УДК 551.508.769

В.Я. Артюхов, В.А. Браташов, А.Г. Заводовский, Н.А. Зверева, И.И. Ипполитов

ИЗУЧЕНИЕ ФОТОФИЗИЧЕСКИХ ПРОЦЕССОВ В МОЛЕКУЛЕ 3,4-БЕНЗПИРЕНА В СВЯЗИ С ПРОБЛЕМАМИ ЕГО ДЕТЕКТИРОВАНИЯ В ОКРУЖАЮЩЕЙ СРЕДЕ

Проведен анализ фотофизических процессов, происходящих в молекуле 3,4-бензпирена под воздействием УФизлучения. Рассмотрены различные методы детектирования молекулы 3,4-бензпирена в окружающей среде, предлагается новый подход к проблеме детектирования молекулы.

Введение

3,4-бензпирен (бенз(а)пирен) принадлежит к числу полициклических, ароматических соединений (ПАУ). Он образуется при производстве асфальтобетона, в металлургических, нефтеперерабатывающих, нефтехимических производствах и является канцерогенным веществом, отнесенным к первому классу опасности. Предельно допустимая концентрация 3,4бензпирена (БП) в воздухе населенных мест крайне низка: 10⁻¹⁵ г/см³ или 2,4·10⁶ см⁻³ [1]. Известно, что при 0 °C 100% БП в воздухе находится в аэрозольной фазе, при 19 °C 1% БП находится в газовой фазе и 99% в аэрозольной. Отсюда при анализе вытекает необходимость отбора достаточно больших объемов воздуха на подходящие фильтры, экстрагирования осажденного вещества бензолом или н-гексаном, концентрирования полученного раствора и его использования для последующего анализа.

Стандартные аналитические методики [2] используют два спектроскопических метода: флуоресцентный и, реже, абсорбционный. При применении того и другого метода возникает проблема селективности по отношению к БП, поскольку при экстракции проб с фильтров в раствор, кроме БП, переходит большое число других органических соединений (гетероциклических, кислородосодержащих соединений, олефинов, парафинов) и при последующем анализе возникает проблема химической интерференции соединений. В стандартных методиках для устранения этих трудностей используется хромотографическое разделение экстракта, что делает методики сложными и трудоемкими.

Целью нашей работы являются анализ фотофизических процессов в молекуле БП и формулировка подходов к проблеме детектирования БП, повышающих селективность анализа и упрощающих его проведение.

1. Результаты расчетов и их обсуждение

Структура молекулы БП и нумерация его атомов представлены на рис. 1. Рассчитывалась плоская геометрия согласно кристаллографическим данным [3]. Расчет структуры электронных уровней молекулы был выполнен методом частичного пренебрежения дифференциальным перекрыванием (ЧПДП) с параметризацией, позволяющей правильно рассчитывать возбужденные состояния различной природы и мультиплетности в сложных ароматических и гетероциклических соединениях [4-6]. Константы скоростей радиационного распада возбужденных состояний, внутренней и интеркомбинационной конверсии в системе синглетных и триплетных уровней рассчитывались по методикам, изложенным в [5-7]. При расчете возбужденных электронных состояний было учтено 300 однократно возбужденных конфигураций, при этом в расчет было включено 9 занятых и 5 вакантных молекулярных орбиталей л-типа. Результаты расчетов представлены в табл. 1-4.

Рис. 1. Структура и нумерация атомов молекулы 3,4-бензпирена

В табл. 1 и 3 приведены полученные в результате расчета спектры $S_0 \rightarrow S_n$ и $S_0 \rightarrow T_n$ в сравнении с экспериментальными данными. Из этих результатов следу-

ет, что первые два электронных перехода связаны с возбуждением π электронов. Согласно классификации волновых функций по симметрии [8] состоянию S₁ соответствует функция Ψ^- , а $S_2 - \Psi^+$. Поскольку волновая функция основного состояния относится к Чтипу, переход $S_0 \rightarrow S_1$ является запрещенным $(k_r = 3, 6 \cdot 10^6 \text{ c}^{-1})$, а переход $S_0 \to S_2$ разрешенным $(k_r = 3, 5 \cdot 10^8 \text{ c}^{-1})$. Эти состояния сильно взаимодейстмеханизму внутренней вуют по конверсии $k_{ic}(S_2 \rightarrow S_1) \approx 10^{13} \text{ c}^{-1}$. Именно за счет этого большого взаимодействия происходит «разрешение» (заимствование интенсивности) электронного перехода $S_0 \rightarrow S_1$, наблюдаемое в эксперименте: $\varepsilon(S_0 \rightarrow S_1) =$ = 6000 л/(моль·см) и $\varepsilon(S_0 \rightarrow S_2) = 12000$ л/(моль·см) [9].

