УДК 621.378.325

В.Т. Карпухин, М.М. Маликов

ИСПОЛЬЗОВАНИЕ ЛАЗЕРА НА ПАРАХ МЕДИ ДЛЯ ПОЛУЧЕНИЯ УЛЬТРАФИОЛЕТОВОГО ИЗЛУЧЕНИЯ

Представлены результаты исследований генерации ультрафиолетового излучения (УФИ), $\lambda = 0,271$ мкм, за счет суммирования частот излучения лазера на парах меди ($\lambda = 0,51$ и 0,578 мкм) в нелинейном кристалле DKDP. При использовании неустойчивого оптического резонатора с большим коэффициентом увеличения M = 200 и пространственного фильтра получены средняя мощность УФИ 0,75 Вт и кпд преобразования η 12%. В пучке с малой расходимостью амплитуды импульсов желтой и зеленой линий сближались, а их относительная задержка исчезала, что способствовало процессу генерации суммарной частоты.

1. Введение

Возможность использования лазеров на парах меди (ЛПМ) и нелинейных кристаллов для получения ультрафиолетового излучения (УФИ) показана давно [1]. С тех пор усилия исследователей направлены на решение комплекса вопросов, связанных с увеличением эффективности преобразования излучения ЛПМ в нелинейных кристаллах, с выбором схемы преобразователя и его способности конкурировать с другими известными источниками УФИ [2–7].

Эффективность нелинейного преобразования частоты излучения зависит, в основном, от пиковой плотности мощности падающего на кристалл излучения и его расходимости. Поэтому наиболее часто используются две схемы преобразователей на основе ЛПМ: генератор-усилитель [2, 4, 5] и лазерная трубка, снабженная неустойчивым резонатором с большим коэффициентом увеличения $M \sim 100$ и пространственным фильтром (коллиматором) для выделения малорасходящегося пучка [1, 3, 6, 7].

Первая схема позволяет получить лазерный луч с малой расходимостью и весьма высокой плотностью мощности излучения на входе в кристалл. Для улучшения достигнутых результатов необходимо, по-видимому, увеличивать амплитуду импульса генерации усилителя и его кпд, чтобы система в целом оказалась эффективной.

Вторая схема тоже позволяет получить луч с малой расходимостью. При $M \ge 100$ возможно даже формирование пучка с дифракционной расходимостью [8, 9], так как для этого, при больших M, требуется всего несколько проходов луча в резонаторе и, соответственно, малое время, сравнимое с длительностью существования инверсии в ЛПМ ~ 30 нс. Вторая схема значительно проще в техническом исполнении, но обладает недостатком: мала доля энергии в дифракционном пучке (~ 10 ÷ 50%) [8, 9] и при больших M существенно снижается мощность ЛПМ [10]. Эти трудности могут быть, по всей вероятности, преодолены. В [11] экспериментально показано, что доля энергии в дифракционном пучке может возрасти почти до 90% за счет увеличения времени существования инверсии и, соответственно, длительности импульса излучения $-\tau$. Такой эффект достигается применением особого режима возбуждения и подбора параметров ЛПМ, при этом возможно существенное увеличение кпд лазера до ~ 10% [11, 12]. Если будут достигнуты и высокие средние мощности порядка 10–20 Вт, то вторая схема преобразования излучения ЛПМ в УФИ представляется более перспективной.

Так как ЛПМ излучает на двух длинах волн, то для более полного использования энергии излучения целесообразно осуществить механизм генерации суммарной частоты (ГСЧ). Длины волн излучения: $\lambda_1 = 0,578$ мкм – желтая и $\lambda_2 = 0,51$ мкм – зеленая, преобразуются в УФИ с $\lambda_3 = 0,27$ мкм. В большинстве экспериментов, проводившихся с использованием таких кристаллов, как КDP, DKDP, BBO, наиболее высокие кпд преобразования излучения ЛПМ получены для генерации вторых гармоник, а для ГСЧ кпд оказался в 1,5 ÷ 2 раза ниже [3, 5]. Поэтому представляют интерес более детальное исследование ГСЧ излучения ЛПМ с неустойчивым резонатором и выяснение физических причин, ограничивающих эффективность.

