СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УДК 535.34:539.19:551.508:621.375

С. Боуазза, Б. Зумпф, А. Киссель, Х.-Д. Кронфельд, Ю.Н. Пономарев, Н.Н. Трифонова

ИСПОЛЬЗОВАНИЕ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ СДВИГОВ ЛИНИЙ ПОГЛОЩЕНИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ПОЛЯРИЗУЕМОСТИ NO₂ В СОСТОЯНИИ 001

На диодном лазерном спектрометре с разрешением $3 \cdot 10^{-4}$ см⁻¹ измерены значения полуширины и сдвига линий поглощения полосы v₃ молекулы NO₂, индуцированные давлением инертных газов. По измеренным значениям коэффициентов сдвига для смесей NO₂ – Ar, NO₂ – Kr, NO₂ – Xe определены значения средней поляризуемости молекулы NO₂ в возбужденном колебательном состоянии 001 и значения *z*-компонент тензора поляризуемости в состояниях 000 и 001. Полученные данные использованы для расчета полуширин линий поглощения. Результаты расчетов согласуются с экспериментальными данными.

Результаты исследования столкновительного уширения и сдвига спектральных линий молекул актуальны для анализа характеристик потенциала межмолекулярного взаимодействия, определения сечений столкновения частиц в газе и электрических постоянных молекул в возбужденных колебательновращательных состояниях. Данные о коэффициентах уширения и сдвига линий поглощения трехатомных молекул, имеющих постоянный дипольный момент (H₂O, H₂S, SO₂, NO₂ и др.) в ИК- и видимом диапазонах находят практические применения в связи с развитием спектроскопических методов анализа газового состава атмосферы.

Измерения коэффициентов уширения и сдвига колебательно-вращательных линий молекул инертными газами представляют особый интерес. В этом случае ситуация является наиболее простой для теоретического анализа. Атомы инертных газов имеют замкнутые электронные оболочки и не имеют постоянного электрического момента в основном электронном состоянии. Энергия, которая необходима для возбуждения атома инертного газа, велика по сравнению со средней тепловой энергией, поэтому при столкновении с молекулами атомы могут рассматриваться как бесструктурные частицы. Совокупность экспериментальных данных по зависимостям полуширины γ и сдвига δ линий молекулярного поглощения от атомного веса или поляризуемости атома буферного газа может быть использована для проверки справедливости различных приближений, используемых в теории контура линии.

Так, в [1] приведены данные измерений зависимости δ/γ для линии поглощения H₂O (переход 7₀₇-8₁₈ полосы v₂) от длительности столкновения с атомами инертных газов. Анализ этих данных позволил установить, что при столкновении с легкими атомами (He, Ne) основной вклад в величину сдвига и уширения дают неадиабатические процессы, а столкновения H₂O-Xe являются адиабатическими.

Анализ экспериментальных данных по сдвигам линий поглощения H_2O в полосе $v_1 + 3v_3$ давлением инертных газов He, Ne, Ar, Kr, Xe показал, что использование модифицированного метода Андерсона-Цао-Карната [2], включающего отказ от процедуры прерывания [2, 3], дает хорошее согласие расчета с экспериментом. Выполненные по этой методике расчеты у для линий поглощения SO₂ в полосах v_1 и v_3 , уширенных давлением инертных газов Ar, Kr, Xe, хорошо согласуются с экспериментальными данными, полученными на диодном лазерном спектрометре высокого разрешения [4]. В [3] показано, что основной вклад в величину сдвига (около 90%) дает поляризационное взаимодействие. Величина сдвига при этом зависит от значений поляризуемости поглощающей молекулы в основном и возбужденном состояниях, что дает принципиальную возможность оценки поляризуемости молекулы в возбужденном колебательном состоянии по результатам измерения сдвигов линий.

В настоящей работе анализируются результаты измерений коэффициентов уширения и сдвига нескольких колебательно-вращательных линий NO_2 в полосе v_3 давлением инертных газов Ar, Kr, Xe. Эмпирические данные по сдвигу этих линий использованы для оценки неизвестного ранее значения средней поляризуемости NO_2 в состоянии 001 и *z*-компонент тензора поляризуемости молекулы NO_2 в основном и возбужденном колебательном состояниях.