Таблица 1

Рассчитанные и экспериментальные [9] характеристики синглетных электронных переходов в молекуле 3,4-бензпирена: энергия (нм, см⁻¹), константа скорости радиационного распада (с⁻¹), коэффициент экстинкции [л/(моль·см)]

	$S_0 \rightarrow S_1$	$S_0 \rightarrow S_2$	$S_0 \rightarrow S_3$	$S_0 \rightarrow S_4$	$S_0 \rightarrow S_5$	$S_0 \rightarrow S_6$
	$\pi\pi^*$	$\pi\pi^*$	ππ*	ππ*	$\pi\sigma^*$	$\pi\sigma^*$
Расчет	396,8	391,0	315,8	296,8	296,6	286,6
	25202	25576	31665	33688	33721	34776
	$3,6.10^{6}$	$3,5.10^{8}$	$4,7.10^{6}$	$2,9.10^{7}$	$1,3.10^{4}$	$2,9.10^{8}$
Экспери-	402,0	388,0				
мент	24820	25745				
	ε=6000	$\epsilon = 12000$				

В табл. 2, 4 приведены результаты оценки констант скоростей внутренней конверсии в системах синглетных и триплетных электронных состояний. Из этих результатов видно, что внутренняя конверсия между состояниями разной молекулярно-орбитальной природы ($\pi\pi^* \Leftrightarrow \pi\sigma^*$) является запрещенным фотопроцессом. Для переходов между состояниями одной молекулярно-орбитальной природы величина константы скорости подчиняется правилу отбора по симметрии (переходы $\Psi^- \Leftrightarrow \Psi^-$ и $\Psi^+ \Leftrightarrow \Psi^+$ запрещены).

Таблица 2

Рассчитанные константы скорости внутренней конверсии $S_i \rightarrow S_i$ в молекуле 3,4-бензпирена (с⁻¹)

	$S_1(\pi\pi^*)$	$S_2(\pi \pi^*)$	$S_3(\pi\pi^*)$	$S_4(\pi\pi^*)$	$S_5(\pi \pi^*)$	$S_6(\pi \pi^*)$
S_0	$4,1.10^{4}$	$2,0.10^{6}$	$5,4.10^{4}$	$1,6.10^{4}$	$1,4.10^{-7}$	$1,3.10^{4}$
$S_1(\pi\pi^*)$		9,6·10 ¹²	$8,5.10^{9}$	$1,2.10^{9}$	$1,1.10^{0}$	$4,2.10^{9}$
$S_2(\pi \pi^*)$			$5,0.10^{10}$	$5,5.10^{9}$	$9,5.10^{\circ}$	$3,1.10^{9}$
$S_3(\pi \pi^*)$				$3,0.10^{11}$	$2,5.10^{2}$	4,9·10 ¹¹
$S_4(\pi \pi^*)$					$1,1.10^{5}$	5,6·10 ¹²
$S_5(\pi \pi^*)$						9,6·10 ³

На рис. 2 приведена схема энергетических уровней и основных фотофизических процессов для низколежащих электронных состояний молекулы 3,4бензпирена, построенная по результатам квантовохимических расчетов. На рис. 2 и табл. 1 видно, что области максимального поглощения отвечают возбуждению молекулы 3,4-бензпирена в состояния S_2 ($\lambda = 391$ нм) и S_6 ($\lambda = 287,6$ нм). Основным каналом распада состояния S_2 является внутренняя конверсия в состояние S_1 ($k_{ic} \approx 10^{13} \text{ c}^{-1}$). Радиационный распад и интеркомбинационная конверсия в Т-состояния имеют существенно меньшую скорость ($\approx 10^8 \text{ c}^{-1}$). После возбуждения молекулы в состояние S₆ с энергией ≈ 34800 см⁻¹ возможны несколько фотофизических процессов: радиационный распад с константой скорости $k_{\kappa} = 2,9 \cdot 10^8 \text{ c}^{-1},$ $k_{ic}(S_6 \rightarrow S_4) = 5,6 \cdot 10^{12} \text{ c}^{-1}$ внутренняя конверсия и интеркомбинационная конверсия на близкие по энергии триплетные состояния T₈÷T₁₂. Суммарно последняя константа может быть оценена как $k_{icc}(S_6 \rightarrow T) = 5,6 \cdot 10^9 \text{ c}^{-1}$. Из соотношения констант скоростей различных фотопроцессов видно, что основным каналом распада состояния S₆ является также внутренняя конверсия. Этот процесс распада будет основным для всех возбужденных синглетных состояний, кроме состояния S₁.

