А.Д. Быков, Н.Н. Лаврентьева, Л.Н. Синица

СДВИГИ ЛИНИЙ Н₂О ДАВЛЕНИЕМ АЗОТА, КИСЛОРОДА И ВОЗДУХА В УДАРНОЙ ТЕОРИИ АНДЕРСОНА

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 20.07.99 г.

Для линий поглощения водяного пара ИК-диапазона рассчитаны коэффициенты сдвига, и в рамках ударной теории Андерсона проведен анализ основных факторов, влияющих на величину и знак сдвига. Анализировались колебательная и вращательная зависимости, роль различных слагаемых межмолекулярного потенциала. Показано, что зависимость сдвига линий от вращательного квантового числа определяется, в первую очередь, вкладами каналов рассеяния. В расчетах используется один подгоночный параметр – средняя дипольная поляризуемость в верхнем колебательном состоянии. Вычисленные значения удовлетворительно согласуются с экспериментальными данными.

І. Введение

Интерес к измерениям и расчетам сдвигов спектральных линий атмосферных газов, в том числе и водяного пара, обусловлен необходимостью получения точных значений сдвигов линий водяного пара давлением азота, кислорода и воздуха для использования в атмосферных приложениях. В частности, сдвиг линий H₂O представляет интерес в задачах лазерного зондирования профиля влажности методом дифференциального поглощения [1] в связи с тем, что пренебрежение сдвигом линии давлением воздуха может дать ошибку от 30 до 100% в восстановлении концентрации водяного пара для высот 15–20 км [2].

К настоящему времени проведены многочисленные измерения сдвигов линий давлением различных газов от микроволновой (МВ) до видимой области спектра [3–15]. Полученные экспериментальные результаты позволяют сделать вывод, что сдвиг линии формируется более сложным образом, чем ширина, и некоторые факторы, несущественные при уширении линии, становятся весьма важными для сдвига. Это подтверждают, например, сильные зависимости сдвига линии от колебательных квантовых чисел типа возмущающей молекулы, изотопических модификаций, температуры и давления [3, 14, 16]. В [14] отмечается, что поскольку сдвиг более чувствителен к деталям межмолекулярного взаимодействия, чем полуширина, то он может представлять интерес при изучении столкновений молекул.

В [14–24] коэффициенты сдвига спектральных линий H_2O были рассчитаны с использованием различных теоретических моделей: метода Андерсона [14, 16–18], метода QFT [19], метода Робера – Бонами [20 – 24], однако до сих пор многие опубликованные экспериментальные результаты не объяснены. Следует отметить, что вычисления по методу Робера – Бонами проведены только для полос v_2 , v_1 , v_3 , $3v_1 + v_3$ и $2v_1 + 2v_2 + v_3$, по теории Андерсона – для линий микроволнового спектра [18], полосы v_2 и полос ближнего ИК и видимого диапазонов.

В данной статье анализируются факторы, представляющие наибольший интерес при вычислениях сдвигов линий H₂O. Расчеты выполнены двумя методами: Андерсона [25, 26] и методом [27], не использующим разложения теории возмущений при вычислении элементов матрицы рассеяния, который для краткости будем называть методом Черкасова. Поскольку результаты вычислений двумя методами оказались близкими, в дальнейшем анализе использовался только метод Андерсона как более простой и иллюстрированный. Последующий анализ построен таким образом: в разделе II представлены основные соотношения теории и детали вычислений, в III разделе содержатся данные применительно к молекуле воды. Первая и вторая его части посвящены анализу колебательной и вращательной зависимостям коэффициента сдвига водяного пара соответственно. Анализ последней основан на рассмотрении вкладов каналов рассеяния. В заключительной части третьего раздела представлены измеренные и рассчитанные коэффициенты сдвига водяного пара для различных полос и различных уширяющих частиц.

II. Основные соотношения ударной теории и детали вычислений

В данной работе анализ проводится в рамках обычных предположений ударной теории: столкновения бинарны, длительность столкновения меньше времени между столкновениями, трансляционное движение частиц описывается классическими траекториями, интерференция линий не принимается во внимание. В этом случае полуширина спектральной линии γ_{if} и сдвиг ее центра δ_{if} для перехода $i \rightarrow f$, где i и f – наборы квантовых чисел начального и конечного состояний соответственно, задаются следующей формулой [26]:

$$\gamma_{if} + i \,\delta_{if} = \frac{n}{c} \sum_{2} \rho(2) \int_{0}^{\infty} dv \, v f(v) \int_{0}^{\infty} db \, bS(b), \tag{1}$$