Эксперимент

Полуширины и сдвиги линий поглощения NO₂ измерялись на диодном лазерном спектрометре, детальное описание конструкции которого опубликовано в [5]. Спектрометр характеризуется спектральным разрешением $3 \cdot 10^{-4}$ см⁻¹ и позволяет регистрировать коэффициенты поглощения, превышающие 10^{-3} см⁻¹. Для записи формы контура слабых линий поглощения, соответствующих большим значениям вращательного квантового числа *N*, использовалась многоходовая оптическая кювета Херриота, в которой длина оптического пути (4,7 м) достигалась при объеме исследуемого газа 180 см³. Сильные линии вблизи центра полосы v₃ регистрировались с однопроходной кюветой длиной 30 см.

Используемые в измерениях коммерческие газы характеризуются следующей чистотой: $NO_2 - 99,8\%$, Ar - 99,999%, Kr - 99,99% и Xe - 99,998%.

Относительная калибровка частотной шкалы осуществлялась с помощью конфокального интерферометра со свободным спектральным интервалом 0,01 см⁻¹. Для абсолютной калибровки использовались частоты хорошо известных линий поглощения NO₂ или H₂O. Ввиду того что плотность линий в спектре поглощения NO₂ велика, для определения полуширины и сдвига индивидуальной линии использовалась процедура подгонки измеренного контура к контуру Фойгта [6] по методу наименьших квадратов. Были измерены значения полуширины и сдвигов следующих линий поглощения NO₂ полосы v₃: $34_{3,32} \rightarrow 35_{3,33}$; $35_{3,32} \rightarrow 36_{3,33}$; $36_{3,34} \rightarrow 37_{3,35}$; $37_{1,36} \rightarrow 38_{1,37}$.

Рис. 1. Контур линии поглощения чистого NO_2 и NO_2 в смеси с Xe

На рис. 1 представлены образец записи контура линии поглощения $34_{3,32} \rightarrow 35_{3,33}$ в чистом NO₂ и смеси NO₂–Хе, иллюстрирующий возможности используемого спектрометра измерять малые значения сдвига линии давлением $\approx 10^{-3}$ см⁻¹.

Графики линейной зависимости у и б от давления Хе приведены на рис. 2 и 3. Угол наклона прямых линий на графиках дает соответствующие значения коэффициента уширения и сдвига. Измеренные значения коэффициентов уширения и сдвига для всех вышеперечисленных линий и всех уширяющих газов приведены в таблице с указанием случайной погрешности измерений, которая варьируется от 0,1 до 0,5 мК (1 мК = 10^{-3} см⁻¹). Молекула NO₂ имеет незамкнутую электронную оболочку, и наличие неспаренного электрона обусловливает димеризацию при столкновениях NO₂–NO₂. Однако в условиях описанного выше эксперимента концентрация атомов инертного газа намного больше, чем концентрация молекул NO₂, поэтому вкладом столкновений NO₂–NO₂ в уширение и сдвиг линий поглощения NO₂ можем пренебречь.

Рис. 2. Зависимость полуширины линии поглощения $NO_2(\Delta \widetilde{v}_c)$ от давления уширяющего газа Хе

Рис. 3. Зависимость сдвига линии поглощения $NO_2(\Delta \widetilde{\nu})$ от давления уширяющего газа Xe