Рис. 2. Схема энергетических уровней и основных фотофизических процессов для низколежащих электронных состояний молекулы 3,4-бензпирена

Согласно результатам расчетов распад состояния S_1 происходит по двум конкурирующим механизмам: радиационный распад с константой скорости $k_r = 3,6\cdot 10^6 \text{ c}^{-1}$ и интеркомбинационная конверсия на триплетные состояния $T_2 \div T_4 k_{icc}(S_1 \rightarrow T) = 5 \cdot 10^7 \text{ c}^{-1}$. При этом рассчитанный квантовый выход флуоресценции составляет $\varphi = 0,07$. В действительности (в эксперименте) квантовый выход флуоресценции может быть в несколько раз больше за счет упомянутого выше электронно-колебательного взаимодействия состояния S_1 с состоянием S_2 , для которого радиационный переход $S_2 \rightarrow S_0$ является разрешенным переходом.

	1														
	$S_0 \rightarrow T_1$	$S_0 \rightarrow T_2$	$S_0 \rightarrow T_3$	$S_0 \rightarrow T_4$	$S_0 \rightarrow T_5$	$S_0 \rightarrow T_6$	$S_0 \rightarrow T_7$	$S_0 \rightarrow T_8$	$S_0 \rightarrow T_9$	$S_0 \rightarrow T_{10}$	$S_0 \rightarrow T_{11}$	$S_0 \rightarrow T_{12}$	$S_0 \rightarrow T_{13}$	$S_0 \rightarrow T_{14}$	$S_0 \rightarrow T_{15}$
	$\pi\pi^*$	$\pi\pi^*$	ππ*	ππ*	$\pi\sigma^*$	$\pi\pi^*$	ππ*	$\pi\sigma^*$	$\pi\pi^*$	$\pi\sigma^*$	$\pi\pi^*$	$\pi\sigma^*$	$\pi\sigma^*$	$\pi\pi^*$	$\pi\sigma^*$
Расчет	729,8	431,0	378,1	360,9	356,1	349,9	334,7	308,6	302,7	295,0	287,0	282,5	276,7	272,3	268,7
	12613	23203	26446	27709	28086	28577	29874	32405	330037	33902	34849	35402	36136	36720	37219
Эксперимент															
	14600	-	_	_	-	-	-	-	-	-	-	-	_	-	_

Рассчитанные и экспериментальные энергии (нм, см⁻¹) $S_0 \rightarrow T_n$ электронных переходов в молекуле 3,4-бензпирена

Таблица 4

Рассчитанные константы скорости внутренней конверсии $T_i \rightarrow T_j$ в молекуле 3,4-бензпирена (с⁻¹)