2. Описание эксперимента

Оптическая схема экспериментов представлена на рис. 1. В работе использовалась серийная лазерная трубка *l* (активный элемент ГЛ-201) и источник питания мощностью до 4 кВт. ЛПМ был снабжен телескопическим неустойчивым резонатором с M = 200 (зеркала *2*, *4*). Для поляризации излучения использовалась призма Глана *3*. Диаметр луча *D* на выходе из ЛПМ равнялся 20 мм. Излучение ЛПМ с помощью двух плоских зеркал *5*, *6* направлялось в коллиматор из двух линз f_1, f_2 , который использовался для преобразования широкого луча в луч диаметром $d \approx 1$ мм с целью повышения плотности излучения в кристалле *7*. Фокусное расстояние входной линзы f_1 равнялось 550 мм, а выходной линзы f_2 варьировалось. Для выделения пучка с малой расходимостью в фокальной плоскости линзы f_1 устанавливалась диафрагма 8 с диаметром отверстия $\Phi = 0, 6 - 0, 8$ мм.

Рис. 1. Оптическая схема

В работе использовался кристалл DKDP с высокой прозрачностью на длине волны λ_3 , с большим коэффициентом эффективной нелинейности $d_{eff}(\theta)$ и с малым углом сноса необыкновенного луча. Расчетный угол синхронизма ГСЧ при температуре 333 К по взаимодействию типа ООЕ составил 78,8°. Типы взаимодействия ЕОЕ и ОЕЕ для данных условий отсутствуют. Кристалл 7 длиной L = 40 мм размещался в термостате (с электронной стабилизацией температуры), который устанавливался на юстировочный столик, что позволяло подстраиваться под угол синхронизма. На выходе из кристалла лучи с λ_1 , λ_2 , λ_3 разделялись по углу кварцевой призмой 9. УФ-луч фокусировался с помощью линзы f_3 из CaF₂ в измеритель мощности 10 калориметрического типа ИМО-4С.

Для определения расходимости и структуры излучения ЛПМ в дальней волновой зоне использовались линза f_4 с фокусным расстоянием 10 м и экран 11, который располагался в фокальной плоскости (зеркало 6 убиралось). Расходимость преобразованного коллиматором луча и его диаметр в зоне расположения кристалла определялись методом калиброванных диафрагм. Расстояние *l* между линзами f_1 и f_2 подбиралось таким, чтобы расходимость преобразованного луча была минимальной, расстояние до середины кристалла $l^* = 80$ мм было постоянным.

Для исследования временных характеристик, прошедших через коллиматор лучей с длинами волн λ_1 , λ_2 и различной расходимостью, использовались фотоэлементы 12 типа Ф-32 и осциллограф 13. Луч, вышедший из коллиматора, разделялся на два пучка с помощью полупрозрачного зеркала 14, желтого 15 и зеленого 16 фильтров. Оба тракта имели одинаковую оптическую длину. Осциллограф запускался передним фронтом импульса тока возбуждения ЛПМ. В этих экспериментах использовалась входная линза коллиматора с $f_1 = 1620$ мм. Эта же схема применялась для измерения энергий желтой E_1 и зеленой E_2 линий в пучках с различной расходимостью на выходе коллиматора. При этом фотоэлементы заменял измеритель средней мощности ИМО-4С.

3. Результаты

Средняя (по частоте следования f) мощность P поляризованного излучения на выходе ЛПМ в наших экспериментах составляла 10–11 Вт при f = 10 кГц.

В фокальной плоскости линзы f_4 на экране 11 (см. рис. 1) выделялись по контрасту четыре круглых пятна, которым соответствовали пучки с расходимостью в дальней волновой зоне φ приблизительно 7,7; 2; 0,25 и 0,07 мрад.