Коэффициенты сдвига линий NO2

N'	k'_a	k_c'	Ν	<i>k</i> _a	k _c	v_{if} , см ⁻¹	Полоса v ₃ , δ (мК·атм ⁻¹)			Полоса v_3 , γ (мК·атм ⁻¹)		
							Ar	Kr	Xe	Ar	Kr	Xe
34	3	32	35	3	33	1582,136	$\frac{-3,6\pm0,2}{-3,8}$	$\frac{-4,4\pm0,2}{-4,2}$	$\frac{-6,0\pm0,2}{-4,9}$	$\frac{52,3\pm0,6}{46,8}$	$\frac{49,5\pm0,5}{48,4}$	$\frac{54,8\pm0,6}{54,1}$
35	3	32	36	3	33	1581,082	$\frac{-3,3\pm0,2}{-3,9}$	$\frac{-4,6\pm0,2}{-4,5}$	$\frac{-6,2\pm0,3}{-5,4}$	$\frac{52,8\pm0,4}{46,7}$	$\frac{50,5\pm0,3}{48,2}$	$\frac{54,1\pm0,3}{53,9}$
36	3	34	37	3	35	1580,075	$\frac{-3,9\pm0,4}{-3,7}$	$\frac{-4,6\pm0,4}{-4,1}$	$\frac{-5,4\pm0,4}{-4,7}$	$\frac{50,1\pm2,7}{47,2}$	$\frac{46,8\pm2,3}{49,1}$	$\frac{54,1\pm2,1}{55,3}$
37	1	36	38	1	37	1580,476	$\frac{-3,2\pm0,3}{-3,8}$	$\frac{-5,3\pm0,1}{-4,2}$	$\frac{-6,9\pm0,1}{-4,8}$	$\frac{51,8\pm0,3}{47,0}$	$\frac{50,7\pm0,1}{48,4}$	$\frac{54,0\pm0,1}{54,0}$
										Среднее отклонение расчетного значе- ния у от экспериментального, % 9,5 4,11 1		

Примечание. В числителе – эксперимент, в знаменателе – расчет.

Измеренные значения коэффициентов сдвига были использованы для определения поляризуемости $\alpha(001)$ молекулы NO₂ в колебательном состоянии 001 и *z*-компонент поляризуемости $\alpha_{zz}(000)$ и $\alpha_{zz}(001)$ в состояниях 000 и 001. При этом ось *z* выбиралась перпендикулярно плоскости молекулы.

Величины α(001), α_{zz}(000) и α_{zz}(001) определялись с помощью процедуры подгонки, заключающейся в минимизации функционала

$$\begin{cases} \sum_{i}^{n} \left| \delta_{\exp}^{i} - \delta_{cale}^{i}(i) \left[\alpha(001), \alpha_{zz}(000), \alpha_{zz}(001) \right] \right| \end{cases} / n \leq \\ \leq 0,001 \text{ cm}^{-1}. \tag{1}$$

Параметр подгонки 0,001 см⁻¹ выбирался равным удвоенной погрешности измерения б.

Подгонка проводилась раздельно для случая уширения Ar, Kr и Xe по четырем линиям поглощения. Среднее значение искомых параметров, например $\overline{\alpha}(001)$, определялось как

$$\overline{\alpha}(001) = \frac{1}{3} \{ \alpha(001)_{NO_2 - Ar} + \alpha(001)_{NO_2 - Kr} + \alpha(001)_{NO_2 - Xe} \}.$$
(2)

Программа, реализующая процедуру подгонки, основана на использовании методов «золотого сечения» и координатного спуска [7].

Применимость такого подхода для определения поляризуемости молекулы H_2O в возбужденных колебательных состояниях была ранее продемонстрирована в [8].

Расчет полуширины и сдвига спектральных линий NO₂

Величины γ и δ определяются выражениями [2, 3]:

$$\gamma = \frac{n}{c} \int_{0}^{\infty} F(v) v \, dv \int_{0}^{\infty} b \, db \, \{1 - \exp\left[-\operatorname{Re} S(b)\right] \times \cos\left[\operatorname{Im} S(b)\right]\};$$
(3)

$$\delta = \frac{n}{c} \int_{0}^{\infty} F(v) v \, dv \int_{0}^{\infty} b \, db \, \{ \exp\left[-\operatorname{Re} S(b)\right] \times \\ \times \sin\left[\operatorname{Im} S(b)\right] \}, \tag{4}$$

где n – счетная концентрация атомов буферного газа; c – скорость света в вакууме; v – скорость относительного движения сталкивающихся частиц; F(v) – максвелловская функция распределения по скоростям; b – параметр столкновения.