					<u> </u>	<u> </u>		<u> </u>		<u> </u>			<u> </u>	<u> </u>
	$T_2(\pi\pi^*)$	$T_{3}(\pi\pi^{*})$	$T_4(\pi\pi^*)$	$T_5(\pi\sigma^*)$	$T_6(\pi\pi^*)$	$T_7(\pi\pi^*)$	$T_8(\pi\sigma^*)$	$T_{9}(\pi\pi^{*})$	$T_{10}(\pi\sigma^{*})$	$T_{11}(\pi\pi^*)$	$T_{12}(\pi\sigma^{*})$	$T_{13}(\pi\sigma^{*})$	$T_{14}(\pi\pi^*)$	$T_{15}(\pi\sigma^{*})$
$T_1(\pi\pi^*)$	$1,3.10^{7}$	$8,5 \cdot 10^{6}$	$1,8.10^{7}$	2,6.10-5	$4, 4 \cdot 10^7$	$5,7.10^{5}$	$7,1.10^{-6}$	$2,8.10^{5}$	$2,2.10^{-5}$	$3,5.10^{5}$	$1,7.10^{-5}$	1,9.10-5	9,8·10 ⁵	3,0.10-5
$T_2(\pi\pi^*)$		6,3·10 ⁹	$4,7.10^{10}$	8,4.10-2	9,5·10 ¹⁰	$2,6.10^{8}$	3,6.10-3	$1,3.10^{8}$	8,6.10-3	$1,6.10^{8}$	5,4.10-3	3,0.10-3	$2,1.10^{8}$	$1,5.10^{-2}$
$T_3(\pi\pi^*)$			$1,4.10^{12}$	$5,7.10^{1}$	$1,1.10^{12}$	$8,4.10^{9}$	$1,6.10^{-1}$	$2,8.10^{8}$	$2,2 \cdot 10^{-1}$	$1,1.10^{9}$	9,3·10 ⁻²	$1,4.10^{-1}$	$3,2.10^{9}$	$6,7 \cdot 10^{-1}$
$T_4(\pi\pi^*)$				$4,0.10^{1}$	$1,4.10^{13}$	2,6.1011	$1,3 \cdot 10^{-1}$	$3,0.10^{10}$	$4,0.10^{-1}$	$1,3.10^{10}$	$2,2.10^{-1}$	7,3.10-2	$3,2.10^{9}$	$8,8 \cdot 10^{-1}$
$T_5(\pi\sigma^*)$					$9,7.10^{1}$	$5,5 \cdot 10^{0}$	$5,1.10^{10}$	$2,4.10^{-1}$	$1,5.10^{10}$	$2,2.10^{-1}$	$5,2.10^{9}$	$4,6.10^{9}$	$3,1 \cdot 10^{-1}$	$1,2.10^{9}$
$T_6(\pi \pi^*)$						5,6·10 ¹²	$1,2.10^{0}$	$2,2.10^{11}$	$7,6 \cdot 10^{-1}$	$3,8 \cdot 10^{10}$	5,6.10-1	5,6·10 ⁻¹	$4,6.10^{9}$	$3,8.10^{\circ}$
$T_7(\pi\pi^*)$							$9,2.10^{-1}$	$5,6.10^9$	$4,8 \cdot 10^{-1}$	$9,7.10^{9}$	$2,1.10^{-1}$	$2,7 \cdot 10^{-1}$	9,9·10 ⁹	$4,9.10^{-1}$
$T_8(\pi\sigma^*)$								3,5·10 ¹	$1,3.10^{12}$	$2,2.10^{1}$	$2,0.10^{11}$	9,2·10 ¹⁰	$3,0.10^{0}$	$2,9.10^{10}$
$T_{9}(\pi\pi^{*})$									$1,2.10^{2}$	7,6·10 ¹¹	$1,3.10^{1}$	$6,1 \cdot 10^{0}$	$3,1.10^{11}$	$1,7.10^{1}$
$T_{10}(\pi\sigma^{*})$										$4,0.10^{2}$	1,8·10 ¹²	4,9·10 ¹¹	$1,8.10^{1}$	$5,6 \cdot 10^{10}$
$T_{11}(\pi\pi^*)$											$4,5.10^{2}$	$1,8.10^{2}$	$2,1.10^{12}$	$3,2.10^{2}$
$T_{12}(\pi\sigma^{*})$												$2,9.10^{12}$	$2,0.10^{2}$	$3,7.10^{11}$
$T_{13}(\pi\sigma^{*})$													$1,3.10^{3}$	4,5·10 ¹¹
$T_{14}(\pi\pi^{*})$														$1,1.10^{4}$

Вернемся к состоянию S_6 . Энергия этого состояния примерно соответствует энергии диссоциации связи С-Н в ароматических молекулах ($\approx 35000 \text{ см}^{-1} \approx 4,4 \text{ эВ}$), т.е. энергии отрыва атома водорода в основном состоянии молекулы. Учитывая, что константа скорости $k_{ic}(S_6 \rightarrow S_0) \approx 1,3 \cdot 10^4 \text{ c}^{-1}$, квантовый выход этого процесса равен примерно 10^{-9} .

