс

В заключение авторы выражают признательность М.А. Толстых за предоставление программ интерполяции.

Работа поддержана РФФИ, гранты № 95-05-14588, 97-05-65194.

- 1. Heimann N. The global atmospheric tracer model TM2. Hamburg, 1996. 53 p. (Report / Max-Plank Institut für Meteorologie, N 10).
- 2. Williamson D., Rasch P. // Monthly Weather Review. 1989. V. 117. P. 102-129.
- 3. Prather M., McElroy M., Wofsy S., Russel G., Rind D. // J. Geophys. Res. 1987. V. 92. P. 6579-6613.
- 4. *Robert A.* // J. Meteor. Soc. Japan. 1981. V. 60. P. 319–325. 5. *Крупчатников В.Н., Маев В.К., Фоменко А.А.* // Изв. АН СССР. Cep. ΦAO. 1992. T. 28. № 1. C. 33–45.
- 6. Fomenko A.A., Krupchatnikoff V.N., Yantzen A.G. A finite-difference model of atmosphere (ECSib) for climatic investigations // Bull. Nov. Comp. Center, Num. Model. in Atmosph., etc, 4. 1996. P. 11-19.
- 7. Крупчатников В.Н., Фоменко А.А. Полулагранжева полунеявная схема переноса в климатической модели ECSib. Новосибирск, 1997. 21 с. (Препринт/Ин-т вычислительной математики и математической геофизики СО РАН, № 1105).

Институт вычислительной математики и математической геофизики, Новосибирск

Поступила в редакцию 4 февраля 1998 г.

V.N. Krupchatnikoff, A.A. Fomenko. The Semi-Lagrangian Tracer Transport Scheme in Climatic Model ECSib.

A semi-Lagrangian and semi-implicite advection scheme in the ECSib climate model is presented. A semi-Lagrangian method has a number of advantages as compared with Eulerian approach. The numerical schemes for momentum, temperature, surface pressure, moisture, and chemical tracer equations are presented.