Функция прерывания $S(b) = S_1(b) + S_2(b)$ в приближении диполь-поляризационного взаимодействия имеет вид

$$S_{1}(b) = \left[-i \frac{3\pi}{8h\nu b^{5}} \right] \left[(d_{i}^{2} - d_{f}^{2}) \alpha + \overline{\varepsilon} \alpha (\alpha_{i} - \alpha_{f}) \right];$$
(5)

$$\operatorname{Re} S_{2}(b) = \frac{21 \pi^{2}}{1280 (hv)^{2} b^{10}} \left\{ \sum_{i} C_{20}(i2; i'2) \operatorname{Re} g_{1}(k_{ii'}) + \sum_{f'} C_{20}(f2; f'2) \operatorname{Re} g_{1}(k_{ff'}) - 2 W C_{20}(i2; i2) C_{20}(f2; f2) \right\}; (6)$$

$$\operatorname{Im} S_{2}(b) = \frac{21 \pi^{2}}{1280 (hv)^{2} b^{10}} \left\{ \sum_{i'} C_{20}(i2; i'2) \operatorname{Im} g_{1}(k_{ii'}) - \sum_{i'} C_{10}(f2; f'2) \operatorname{Im} g_{1}(k_{ii'}) \right\}$$

$$-\sum_{f'} C_{20}(f^2; f'^2) \operatorname{Im} g_1(k_{ff'}) \bigg\} .$$
 (7)

Здесь d_i и d_f – дипольные моменты, а α_i и α_f – поляризуемости поглощающей молекулы в основном *i* и возбужденном *f* колебательных состояниях; α – поляризуемость атома буферного газа. Величина $\overline{\epsilon} = \epsilon_1 \epsilon_2/(\epsilon_1 + \epsilon_2)$, где ϵ_1 и ϵ_2 – потенциалы ионизации молекулы и атома соответственно. Величины $C_{20}(i2; i'2)$, $C_{20}(f2; f'2)$ являются квадратами приведенных матричных элементов, определяющих вероятность переходов между вращательными уровнями в основном ($i \rightarrow i'$) и возбужденном ($f \rightarrow f'$) колебательных состояниях поглощающей молекулы. Вид функции C_{20} приведен в [7]. Индексом 2 в $C_{20}(i2; i'2)$ и $C_{20}(f2; f'2)$ обозначены квантовые числа возмущаю-

щей частицы. Резонансные функции $g_1(k_{ii'})$ и $g_1(k_{ff'})$, где $k_{ii'} = 2\pi cb\omega_{ii'}/v$, и $k_{ff'} = 2\pi cb\omega_{ff'}/v$ – параметры Месси, зависят от частот виртуальных вращательных переходов $\omega_{ii'}$ и $\omega_{ff'}$, прицельного расстояния *b* и скорости относительного движения сталкивающихся частиц *v*. Символом $W = (j_i j_f j_i j_f \mid 12)$ обозначен коэффициент Рака.

Функции $C_{20}(i2; i'2)$ зависят от средней поляризуемости поглощающей молекулы в основном (α_i) и возбужденном (α_f) колебательном состояниях, а также от соответствующих *z*-компонент тензора поляризуемости α_i^{zz} , α_f^{zz} . Выражение для них приведены в [9]. Необходимые для расчетов характеристики молекулы NO₂ были взяты из [10]. Постоянный дипольный момент молекулы NO₂ в основном колебательном состоянии $d_i = 0,31D$, а статическая поляризуемость $\alpha(000) = 3,02 \cdot 10^{-24}$ см³. Значение дипольного момента известно с погрешностью $\approx 1\%$, а значение статистической поляризуемости – с погрешность $\approx 10\%$. Потенциал ионизации NO₂ $\varepsilon_1 = 9,78$ eV. Значения поляризуемости атомов инертных газов и их потенциалов ионизации равны:

$$\begin{split} & \epsilon_{He} = 24,587 eV; \ \alpha_{He} = 0,207\cdot 10^{-24} \ cm^3; \\ & \epsilon_{Ne} = 21,564 eV; \ \alpha_{Ne} = 0,397 \ 10^{-24} \ cm^3; \\ & \epsilon_{Ar} = 15,759 eV; \ \alpha_{Ar} = 1,642\cdot 10^{-24} \ cm^3; \\ & \epsilon_{Kr} = 13,999 eV; \ \alpha_{Kr} = 2,480\cdot 10^{-24} \ cm^3; \\ & \epsilon_{Xe} = 12,130 eV; \ \alpha_{Xe} = 4,010\cdot 10^{-24} \ cm^3. \end{split}$$

Значения энергий вращательных уровней NO₂ в основном и возбужденном колебательных состояниях и соответствующие частоты переходов $\omega_{ii'}$ и $\omega_{jj'}$ рассчитывались по формулам, приведенным в [11, 12], с использованием алгоритма, описанного в [13]. Мы не приводим здесь исходные общеизвестные выражения для энергий уровней ввиду их громоздкости.