В предположении, что разрыву химической связи С-Н предшествует ее ослабление, была сделана попытка найти возбужденное электронное состояние, в котором происходит существенное ослабление связи. Прочность связи оценивалась по заселенности (по величине электронной плотности между атомами *A* и *B* [10]):

$$P_{AB} = 2 \sum_{i=1}^{3\text{aH.}} \sum_{\substack{\mu \in A \\ \nu \in B}} c_{i\mu}^{A} c_{i\nu}^{B} S_{\mu\nu},$$

где $c_{i\mu}^{A}$, $c_{i\nu}^{B}$ – коэффициенты разложения молекулярной орбитали по атомным орбиталям; $S_{\mu\nu}$ – интеграл прерывания атомных орбиталей. Коэффициенты $c_{i\mu}^{A}$ и $c_{i\nu}^{B}$ соответствуют деортогонализованному базису атомных орбиталей (АО).

Таблица 5

Минимальные значения РСН в синглетных состояниях

Связь	Номер состояния											
C-H				велич	ина P _{CH}	I						
2-21	0	227	271	291	297	295	300	252				
	0,887	0,719	0,721	0,729	0,732	0,734	0,739	0,740				
3-22	0	300	298	295	291	271	282	145				
	0,889	0,613	0,614	0,616	0,618	0,623	0,623	0,626				
4–23	0	300	22	295	298	291	282	145				
	0,890	0,607	0,624	0,627	0,631	0,635	0,642	0,651				
5-24	0	290	232	289	138	15	164	292				
	0,895	0,708	0,715	0,744	0,748	0,749	0,749	0,760				
8–25	0	232	290	15	289	35	138	111				
	0,892	0,652	0,656	0,685	0,689	0,708	0,709	0,719				
9–26	0	232	290	239	289	250	15	241				
	0,886	0,777	0,777	0,779	0,788	0,789	0,792	0,792				
11-27	0	291	300	295	298	282	297	145				
	0,887	0,696	0,709	0,715	0,717	0,723	0,723	0,724				
12-28	0	295	300	298	291	282	22	145				
	0,888	0,655	0,657	0,660	0,660	0,666	0,669	0,669				
13-29	0	288	293	13	285	148	213	119				
	0,887	0,717	0,743	0,749	0,754	0,771	0,776	0,779				
15-30	0	288	293	13	285	148	213	208				
	0,885	0,661	0,698	0,704	0,731	0,736	0,737	0,742				
16-31	0	288	293	13	285	148	213	208				
	0,885	0,693	0,701	0,708	0,729	0,740	0,748	0,749				
18-32	0	10	239	273	290	61	232	235				
	0,883	0,740	0,771	0,772	0,779	0,779	0,784	0,785				

По специальной программе был организован поиск состояний с минимальными значениями $P_{\rm CH}$ для определения связи С-Н. Результаты приведены в табл. 5 и 6. Для сравнения во второй колонке таблиц даны значения $P_{\rm CH}$ в основном значении молекулы. Табл. 5 и 6 свидетельствуют что изменения заселенностей связей С-Н незначительны даже в высоковозбужденных состояниях S_i , T_i .

Таблица б

Минимальные значения РСн в триплетных состояниях

Связь	Номер состояния										
C-H	величина $P_{\rm CH}$										
2-21	0 297 274 228 382 292 300							296			
	0,887	0,730	0,734	0,736	0,736	0,736	0,736	0,739			
3-22	0	274	296	300	298	292	103	284			
	0,889	0,596	0,609	0,613	0,615	0,618	0,623	0,625			
4–23	0	296	300	103	292	274	298	284			
	0,890	0,607	0,609	0,610	0,630	0,632	0,636	0,643			
5–24	0	290	234	155	289	97	95	36			
	0,895	0,711	0,721	0,729	0,742	0,745	0,754	0,754			
8-25	0	234	290	95	289	155	20	97			
	0,892	0,663	0,666	0,685	0,686	0,693	0,703	0,704			

2. Методические вопросы диагностики 3,4-бензпирена

Изложенная картина фотофизических процессов согласуется с особенностями экспериментально измеренных спектров поглощения и флуоресценции молекулы 3,4-бензпирена, представленных на рис. 3, 4 [9].