где $i \equiv \alpha_{ij} j_i m_i$; $f \equiv \alpha_{fi} j_f m_j$; $2(2 \equiv \beta l \mu)$ – набор квантовых чисел возмущающей молекулы (*j* – квантовые числа углового момента; *m* – магнитные квантовые числа и α – все остальные квантовые числа); *n* – плотность буферного газа; f(v) – функция распределения Максвелла по относительным скоростям молекул; *b* – прицельный параметр. Согласно [28] выражение для функции эффективности взаимодействий *S*(*b*) следующее:

$$\operatorname{Re} S(b) = 1 - [1 - \operatorname{Re} S_2^{(\operatorname{middle}}(b)] \exp \{-\operatorname{Re} S_2^{\operatorname{outer}}(b) + S_2^{(\operatorname{middle}}(b)\} \cos \{\operatorname{Im} S_2^{\operatorname{outer}}(b) + S_1(b)\};$$

$$Im S(b) = [1 - \text{Re } S_2^{\prime \text{ middle}}(b)] \exp \{-\text{Re } S_2^{\text{outer}}(b) + S_2^{\prime \prime \text{ middle}}(b)\} \sin \{\text{Im } S_2^{\text{outer}}(b) + S_1(b)\},$$
(2)

где S₁(b) и S₂(b) – известные функции прерывания теории Андерсона первого и второго порядка. Помеченные одни и двумя штрихами члены соответствуют «присоединенным» и «связанным» диаграммам соответственно.

Функция прерывания в теории Андерсона вычисляется по теории возмущения и представляется как

$$S(b) = S_1(b) + S_2(b) + \dots$$
(3)

Член первого порядка отвечает за адиабатический эффект и определяется только изотропной частью потенциала. В нашем случае столкновения полярной молекулы H_2O с неполярной молекулой N_2 член $S_1(b)$ может быть представлен в виде

$$S_{1}(b) = -\frac{3\pi}{8\hbar\nu b^{5}} \alpha_{2} \left\{ < V_{i} \mid \mu^{2} \mid V_{i} > - < V_{f} \mid \mu^{2} \mid V_{f} > + \frac{3\epsilon\epsilon_{2}}{2(\epsilon + \epsilon_{2})} \left[< V_{i} \mid \alpha \mid V_{i} > - < V_{f} \mid \alpha \mid V_{f} > \right] \right\}.$$
(4)

В уравнении (4) α , μ , ϵ – поляризуемость, дипольный момент и потенциал ионизации молекулы H₂O соответственно; α_2 и ϵ_2 – поляризуемость и потенциал ионизации возмущающей молекулы. Член второго порядка состоит из трех частей:

$$S_{2}(b) = S_{2i}^{\text{outer}}(b) + S_{2f}^{\text{outer}}(b)^{*} + S_{2}^{\text{middle}}(b),$$
(5)

где

$$S_{2i}^{\text{outer}}(b) = \sum_{l_1 l_2} \frac{A_{l_1 l_2}}{\hbar^2 v^2 b^{2(l_1+l_2)}} \sum_{2'} D^2(22' \mid l_2) \sum_{i'} D^2(ii' \mid l_1) \varphi_{l_1 l_2}(k_{ii'22'});(6)$$

слагаемое $S_{2f}^{\text{outer}}(b)$ получается из (6) заменой индексов *i* на *f*; l_1 и l_2 обозначают тип взаимодействия: $l_1 = 1$, $l_2 = 1$ соответствуют диполь-дипольному, $l_1 = 1$, $l_2 = 2$ – дипольквадрупольному взаимодействиям; «звездочка» означает комплексное сопряжение;

$$D^{2}(ii' \mid l) = (\alpha_{i} \mid \mid T_{l} \mid \mid \alpha_{i}')^{2} / (2j_{i} + 1)$$
(7)

– момент перехода; ($\alpha_i || T_l || \alpha'_i$) – приведенный матричный элемент неприводимого тензорного оператора ранга *l*. Множитель $A_{l_1l_2}$ выбран так, чтобы Re $\varphi_{l_1l_2}(0) = 1$; $\varphi_{l_1l_2}(k_{il'22'})$ – комплексные резонансные функции:

$$\varphi_{l_1 l_2}(k) = f_{l_1 l_2}(k) + i I f_{l_1 l_2}(k), \tag{8}$$

зависящие от адиабатического параметра

$$k_{ii'22'} = \frac{2\pi cb}{v} (\omega_{ii'} + \omega_{22'}), \tag{9}$$

где ω_{ii}' и ω_{22}' – частоты переходов в поглощающей и возмущающей молекулах соответственно. Для электростатического потенциала (диполь-квадрупольное и квадрупольквадрупольное взаимодействия в нашем случае) функции *If*(*k*) вычислялись согласно [28], для индукционного и дисперсионного потенциала мнимая часть резонансных функций вычислена в [38]. Выражения для $S_2^{\text{middle}}(b)$ – аналогичные. Разложение теории возмущений неприменимо при малых значениях ударного параметра b, поэтому мы использовали процедуру прерывания, когда радиус прерывания b_0 определяется из уравнения

$$\operatorname{Re} S(b_0) = 1.$$
 (10)

При этом S(b) = 1 для $b \le b_0$ и определяется выражением (3) для $b > b_0$. Молекулярные параметры H₂O, N₂ и O₂ представлены в табл. 1.