ϕ , мм	ф, мрад	$\Delta E/E, \%$	E_2/E_1
0,6	0,20	19	1,1
0,8	0,25	25	1,2
6,5	2,0	50	1,5
×	7,7	100	2,0

В таблице представлена доля энергии ΔE (от полной энергии Е на выходе ЛПМ), сосредоточенная в пучке, образуемом различными диафрагмами ϕ , которые размещались в фокальной плоскости входной линзы коллиматора f_1 с фокусным расстоянием 1620 мм. Там же приведено соотношение энергий для зеленой и желтой линий генерации в пучках с разной расходимостью в дальней волновой зоне. На рис. 2 представлены осциллограммы импульсов мощности излучения U(t) на выходе коллиматора при наличии в нем диафрагмы с отверстием (ф≈0,2 мрад) $\phi = 0.6 \text{ MM}$ И без диафрагмы $(\phi \approx 7,7 \text{ мрад})$ для λ_1 и λ_2 .

Рис. 2. Импульсы мощности излучения ЛПМ U(t): $I - \varphi = 7,7$ мрад, 2 - $\varphi = 0,2$ мрад; — $-\lambda_1 = 0,51$ мкм; $- - - \lambda_2 = 0,578$ мкм

Последующие эксперименты проводились с использованием в коллиматоре линзы $f_1 = 550$ мм и диафрагмы с отверстием $\phi = 0.8$ мм, чему соответствовала величина $\phi = 0.73$ мрад и доля энергии $\Delta E/E$ примерно 60%. К сожалению, выделить пучки с меньшей расходимостью в данном случае мешали технические причины.

На рис. 3, в зависимости от фокусного расстояния линзы f_2 , представлены: диаметр преобразованного луча d на расстоянии l^* от выхода коллиматора, его расходимость φ' и кпд ГСЧ η , который определялся как $\eta = P_3/P_{\kappa}$, где P_3 – средняя мощность УФИ; P_{κ} – средняя мощность излучения ЛПМ на двух длинах волн перед входом в кристалл.

Рис. 3. Зависимость кпд ГСЧ и параметров луча от фокусного расстояния выходной линзы коллиматора f_2 : •——• кпд η ; *——* расходимость φ' ; □——□ кв. диаметра d^2

На рис. 4 представлена зависимость средней мощности УФИ – P_3 и кпд преобразования η от входной в кристалл мощности P_{κ} . При оптимальной настройке оптического тракта и угла синхронизма достигнута величина $P_3 = 0.75$ Вт и $\eta = 12\%$ при максимальной величине $P_{\kappa} = 6.4$ Вт.

Рис. 4. Кпд ГСЧ и мощность УФИ от входной мощности *P*_к: *——* мощность УФИ *P*₃; •——• кпд η; – – теоретический расчет η

Для оценки влияния на эффективность ГСЧ неоднородного нагрева кристалла лазерным излучением проводились эксперименты, в которых средняя мощность ЛПМ ослаблялась в 30 раз с помощью вращающегося диска с отверстиями. При этом импульсная мощность оставалась прежней. В этом случае кпд η практически не изменялся.

4. Обсуждение результатов

Известно [8, 9, 13], что ЛПМ с телескопическим неустойчивым резонатором излучает импульс, состоящий из трех, четырех пучков, которые имеют различную расходимость и несут в себе разные доли энергии импульса. Эти пучки сдвинуты по времени относительно друг друга, так как формируются на разных проходах луча в резонаторе за время существования инверсии, причем последний по времени пучок, как уже отмечалось выше, может иметь расходимость, близкую к дифракционной. В наших экспериментах на два последних пучка с малой расходимостью (0,25 и 0,07 мрад) приходится 25% энергии импульса излучения ЛПМ (см. таблицу). Наименьшее значение ф примерно в два раза больше угла дифракционной расходимости, что связано, повидимому, с аберрационными искажениями.