Значение дипольного момента NO₂ в возбужденном колебательном состоянии 001 оцениваем равным 0,317D, что на 2% выше значения d_i в основном состоянии и типично для малых молекул таких, как, например, SO₂ или H₂O [14, 15], при изменении колебательного квантового числа на единицу.

Результаты и обсуждение

Среднее значение поляризуемости молекулы NO_2 в состоянии 001, определенное согласно (2), оказалось равным (3,1 ± 0,15)·10⁻²⁴ см³, т.е. на 2,5% превышающим значение средней поляризуемости NO_2 в основном колебательном состоянии. Полученные значения *z*-компоненты тензора поляризуемости в основном и возбужденном колебательном состояниях

 $\alpha_{zz}(000)$ ≈(2,1±0,2)·10⁻²⁴ см³ и $\alpha_{zz}(001)$ ≈(2,15±0,2)·10⁻²⁴ см³

меньше соответствующих средних значений поляризуемости, как и в случаях подобных молекул типа асимметричного волчка, например молекула S₂O, для которой $\alpha(000) \approx 3,72 \cdot 10^{-24} \text{ см}^3$, а $\alpha_{zz}(000) \approx 2,7 \cdot 10^{-24} \text{ см}^3$ [16]. Для величин $\alpha(000)$, $\alpha_{zz}(000)$, $\alpha(001)$ и $\alpha_{zz}(001)$ хорошо выполняется физически очевидное условие

 $\alpha(000)/\alpha_{zz}(000) \approx \alpha(001)/\alpha_{zz}(001) \approx 1,44.$

Полученные значения $\alpha(001)$, $\alpha_{zz}(001)$ и $\alpha_{zz}(000)$ были использованы для расчетов коэффициентов уширения пяти линий поглощения NO₂ в смеси с Ar, Kr и Xe. Эти результаты включены в таблицу (расчетные значения γ приведены в знаменателе). Хорошее совпадение расчетных и экспериментальных значений γ говорит в пользу того, что определенные значения поляризуемости NO₂ реальны.

При расчетах коэффициентов уширения и сдвига мы не учитываем вклад инертных газов во взаимодействие NO_2 с атомами, обусловленный наличием у NO_2 постоянного квадрупольного момента. Этот вклад в расчетные значения сдвига (и определяемые параметры $\alpha(001)$, $\alpha_{zz}(001)$) зависит от различия в значениях гиперполяризуемости NO_2 в основном и возбужденном колебательных состояниях. Если принять это различие $\leq 2\%$, то оценки по формулам, полученным в [17], показывают, что поправки к коэффициенту сдвига несущественны, так как сдвиг пропорционален разности возмущений верхнего и нижнего уровней.

При расчете полуширины линии, когда дополнительное возмущение уровней суммируется, учет вклада постоянного квадрупольного момента NO_2 может увеличить расчетное значение γ . Однако детальная оценка влияния постоянного квадрупольного момента NO_2 в уширение и сдвиг линий затруднена из-за отсутствия данных о гиперполяризуемостях молекулы NO_2 в основном и возбужденном состояниях. Можно предложить использовать совокупность экспериментальных данных по уширению и сдвигу спектральных линий различных колебательных полос NO_2 для оценки величины гиперполяризуемости, одновременно с оценками характеристик поляризуемости, однако эта проблема выходит за рамки настоящего сообщения

Авторы благодарны А.Д. Быкову за полезные обсуждения и консультации

Настоящая работа частично поддержана грантом РФФИ N 96-07-89321 по Программе поддержки ведущих научных школ России.