Таблица 1

Молекулярные параметры H₂O, N₂ и O₂

Параметр	H ₂ O	N_2	O ₂
μ, Д	1,859	0	0
<i>q</i> , ДÅ	2,9	3	0,7
Ω, ДŲ	2	0	0
Ф, ДÅ ³	0	6	8
α , 10^{-25} cm ³	14,69	17,6	16,1
ε, 10 ⁻¹¹ эрг	2,018	2,485	2,003
$B_0, { m cm}^{-1}$	-	1,998	1,4456
D_0 , см $^{-1}$	-	$5,76 \cdot 10^{-6}$	$4,839 \cdot 10^{-6}$
J_{2}^{\max}	10	30	30

Постоянные молекулы H₂O: дипольные моменты в основном и первом возбужденном состояниях были взяты из [29], компоненты квадрупольных моментов – из [30], дипольная поляризуемость в основном состоянии – из [31].

Волновые функции, необходимые для определения матричных элементов, определялись с использованием вращательного гамильтониана Уотсона [32, 33], резонансы Кориолиса, Дарлинга – Деннисона, Ферми не учитывались. Не принимались в рассмотрение также вклады переходов $i \rightarrow i', f \rightarrow f'$, недиагональные по колебательным квантовым числам, ввиду того, что они много слабее чисто вращательных переходов. Кроме того, соответствующие таким переходам частоты $\omega_{ii'}$ и $\omega_{jj'}$ велики, что приводит к малым значениям резонансных функций и, следовательно, к малым вкладам в сдвиг. Чтобы учесть поправки на центробежное искажение, эффективный оператор дипольного момента использовался в виде [34]:

$$\mu = m_x^V \phi_x + m_{x,x}^V \{\phi_{x,y} J_x^2\} + m_{x,y}^V \{\phi_{x,y} J_y^2\} + m_{x,z}^V \{\phi_{x,y} J_z^2\} + m_{y,yy}^V \{\phi_y, \{J_{x,y} J_y\}\} + m_{z,xz}^V \{\phi_z, \{J_{x,y} J_z\}\},$$
(11)

где m – числовые параметры, зависящие от колебательного состояния; J_x, J_y, J_z – операторы углового момента; $\{A, B\}$ – антикоммутатор. Средний дипольный момент m_x^V для возбужденных колебательных состояний вычислялся по формуле

$$m_x^V = \langle V | \mu | V \rangle = \mu_e + \mu_1 v_1 + \mu_2 v_2 + \mu_3 v_3$$
(12)

с постоянными $\mu_e = -1,85498$; $\mu_1 = -0,00508$; $\mu_2 = -0,03166$; $\mu_3 = -0,02246$ Д, взятыми из [35]. Квантовые числа v_1 , v_2 , v_3 соответствуют симметричному валентному, деформационному и антисимметричному валентному колебаниям; $V = v_1$, v_2 , v_3 . Другие константы в (11) полагались не зависящими от колебательного состояния [34]. Силы квадрупольных переходов для молекулы H₂O вычислялись в приближении жесткого волчка.

Так как сравнение коэффициентов сдвига, рассчитанных по методу Андерсона и варианту, предложенному Черкасовым [27] (не содержит процедуры прерывания), показы-

Быков А.Д., Лаврентьева Н.Н., Синица Л.Н.

вает их хорошее согласие (рис. 1), в дальнейшем анализе использовался только метод Андерсона. Он позволяет легко выделить вклады отдельных каналов рассеяния, отдельных взаимодействий, что весьма существенно при анализе колебательной и вращательной зависимостей сдвига линий.

Рис. 1. Измеренные и рассчитанные двумя методами (Андерсона и Черкасова) коэффициенты сдвига линий для переходов типа $R(-1, 1) [J 1 J - 1 \leftarrow J - 1 2 J - 2]$ и $R(1, 1) [J 2 J - 1 \leftarrow J - 1 1 J - 2]$

III. Сдвиги линий молекулы водяного пара

Колебательная зависимость

Как уже было отмечено, рассчитывались отдельно вклады в сдвиг различных членов электростатического потенциала для столкновений $H_2O - H_2O$, $H_2O - N_2$ и $H_2O - O_2$. В рассмотрение были включены диполь-дипольное, дипольквадрупольное, квадруполь-квадрупольное, липольгексадекапольное взаимодействия, а также индукционный и дисперсионный члены поляризационного потенциала. В случае H₂O - N₂ и H₂O - O₂ главный вклад в уширение и сдвиг чисто вращательных переходов и основных полос обусловлен взаимодействием между дипольным моментом воды и квадрупольным моментом азота. Для случая H₂O -H₂O главным является диполь-дипольное взаимодействие, которое определяет уширение и сдвиг линий в низкочастотной области.