Рис. 3. Спектр флуоресценции 3,4-бензпирена в *н*-октане при 77 К [9]

Пик флуоресценции при $\lambda = 402$ нм на рис. 3 соответствует радиационному переходу $S_1 \rightarrow S_0$. Подобный пик в спектре поглощения (см. рис. 4) отвечает переходу $S_0 \rightarrow S_1$. Структура в области $\lambda < 400$ нм представляет электронно-колебательный спектр, связанный с переходом $S_0 \rightarrow S_2$. Максимальное значение сечения в этой области у $\lambda < 388,6$ нм отвечает чисто электронному 0-0-переходу.

Из рис. 4 следует, что оптимальной парой длин волн для метода дифференциального поглощения (ДП) являются $\lambda_0 < 388,6$ нм с $\sigma(\lambda_0) = 4,6\cdot 10^{-17}$ см² и $\lambda_1 = 400$ нм с $\sigma(\lambda_1) \approx 0$. Поскольку при температурах, реализующихся в атмосфере, практически весь 3,4бензпирен находится в аэрозольной фазе, попытки прямого его измерения методом ДП неперспективны.

Рис. 4. Спектр поглощения 3,4-бензпирена в н-октане при 77 К [9]

При перекачке 100 м³ воздуха через фильтр на последнем образуется (на уровне ПДК) $\approx 10^{-7}$ г 3,4бензпирена. При дальнейшем полном экстрагировании в растворитель и концентрировании раствора до 1 см³ будут получены концентрации $\approx 10^{-7}$ г/см³ или $N = 2,4 \cdot 10^{13}$ см⁻³. Для длины измерительной трассы 1 см и указанных выше длин волн и сечений $N_{\rm min} = 2,2 \cdot 10^{13}$ см⁻³, т.е. метод ДП для этого случая применим. Однако проблема влияния на измерения других попадающих в раствор с фильтра примесей сохраняется.

Эта проблема, по-видимому (необходима экспериментальная проверка), может быть решена путем модификации стандартных методик [2], использующих явление индуцированной флуоресценции. В этих методиках проба, после хроматографического разделения фракций, освещается источником УФ-излучения, в качестве которого используется моно-хроматор, и регистрируется сигнал флуоресценции на длине волны 402,4 нм чисто электронного $S_1 \rightarrow S_0$ перехода, который далее используется для количественного определения концентрации 3,4-бензпирена.

В различных методиках используются различные длины волн возбуждающего излучения: 254, 338, 367,4 нм. В свете изложенных выше результатов, касающихся закономерностей протекания фотофизических процессов в молекуле, такой разброс в выборе длин волн не влияет существенно на конечный результат: флуоресценция во всех случаях происходит из состояния *S*₁, а влияние мешающих примесей устранено предварительным разделением фракций. В основе предлагаемой нами модификации стандартных методик лежат характер спектра поглощения 3,4бензпирена, представленного на рис. 4, и особенности протекания фотофизических процессов. Возбуждение не подвергнутого предварительному фракционному разделению экстракта должно осуществляться попеременно на длинах волн 388,6 и 400 нм. Первая из них эффективно возбуждает флуоресценцию 3,4бензпирена на длине волны 402,4 нм, для второй флуоресценция практически отсутствует. Допуская, что обе эти близко расположенные длины волны с одинаковой эффективностью возбуждают шумовой сигнал от примесей на длине волны 402,4 нм, приходим к выводу, что использование в стандартных методиках (без стадии хромотографического разделения фракций) аналитического сигнала $I_{\rm EII}^{402,4} = I_{\rm EII}^{402,4}$ (388,6 нм) – $I_{\rm EII}^{402,4}$ (400 нм) может сохранить точностные характеристики трудоемкости в проведении анализа.