Примечательно, что при пятикратном уменьшении энергии в пучке с малой расходимостью $\phi \approx 0,2$ мрад амплитуда этого пучка уменьшилась в 3,5 раза для зеленой и в 3 раза для желтой линии излучения (см. рис. 2). Кроме того, видно, что задержка между импульсами зеленой и желтой линий в этом пучке практически исчезает, а амплитуды сближаются. Т.е. наблюдается лучшее временное перекрытие импульсов желтой и зеленой линий излучения для пучков, которые формируются в резонаторе на последних проходах по сравнению с перекрытием в полном луче (сравните на рис. 2). Оба эти факта благоприятно сказываются на ГСЧ, так как η пропорциональна произведению мгновенных значений импульсов интенсивности двух линий.

Величина кпд ГСЧ η достигает максимума (см. рис. 3) при оптимальном соотношении f_1/f_2 (аналогичный результат и в [6, 7]). Такое поведение можно объяснить тем фактом, что с ростом f_2 , с одной стороны, увеличивается диаметр d преобразованного пучка и падает плотность мощности, с другой – уменышается расходимость преобразованного пучка φ' . Оба фактора влияют на величину η противоположным образом, что и приводит к появлению оптимума по f_2 .

При оптимальном значении f_2 величины η и P_3 , естественно, увеличивались с ростом P_{κ} (см. рис. 4).

Отметим, что в данном эксперименте при использовании резонатора с M = 200 достигнутое значение η втрое выше, чем величина η, полученная в [6, 7] с M = 5. Аналогичная тенденция увеличения η с ростом величины M наблюдается в других работах (см., например, [3]). Это можно объяснить тем, что при $M \ge 100$ с появлением дифракционного пучка, обладающего качественным волновым фронтом, уменьшается расходимость преобразованного коллиматором луча φ' и повышается плотность мощности на его оси.

Практическая неизменность η в эксперименте с нормальной и уменьшенной в 30 раз средней мощностью ЛПМ указывает на то, что в данных условиях тепловое самовоздействие луча в DKDP не велико. Остаются проблемы поднятия доли энергии, приходящейся на пучок с малой расходимостью, качества оптики и увеличения кпд ЛПМ.

Для выяснения перспективы ГСЧ излучения ЛПМ был сделан оценочный расчет величины η . Использовалось приближение плоских волн накачки с учетом истощения их амплитуд в кристалле [14, 15]. При длительности импульсов излучения τ 20 ÷ 30 нс и диаметре луча на входе в кристалл 1 ÷ 2 мм режим взаимодействия волн можно считать квазистатическим для импульса и бездифракционным для луча. Кроме того, полагали, что расходимость и радиальное гауссовское распределение интенсивности луча

не меняются в течение импульса, а диаметр луча на длине кристалла остается почти постоянным. В этом случае пространственную и временную зависимости интенсивности излучения в импульсе аппроксимируют ступенчатой функцией. Для каждой ступеньки можно использовать формулы для кпд, полученные для однородного и стационарного луча в том или ином приближении, и затем просуммировать (проинтегрировать) результаты. Для ГСЧ такие формулы приведены в [16]:

$$\frac{I_3(t,L)}{I_1(t,0) + I_2(t,0)} = \frac{2\pi c}{\lambda_3} X_1 \cdot \operatorname{sn}^2(a,b),$$
(1)