В вычислениях учитывалась колебательная зависимость молекулярных параметров, таких как средняя поляризуемость – $\langle V_i | \alpha | V_i \rangle$ и $\langle V_f | \alpha | V_j \rangle$, дипольные моменты – $\langle V_i | \mu^2 | V_i \rangle$ и $\langle V_f | \mu^2 | V_j \rangle$, моменты переходов – $D^2(ii' | l_1)$ и $D^2(ff' | l_1)$, и частоты – $\omega_{ii'}$ и $\omega_{ff'}$. Для чисто вращательных переходов или для переходов между низколежащими колебательными уровнями разница между средней поляри-

зуемостью молекулы в верхнем и нижнем колебательных состояниях невелика, так как величина S₁(b) мала или даже равна нулю. Таким образом, величина сдвига определяется, в основном, мнимой частью $S_2(b)$. Колебательное возбуждение ведет к росту средней поляризуемости и, соответственно, к увеличению вклада в величину сдвига линии. Следовательно, вклад S₁(b) становится сильно зависящим от колебательных квантовых чисел. Колебательное возбуждение приводит также к изменению члена второго порядка функции прерывания через соответствующие вариации среднего дипольного момента, вращательных и центробежных постоянных в верхнем колебательном состоянии. Эти эффекты становятся особенно существенными в высокочастотной области спектра молекулы H2O, где сдвиг линии формируется, в основном, вкладом изотропной части межмолекулярного потенциала $S_1(b)$ ($S_1(b)$ – всегда отрицательна), зависящей от средней дипольной поляризуемости в верхнем колебательном состоянии. Такой же вывод был сделан авторами работы [20], в которой расчеты проведены методом Робера - Бонами при учете близкодействующего атом-атомного потенциала.

На рис. 2 представлены вклады различных частей межмолекулярного потенциала в значение сдвига линий водяного пара давлением азота для двух полос: $3v_1 + v_3$ и v_2 . Видно, что в полосе $3v_1 + v_3$ *J*-зависимость сдвига определяется вкладом поляризационного потенциала (рис. 2,*a*), в полосе v_2 – электростатического, а именно диполь-квадрупольного взаимодействия (см. рис. 2,*b*).

Рис. 2. Вклады в величину коэффициента сдвига различных частей межмолекулярного потенциала для ветвей *R*-полос $3v_1 + v_3$ и v_2

Вращательная зависимость сдвига и компенсация вкладов каналов рассеяния

В то время как вращательная зависимость уширения линий H₂O достаточно изучена (см., например, [9]), практически нет работ, исследующих вращательную зависимость сдвига и его поведения при больших значениях вращательных квантовых чисел.

На первый взгляд, поведение коэффициентов сдвига в зависимости от *J* выглядит хаотичным: не проглядывается определенных *J*-зависимостей. Но если выделить некоторые последовательности сдвигов согласно определенным комбинациям квантовых чисел, то такие зависимости явно видны. Мы выделили в *R*-ветви полосы v_2 последовательности R(1, 1), R(1,-1), R(-1,1), R(3,-1) (первая цифра в скобках показывает, на сколько единиц меняется K_a при переходе, вторая – K_c). Набор последовательностей с различными значениями K_a представлен на рис. 3. Такое разделение на последовательности позволяет объяснить вращательную зависимость сдвига на основе анализа вкладов в сдвиг различных каналов рассеяния.

Рис. 3. Расчетные коэффициенты сдвига для переходов типа R(1, 1) и R(1, -3)

Столкновения молекул вызывают смешивание волновых функций стационарных состояний, и можно говорить об индуцированных столкновениями переходах, имеющих определенное время жизни и ведущих к уширению и сдвигу линии. Формулы теории Андерсона могут быть представлены в форме, позволяющей раздельно вычислять вклады в сдвиг различных каналов рассеяния. Обычно говорят о каналах рассеяния, имея в виду два уровня, между которыми происходит индуцированный столкновением переход. В дальнейшем будем использовать такую терминологию вопреки факту, что реальные переходы должны прерывать процесс поглощения.

Очевидно, что вклады каналов рассеяния в уширение всегда положительны. Что касается сдвига, то поскольку мнимая часть резонансной функции нечетная, вклады каналов рассеяния могут быть разного знака (в зависимости от баланса энергий поглощающей и возмущающей молекул (9)) и, следовательно, частично компенсировать друг друга.