Наиболее эффективное решение проблемы диагностики 3,4-бензпирена, не связанное с привлечением сложных физико-химических методов, используемых в стандартных методиках, может быть, на наш взгляд, связано с использованием методов массспектроскопии при применении селективной лазерной фотоионизации молекулы. Обращаясь к рис. 2, заметим, что при возбуждении состояния S₂ практически все молекулы перейдут в состояние S₁ по безызлучательному механизму внутренней конверсии. Как отмечалось выше, лишь ≈ 10% молекул из этого состояния распадаются по радиационному каналу. Остальные 90% перейдут в триплетные состояния по безызлучательному механизму интеркомбинационной конверсии и будут накапливаться в состоянии T_1 , поскольку связь последнего с состоянием S₀ является слабой $k(T_1 \rightarrow S_0) < 1 \text{ c}^{-1}$. Экспериментальное значение положения уровня T_1 равно 14670 см⁻¹ [11], а наименьший потенциал ионизации 3,4-бензпирена составляет 57416 см⁻¹ [12]. Следовательно, для перевода молекулы из состояния T₁ в ионизационное состояние необходим квант света с энергией $\approx 42546 \text{ см}^{-1}$ (5,3 эВ, 235 нм). Таким образом, используя двухквантовое возбуждение ($\lambda_1 = 388$ нм, $\lambda_2 = 235$ нм), можно добиться селективного характера ионизации молекулы. Третья степень селекции массосуществляется во времяпролетном спектрометре путем регистрации импульсов тока, соответствующих приходу на детектор ионов с массовым числом M = 252. Чувствительность обсуждаемого метода очень высока, по современным оценкам она составляет 5.10⁻¹⁸ г [13]. Дополнительной привлекательной стороной данного метода является возможность использования сверхзвуковой газовой струи в объеме ионизации. При этом происходит глубокое вымораживание колебательных степеней свободы, сравнимое с использованием жидкого гелия при исследовании спектров Шпольского. В результате может быть существенно повышена селективность в процессе лазерной ионизации, причем последняя может быть в этом варианте осуществлена по двухфотонному механизму при помощи одного лазера с использованием промежуточных уровней S₂ или S₆.

- 1. Рыбальский Н.Г., Жакетов О.А., Ульянова А.Е. Экологические аспекты экспертизы изобретений. Справочник эксперта и изобретателя. Часть І. ВНИИПИ. М., 1989. 448 с.
- 2. Руководство по контролю загрязнения атмосферы. Руководящий документ РП 52.04.186-89. Государственный комитет СССР по гидрометеорологии. Министерство здравоохранения СССР. М., 1991. 693 с.
- Китайгородский А.И., Зоркий П.М., Бельский В.К. Строение органического вещества. Данные структурных исследований. 1929–1970. М., 1980. 648 с.
- 4. Артюхова В.Я., Галеева А.И. // Изв. вузов. Физика. 1986. N 11. С. 96–100.
- 5. Артюхов В.Я., Галеева А.И., Майер Г.В., Пономарев В.В. // Оптика и спектроскопия. 1997. Т. 82. N 4. С. 563–566.

Сибирский физико-технический институт

им. В.Д. Кузнецова, Томск

- 6. Майер Г.В., Артюхов В.Я., Карыпов А.В. // Оптика и спектроскопия. 1989. Т. 66. N 4. С. 823–826.
- 7. *Майер Г.В.* Фотофизические процессы и генерационная способность ароматических молекул. Томск, 1992. 265 с.
- 8. Pariser R. // J. Chem. Phys. 1956. V. 24. N 2. P. 250-268.
- Болотникова Т.Н., Дубинина Н.В., Жуков В.А., Сурин Н.М., Уткина А.Ф.// ЖПС. 1985. Т. 42. N 3. С. 493–496.
- 10. Mulliken R.S. // J. Chem. Phys. 1955. V. 23. N 10. P. 1833.
- 11. Нурмухаметов Р.И. Поглощение и люминесценция ароматических соединений. М.: Химия, 1971. 216 с.
- 12. Brogli F., Heilbronner E. // Angew. Chem. Intern. Edit. 1972. V. 11. P. 538.
- 13. Аналитическая справка. М.: Информприбор, 1989. 27 с.

Поступила в редакцию 2 декабря 1997 г.

V.Ya. Artyukhov, V.A. Bratashov, A.G.Zavodovskii, N.A. Zvereva, I.I. Ippolitov. Study of the Photophysical Processes in the Molecule of 3,4-benzpyrene in the Connection with the Problems of this Molecule Detection in the Environment.

The analysis of photophysical processes in the 3,4-benzpyrene molecule has been done. The different approaches have been regarded and new approach to solution of the problem of 3,4-benzpyrene detection is suggested.