где I_1, I_2, I_3 – интенсивности излучения соответственно на длинах волн $\lambda_1, \lambda_2, \lambda_3$; sn(a, b) – эллиптическая функция Якоби, аргументы $a = \xi \sqrt{X_1}, b = \sqrt{X_1/X_2}, X_1$ и X_2 – минимальный и максимальный положительные корни уравнения

$$m_{1} m_{2} - (m_{1} + m_{2} + 0.25(\Delta kL/\xi)^{2})X + X^{2} = 0; \qquad (2)$$

$$m_{1} = \frac{\lambda_{2} I_{2}(t, 0)}{2\pi c(I_{1}(t, 0) + I_{2}(t, 0))};$$

$$m_{2} = \frac{\lambda_{1} I_{1}(t, 0)}{2\pi c(I_{1}(t, 0) + I_{2}(t, 0))};$$

 $\Delta k(\theta, T) = |\mathbf{k}_3 - \mathbf{k}_2 - \mathbf{k}_1|$ – волновая расстройка; ξ – параметр, который можно выразить через $d_{\text{eff}}(\theta)$ (в системе СИ):

$$\xi^{2} = \frac{5.6 \cdot 10^{13} d_{\text{eff}}^{2} L^{2} (I_{1}(t, 0) + I_{2}(t, 0))}{n_{1} n_{2} n_{3} \lambda_{1} \lambda_{2} \lambda_{3}}.$$
(3)

В (2) и (3) $n_1(T)$, $n_2(T)$ – показатели преломления обыкновенного луча для λ_1 и λ_2 , зависящие от температуры кристалла; $n_3(\theta, T)$ – показатель преломления необыкновенного луча для λ_3 – и $\Delta k(\theta, T)$ зависят также от θ – угла между оптической осью кристалла и волновым вектором **k** падающего на кристалл излучения.

Учитывалось тепловое самовоздействие луча в приближении отсутствия дисперсии коэффициентов поглощения излучения в DKDP. Радиальный профиль температуры в кристалле находился из решения уравнения теплопроводности при заданной на оси кристалла (и полного луча) температуре $T_0 = 333$ К. При этом температура стенки кристалла T_c рассчитывалась как функция средней мощности $P_{\rm x}$.

Световой пучок, падающий на кристалл, разбивался на отдельные парциальные лучи, идущие под разными углами. Условие синхронизма $\Delta k = 0$ выполнялось на оси кристалла. Каждому отдельному парциальному лучу сопоставлялись свое θ , своя температура T и расстройка Δk , и по формуле (1) вычислялись значения $I_3(t, L)$ для заданного момента времени. Затем находилась энергия импульса УФИ – E_3 интегрированием I_3 по площади луча в пределах за

данного угла расходимости и по времени в пределах импульса излучения U(t). Коэффициент полезного действия ГСЧ выражался в виде $\eta = E_3/(E_1 + E_2)$, что совпадает с определением кпд по отношению средних мощностей, введенным выше.

Расчетная зависимость η от параметров φ' и P_{κ} представлена на рис. 5. Длина кристалла DKDP L = 4 см, диаметр 1 см, диаметр луча d = 0,1 см. Считалось, что импульсы желтой и зеленой линий излучения одинаковы и совпадают по времени. Импульсные плотности мощности на входе в кристалл $I_1 = I_2 = 0,65 \cdot 10^5$ Вт/см² постоянны (и не зависят от P_{κ}), излучение полностью поляризовано.

Рис. 5. Расчет кпд $\eta(\phi', P_{\kappa})$: $I_1 = I_2 = 0,65 \cdot 10^5$ Вт/см²: 1, 2, 3, 4, 5 – $\phi' = 0,2; 0,35; 0,7; 1,4; 2,1$ мрад; 6 – температура стенки кристалла T_c

При достаточно малых $\varphi' \leq 5 \cdot 10^{-4}$ рад наблюдается существенное падение η с ростом P_{κ} , что связано с тепловым самовоздействием излучения. Для расходимостей $\varphi' \geq 1 \cdot 10^{-3}$ рад зависимость η от P_{κ} становится незначительной в выбранном диапазоне параметров.