Вклад отдельного канала $i \rightarrow i'$, связанного с основным диполь-квадрупольным вкладом, может быть получен из уравнений (3)–(9):

$$\delta_{if} = \delta_i^{(1)} - \delta_f^{(1)} + \sum_{i'} D(ii' \mid 1) P_{dq}(\omega_{ii'}) - \sum_{i'} D(ff' \mid 1) P_{dq}(\omega_{ff'}) =$$

= $\delta_i^{(1)} - \delta_f^{(1)} + \sum_{i'} \delta_{dq}^{ii'} - \sum_{f'} \delta_{qq}^{ff'}.$ (13)

 $P_{dq}(\omega)$ зависит от параметров возмущающей частицы и деталей столкновения (в дальнейшем $\omega_{ii'}$ или $\omega_{ff'}$ будем обозначать ω):

$$P_{dq}(\omega) = -A_{dq} \frac{n}{\hbar^{2} c} \sum_{2} \rho_{2} \sum_{2'} D(22' \mid 2) \int_{0}^{\infty} v f(v) \, dv \times \\ \times \int_{b_{0}}^{\infty} \frac{db}{v^{2} b^{5}} \, lf_{2} \left(\frac{2\pi cb}{v} \left(\omega + \omega_{22'} \right) \right).$$
(14)

Функция $P_{dq}(\omega)$ может рассматриваться как эффективность канала $i \rightarrow i'$ для сдвига линии и дает «вес» рассматриваемого перехода.

Рис. 4. Схема вращательных уровней для двух переходов с различными значениями J в полосе $v_2 + v_3$: a - J = 4; $\delta - J = 17$

Путем прямых расчетов показано [16], что происходит компенсация вкладов каналов рассеяния: вклад отдельного канала часто больше величины самого сдвига, но вклады различных каналов, входя в сдвиг с разными знаками, компенсируют друг друга. На рис. 4 представлена схема вращательных уровней для двух различных вращательных переходов в полосе v₂ + v₃. Толщина столбиков пропорциональна

величине вклада соответствующего канала рассеяния. Видно, что несколько основных вкладов почти полностью компенсируют друг друга, суммарный вклад меньше отдельного. Кроме того, можно видеть, что степень компенсируемости вкладов растет с ростом вращательного квантового числа и, следовательно, для больших значений J вклады электростатических взаимодействий близки к нулю, а сдвиг определяется, в основном, вкладом изотропной части потенциала.

Согласно уравнениям (13) и (14) вклад отдельного канала определяется произведением $D^2(ii'|1)/(2J_i+1)$ и $P_{dq}(\omega)$. Поскольку $P_{dq}(\omega)$ – плавная функция в случае $H_2O - N_2$, то вращательная зависимость сдвига определяется в первую очередь *J*-зависимостью дипольных сил линий S_1 .

Сравнение расчетных значений сдвига с экспериментальными данными

Были выполнены вычисления коэффициентов сдвига линий водяного пара давлением N_2 , O_2 и воздуха согласно теории Андерсона в широком спектральном диапазоне от далекой ИК- до видимой областей спектра (табл. 2). В табл. 3 представлены коэффициенты сдвига линий полос $v_2 + v_3$, $2v_2 + v_3$, $v_1 + v_3$, $2v_1$, $v_1 + v_1 + v_3$, $v_2 + 2v_3$. Коэффициенты сдвига линий в низкочастотной области спектра малы (обычно 10^{-3} см⁻¹) и могут быть как положительными, так и отрицательные и большие по величине. Полосы водяного пара, исследованные с использованием теории Андерсона

$v_1 v_2 v_3$	иентр поло- сы,		Буферный газ	Ссылки
	CM ⁻¹			
010	1594	70	N_2	[9]
110	5234	10	O_2	[39]
011	5331	28	O_2	~ ~ ~
		39	N_2	настоящая
				статья
021	6871	20	N_2	«
200	7201	12	N_2	«
101	7249	25	N_2	«
012	9000	2	N_2	«
111	8807	36	N_2	«
301	13830	103	N_2	[14]
			O_2	~ ~ ⁻ ~ ⁻
			воздух	«
221	13652	42	N_2	«
			O_2	«
			воздух	«
202	13828	15	N_2	«
			O_2	«
			воздух	«
103	14318	3	N_2	«
			O_2	«
			воздух	«
401	17495	7	N_2	«
			O_2	«
			воздух	«