- Nadezhdinskii A.I. // Proc. Atmospheric Spectroscopy Application Workshop. Edit by A. Barbe, Yu.N. Ponomarev, R. Zander. Moscow, 1990. P. 77–89.
- 2. Черкасов М.Р. // Оптика и спектроскопия. 1976. Т.40. В.1. С.7–17.
- Быков А.Д., Лазарев В.В., Пономарев Ю.Н., Стройнова В.Н., Тихомиров Б.А. // Оптика атмосферы и океана. 1994. Т. 7. N 9. С. 1207–1219.
- 4. Lazarev V.V., Ponomarev Yu.N., Sumpf B., Fleischman O., Waschull J., Kronfeldt H.-D., and Stroinova V.N. // J. Mol. Spectr. 1995. V. 173. N 1. P. 177–193.

- Pustogov V.V., Kuhnemann F., Sumpf B., Heiner Y., Hermann Ka. // J. Mol. Spectrosc. 1994. V. 167. N 2. P. 288–299.
- 6. Olivero J.J., Longbothum R.L. // JQSRT. 1977. V. 17. N 2. P. 233–236.
- 7. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- Броуэлл Э.В., Гроссман Б.А., Быков А.Д., Капитанов В.А., Коротченко Е.А., Лазарев В.В., Пономарев Ю.Н., Синица Л.Н., Стройнова В.Н., Тихомиров Б.А. // Оптика атмосферы. 1990. Т. З. N 7. С. 675–690.
- 9. Leavitt R.P. // J. Chem. Phys. 1980. V. 73. N 11. P. 5432-5450.
- 10. Радииг А.А., Смирнов Б.М. Справочник по атомной и молекулярной физике. М.: Атомиздат, 1980. 240 с.
- Perrin A., Gom A.N., Dana V., Camy-Peyret C., Flaud J.M., Maillard J.-P. // J. Mol. Spectr. 1987. V. 22. N 2. P. 365–370.
- 12. Morino Y., Tanimoto M., Saito S., Hirota E., Awata R., and Tanaka T. // J. Mol. Spectr. 1983. V. 98. N 2. P. 331–348.

Научный факультет Университета г. Реймса, Франция

Оптический институт Берлинского технического университета, Германия Институт оптики атмосферы СО РАН, Томск, Россия

- Voitseckhovskaya O.K., Makushkin Yu.S., Sulakshina O.N., Trifonova N.N., and Cherepanov V.N. // Computer Enhanced Spectr. 1986. V. 3. N 1. P. 13–21.
- 14. Landolf-Bornstein. Numerical Data and Functional Relatonships in Science and Technology. New Series. Group II. Atomic and Molecular Physics. V. 14. Springrer-Verlag. Berlin; Heidrlberg; New-York. 1982. P. 600.
- 15. Shostak S.L. and Mutnter J.S. // J. Chem. Phys. 1991. V. 94. P. 5883–5889.
- 16. Фабелинский И.Л. Молекулярное рассеяния света. М.: Наука, 1965. 467 с.
- 17. Stroinova V.N. Analysis of Contribution of Different Polarization Interactions into the Half-Width and Schifts Induced by Noble Gas Pressure for Polar Molecules Absorption Lines // Abstracts of XII Symposium-School on High Resolution Molecular Spectroscopy. Petergof, Russia, 1996. L. 43.

Поступила в редакцию 25 августа 1997 г.

S. Bouazza, B. Sumpf, A. Kissel, H.-D. Kronfeldt, Yu.N. Ponomarev, N.N. Triphonova. Application of Absorption Line Shifts Measurements to Determination of Polarizability of NO₂ Molecule in 001 State.

The magnitudes of half-width and shift of NO₂ absorption lines of v_3 band induced by noble gases pressure have been measured using diode laser spectrometer with $3 \cdot 10^{-4}$ cm⁻¹ resolution. The magnitudes of mean polarizability of NO₂ molecule in 001 vibrational state and *z*-components of the polarizability tensor in 000 and 001 states were determined from the measured shift coefficients for NO₂ – Ar, NO₂ – Kr, NO₂ – Xe mixtures. The data obtained were used in calculation of NO₂ absorption line half-widths. The calculation results agree with the experimental ones.