Для иллюстрации возможности получения высоких значений кпд на кривой 3 рис. 5 нанесена точка «А», которая соответствует вполне достижимым параметрам ЛПМ, а именно: $P_{\kappa} = 25$ Вт, f = 10 кГц, $\tau = 20$ нс, расходимость преобразованного в коллиматоре луча близка к дифракционной $\varphi' = 7 \cdot 10^{-4}$ рад при диаметре d = 1 мм. Величина η при этих параметрах равна 25% и может быть существенно повышена за счет увеличения амплитуд импульсов U (при сохранении на том же уровне средней мощности P_{κ}). Этого можно достичь за счет оптимизации режимов возбуждения ЛПМ и увеличения объема разрядной трубки.

- 1. Исаев А.А., Леммерман Г.Ю., Малафеева Г.Л. // Квантовая электроника. 1980. Т. 7. № 8. С. 1700–1704.
- 2. Полунин Ю.П., Троицкий В.О. // Квантовая электроника. 1987. № 11. С. 2249–2251.
- 3. Coutts D.W., Ainsworth M.D., Piper J.A. // IEEE Journ. of Quantum Electronics. 1990. V. 26. № 9. P. 1555–1558.
- 4. Евтушенко Г.С., Троицкий В.О. // Тезисы докладов конференции «Оптика лазеров' 93». СПб, 1993. Т. 2. С. 436–437.
- 5. *Троицкий В.О. //* Оптика атмосферы и океана. 1993. Т. 6. № 6. С. 666–671.
- Karpukhin V.T., Konev Y.B., Malikov M.M. // Proc. of Tenth. Int. Symp. on Gas Flow and Chemical Lasers // SPIE. Bellingham. USA. 1994. V. 2502. P 172–177.

- 7. Карпухин В.Т., Конев Ю.Б., Маликов М.М. // Оптика атмосферы и океана. 1995. Т. 8. № 11. С. 1852–1657.
- Исаев А.А., Казарян М.А., Петраш Г.Г., Раутиан С.Г., Шалыгин А.М. // Квантовая электроника. 1977. Т. 4. № 6. С. 1325–1335.
- 9. Беляев В.П., Зубов В.В., Исаев А.А., Лябин Н.А. и др. // Квантовая электроника. 1985. Т. 12. № 1. С. 74–78.
- 10. Ананьев Ю.А., Аникичев С.Г. // ЖТФ. 1983. Т. 53. № 10. С. 1959–1962.
- 11. Солдатов А.Н., Суханов В.Б., Федоров В.Ф., Юдин Н.А. // Оптика атмосферы и океана. 1995. Т. 8. № 11. С. 1626–1636.

Институт высоких температур РАН, Москва

- 12. Климовский И.И. // ТВТ. 1989. Т. 27. С. 1190-1198.
- 13. Зубов В.В., Лябин Н.А., Чурсин А.Д. // Квантовая электроника. 1986. Т. 13. № 9. С. 2431–2436.
- 14. Дмитриев В.Г., Тарасов Л.В. Прикладная нелинейная оптика. М.: Радио и связь, 1982. 352 с.
- 15. Гурзадян Г.Г., Дмитриев В.Г., Никогосян Д.Н. Нелинейнооптические кристаллы. Свойства и применение в квантовой электронике. М.: Радио и связь, 1991.
- 16. Armstrong J.A., Bloembergen N., Ducuing J., Pershan P.S. // Phys. rev. 1962. V. 127. N 6. P. 1918–1938.

Поступила в редакцию 7 октября 1997 г.

V.T. Karpukhin, M.M. Malikov. The Copper Vapor Laser Employment for Obtaining of Ultraviolet Light.

The investigation results of the ultraviolet light (UV) generation, $\lambda = 0.271 \,\mu\text{m}$, due to summation of frequencies of Copper Vapor Laser emission ($\lambda = 0.51 \,\mu\text{m}$ and $\lambda = 0.578 \,\mu\text{m}$) in nonlinear crystal DKDP are presented. At employment of unstable resonator with high magnification M = 200 and spatial filter, about 0.75 W, average UV output and 12% conversion efficiency are obtained. In a beam with low divergence, the magnitude of pulses of yellow and green lines came close and their relative delay disappeared, what activated the process of the summarized frequency generation.