Таблица З

Частота,	$v_1 v_2 v_3$	$J^{\prime\prime}$	$K_a^{\prime\prime}$	$K_{c}^{\prime\prime}$	J'	K'_a	K'_{c}	Экспери-	2σ	Расчет
CM ⁻¹								мент [10]		
1	2	3	4	5	6	7	8	9	10	11
					2 мкм					
5107,0703	011	9	3	7	10	3	8	-5,8	0,9	-10,0
5152,0993	011	7	1	6	8	1	7	-10,9	0,5	-10,6
5166,1931	011	7	5	3	8	5	4	-10,7	0,7	-11,0
5178,0992	011	6	4	2	7	4	3	-11,4	0,3	-8,6
5189,7198	011	5	3	2	6	3	3	-6,0	0,2	-5,3
5191,8791	011	6	5	1	7	5	2	-7,3	0,4	-11,8
5226,3515	011	4	1	4	5	1	5	-7,6	0,1	-8,0
5250,3091	011	4	0	4	4	2	3	-8,0	2,5	-11,3
5282,9623	011	6	2	5	6	2	4	-11,0	0,7	-4,8
5284,7803	011	1	0	1	2	0	2	-10,1	0,2	-7,9
5328,6310	011	6	3	4	6	3	3	-8,3	0,4	-5,5
5350,5344	011	6	4	3	6	4	2	-9,3	0,2	-10,7
5361,5245	011	7	5	3	7	5	2	-9,0	0,2	-12,6
5361,8928	011	7	5	2	7	5	3	-13,4	0,6	-11,1
5405,2906	011	5	1	4	5	1	5	-5,8	0,3	-7,9
5442,1522	011	4	3	1	3	3	0	-10,1	0,1	-10,5
5469,5269	011	6	2	5	5	2	4	-7,1	0,1	-6,7
5498,9953	011	6	4	2	5	4	1	-7,2	0,1	-9,4
5505,5546	011	8	2	7	7	2	6	-8,0	0,1	-8,0
5518,2874	011	7	3	4	1	3	3	-8,4	0,2	-6,0
5521,1385	011	7	4	4	6	4	3	-10,9	0,1	-10,2
5521,9039	011	9	2	8	8	2	7	-9,2	0,1	-8,7
5523,1329	011	9	1	8	8	1	7	-5,0	0,2	-7,2
5523,4538	011	7	4	3	6	4	2	-7,7	0,2	-6,9
5527,8448	011	8	3	6	7	3	5	-12,2	0,2	-9,6
5536,3074	011	8	2	6	7	2	5	-8,2	0,1	-5,5
5537,5414	011	10	2	9	9	2	8	-9,4	0,3	-9,7
5538,1290	011	10	1	9	9	1	8	-7,1	0,1	-8,4
5543,4219	011	8	4	5	7	4	4	-12,8	0,4	-10,0
5548,6557	011	8	4	4	7	4	3	-5,3	0,1	-5,7

Измеренные и вычисленные коэффициенты сдвига линий давлением азота, 10⁻³ · см⁻¹/атм

								Продолж	кение	табл. З
1	2	3	4	5	6	7	8	9	10	11
5564,8228	011	9	4	6	8	4	5	-11,3	0,2	-10,5
5582,1670	011	11	3	9	10	3	8	-12,2	0,5	-11,9
5595,5578	011	10	3	7	9	3	6	-10,6	0,4	-7,8
					1,4 мкм					
6705.0390	021	7	1	7	8	1	8	-10.7	0.7	-7.6
6726 2494	021	6	0	6	7	0	7	-12.2	0.1	-8.1
6727 2326	021	6	1	6	7	1	7	_12,2	0,1	_7 7
6748 8002	021	5	1	5	6	1	6	83	0,5	7.0
(752 5792	021	5	2	5	0	2	5	-8,5	0,5	-7,9
0/55,5/82	021	2	2	4	0	2	5	-3,7	0,5	-5,8
6/99,3/29	021	2	1	1	3	1	2	0,7	0,2	-1,7
6812,8111	021	2	1	2	3	1	3	-4,5	0,4	-5,8
6847,7267	021	0	0	0	1	0	1	-0,2	0,2	-0,6
6893,6485	021	2	2	0	2	2	1	-5,4	0,2	-1,0
6914,5496	021	4	3	2	4	3	1	-5,8	0,8	-5,7
6917.3693	021	2	0	2	1	0	1	1.5	0.2	1.7
6917,9525	021	2	1	2	1	1	1	-5.0	0.6	-3.5
6930 3670	021	2	1	1	1	1	0	-5.7	0,2	-6.5
(055 157(021	4	1	1	2	1	2	-3,7	0,2	-0,5
6955,1576	021	4	0	4	3	0	5	0,2	0,1	-0,7
6956,3153	021	3	1	2	2	1	1	-5,3	0,4	-5,5
6963,1689	021	3	2	2	2	2	1	-3,8	0,3	-4,9
7004,2280	021	5	1	4	4	1	3	-0,6	0,6	-1,7
7006,1275	021	5	2	4	4	2	3	-6,9	0,2	-5,3
7025,3840	021	6	1	5	5	1	4	-2,5	0,3	-2,4
7034.4755	200	5	1	4	6	2	5	-10.1	0.4	-10.2
7063 1299	021	8	1	7	7	1	6	-5.8	0.9	-5.6
7070 7840	101	6	1	5	7	1	6	-11.6	0,1	_9,6
7070,7040	200	6	1	6	6	2	5	-11,0	0,1	-5,0
7079,1707	200	5	2	2	0	2	5	-3,8	0,9	-0,0
/080,5/51	101	2	3	3	6	3	4	-4,4	0,1	-6,9
/104,6194	101	4	3	1	5	3	2	-3,8	0,2	-5,3
7108,7153	200	3	0	3	4	1	4	-10,9	0,2	-10,0
7120,3580	101	4	2	3	5	2	4	-8,0	0,2	-7,0
7127,0355	200	2	0	2	3	1	3	-8,0	0,4	-11,5
7131,9505	200	3	1	3	3	2	2	-8,7	0,3	-9,6
7133,9031	101	3	3	0	4	3	1	-5.1	0.2	-4.1
7134,9821	101	3	3	1	4	3	2	-5.7	0.9	-4.6
7136.0941	101	3	2	1	4	2	2	_5.2	0,2	_5 3
7165 8211	101	2	2	0	2	2	1	5,2	0,2	6.3
7103,6211	101	1		1	2	2	1	-5,1	0,2	-0,3
7202,9098	101	1	0	1	2	0	2	-10,5	0,1	-9,0
/216,1909	101	2	4	1	2	4	2	-8,0	0,3	-8,6
7227,9685	101	4	3	2	4	3	1	-8,8	0,1	-7,8
7236,4474	200	2	2	0	2	1	1	-4,0	0,3	-2,0
7240,4159	101	2	2	1	2	2	0	-7,8	0,0	-7,6
7249,9247	200	2	2	1	2	1	2	-6,1	0,3	-7,5
7266,6518	200	3	3	1	3	2	2	-5,8	0,5	-0,0
7281,0820	200	4	1	4	3	0	3	-1.3	0.1	0,9
7283,7319	101	6	2	4	6	2	5	-5.0	0.2	-7.7
7286.0516	200	6	2	5	6	1	6	_4 3	0,9	_7 1
7305 0814	200	6	0	6	5	1	5	8.0	0,1	10
7312 1062	101	2	0	2	2	1	2	-8,0	2,0	-4,9
7312,1903	101	3	0	3	2	0	2	-3,9	2,0	-1,9
/323,95/9	101	4	1	4	3	1	3	-6,9	0,1	-4,3
/331,/156	200	8	1	8	7	0	7	-10,0	0,4	-6,8
7348,4037	101	5	2	4	4	2	3	-12,3	0,3	-7,8
7351,4852	101	5	3	2	4	3	1	-5,8	0,2	-8,3
7359,3343	101	6	4	2	5	4	1	-6,7	0,2	-8,9
7378,6791	101	7	4	4	6	4	3	-10.2	0.2	-9,9
7397.5754	101	8	1	7	7	1	6	-6.5	0.1	-6.4
7403 6163	101	8	4	, 4	, 7	4	ĩ	_4 1	03	-6.6
7406 0202	101	0	ד ר	т 0	, 0	т 2	7	12.0	0,5	10.4
7400,0202	101	7	ے 1	0	0	ے 1	7	-13,0	0,2	-10,4
7407,7830	101	9	1	8	8	1	/	-8,4	0,4	-8,1
/413,0192	101	9	4	6	8	4	2	-12,8	0,6	-11,6
7417,8213	101	10	1	9	9	1	8	-7,6	0,3	-10,0
7419,1750	101	8	3	5	7	3	4	-11,4	0,3	-7,3
					1 мкм					
		6	1	5	7	1	6	-12,3	0,8	-11,6
8636,7581	111	0				2	5	70	Ó 1	, ,
8636,7581 8665,1311	111 111	5	2	4	6	Z		-/.0	0.4	-9.8
8636,7581 8665,1311 8675 7803	111 111 111	5	2	4	6	1	5	-/,0 -14 3	0,4	-9,8 -11-3
8636,7581 8665,1311 8675,7803 8680,2501	111 111 111 111	5 5 4	2 1	4 5 2	6	1	5 6 1	-14,3	0,4	-9,8 -11,3 -8,7
8636,7581 8665,1311 8675,7803 8680,2591	111 111 111 111	5 5 4	2 1 1	4 5 3	6 6 5	1 1 0	5 6 4	-7,0 -14,3 -6,8 10.8	0,4 0,2 0,2	-9,8 -11,3 -8,7
8636,7581 8665,1311 8675,7803 8680,2591 8696,9877	111 111 111 111 111	5 5 4 4	2 1 1 0	4 5 3 4	6 6 5 5	1 1 0	5 6 4 5	-7,0 -14,3 -6,8 -10,8	0,4 0,2 0,2 0,2	-9,8 -11,3 -8,7 -10,9
8636,7581 8665,1311 8675,7803 8680,2591 8696,9877 8713,6592	111 111 111 111 111 111	5 5 4 4 3	2 1 1 0 2	4 5 3 4 2	6 5 5 4	1 1 0 2	5 6 4 5 3	-7,0 -14,3 -6,8 -10,8 -5,2	0,4 0,2 0,2 0,2 0,3	-9,8 -11,3 -8,7 -10,9 -6,7

Быков А.Д., Лаврентьева Н.Н., Синица Л.Н.

								Оконч	ание	габл. З
1	2	3	4	5	6	7	8	9	10	11
8730,1318	111	2	1	1	3	1	2	-4,1	0,4	-4,3
8733,8083	111	2	2	0	3	2	1	-7,1	0,1	-6,6
8742,9292	111	2	1	2	3	1	3	-9,6	0,4	-8,8
8754,9302	111	1	0	1	2	1	1	-3,8	0,4	-4,8
8760,1410	111	1	0	1	2	0	2	-10,3	0,4	-10,0
8765,0406	111	1	1	1	2	1	1	-4,5	0,1	-7,5
8811,0630	111	2	2	0	2	2	1	-4,9	0,02	-6,4
8812,0143	111	4	3	1	4	3	2	-6,7	0,2	-8,6
8821,9196	111	5	5	0	5	5	1B	-14,2	0,6	-17,8
	111	5	5	1	5	5	0B			
8830,2319	111	1	0	1	0	0	0	-8,0	1,2	-8,0
8848,0705	111	2	1	2	1	1	1	-6,6	0,4	-6,2
8866,1671	111	3	1	3	2	1	2	-6,5	0,2	-5,2
8869,8731	111	3	0	3	2	0	2	-3,0	0,2	-3,0
8879,1198	111	3	2	2	2	2	1	-7,0	0,1	-8,5
8882,8726	111	4	1	4	3	1	3	-5,2	0,2	-5,5
8885,5740	111	4	0	4	3	0	3	-3,9	0,1	-3,5
8898,1943	111	5	1	5	4	1	4	-5,8	0,3	-6,1
8899,1304	111	4	2	3	3	2	2	-8,7	0,4	-8,9
8912,2568	111	6	1	6	5	1	5	-9,8	0,3	-7,3
8912,9834	111	6	0	6	5	0	5	-7,9	0,1	-6,3
8917,6803	111	5	2	4	4	2	3	-11,3	0,2	-9,0
8925,2222	111	7	1	7	6	1	6	-8,2	0,2	-8,9
8928,4787	111	5	3	3	4	3	2	-9,9	1,2	-12,3
8933,4633	111	5	2	3	4	2	2	-7,2	0,5	-8,6
8934,7405	111	6	2	5	5	2	4	-12,0	0,6	-9,7
8948,4417	111	9	1	9	8	1	8	-12,4	0,5	-12,2
8950,3347	111	7	2	6	6	2	5	-13,3	0,3	-10,6
8956,2946	111	6	3	3	5	3	2	-7,5	0,4	-8,7
9350,3986	012	7	7	0	6	6	1B			
	012	7	7	1	6	6	0B	-27	3	-27

Примечание. В – неразрешенные дублеты.

Рис. 5. *J*-зависимость сдвига линий переходов типа *R* (11) для полос $v_1 + v_2 + v_3$, $2v_1 + 2v_2 + v_3$ и $3v_1 + v_3$

На рис. 5 представлена *J*-зависимость подветви *R* (11) для полос $v_1 + v_2 + v_3$, $2v_1 + 2v_2 + v_3$ и $3v_1 + v_3$. Как видно из рис. 5, вращательные зависимости для однотипных переходов в различных полосах похожи, но с ростом колебательного возбуждения величина сдвига больше благодаря росту вклада изотропной части потенциала. В расчетах присутствует только один подгоночный параметр – средняя дипольная поляризуемость молекулы в возбужденном колебательном состоянии, искаженная вследствие применения процедуры прерывания и неучета влияния отталкивательной части потенциала. В случае H₂O–O₂ расчеты имеют предсказательный характер, так как в них использовалось значение поляризуемости, определенное для H₂O – N₂.

О согласии расчетных и экспериментальных данных можно судить по нижеприведенной статистике $\Delta = |\delta^{obs} - \delta^{calc}|$ для линий водяного пара, представленных в табл. 3.

$\Delta \le 0,0013$	5.							73%
$0,0015 < \Delta \le 0,0030$).							18
$0,0030 < \Delta \le 0,0045$	Ϊ.							6
$0,0045 < \Delta \le 0,0060$).							3

IV. Заключение

Из представленных экспериментальных и расчетных данных можно сделать следующий основной вывод: сдвиги линий водяного пара имеют сильную колебательную и вращательную зависимости. Теория Андерсона позволяет проанализировать эти зависимости и выполнить вычисления коэффициентов сдвигов линий с достаточной точностью, используя один подгоночный параметр. Несмотря на относительную простоту метода Андерсона, наблюдается неплохое согласие вычисленных и измеренных значений сдвига. Точность вычислений почти такая же, как в методе FCRB [20–24] (Full Complex Implementation of Robert – Bonamy Theory).

Дальнейшее развитие вычислений коэффициентов сдвига линий должно быть связано с уточнением полуклассической ударной теории (корректность процедуры прерывания, учет отталкивательной части потенциала, криволинейность траектории) и некоторых других эффектов, например внутримолекулярных взаимодействий. Частично такой анализ уже проделан в [20 – 24, 36 – 38]. Чтобы корректно учесть криволинейность траектории, использовались точные решения классических динамических уравнений для вычисления членов первого и второго порядка функции прерывания [36, 37]. В [20, 38] приведены вычисления резонансных функций для индукционных и дисперсионных взаимодействий, необходимых при расчетах вкладов взаимодействий более высоких порядков.

Авторы выражают благодарность членукорреспонденту РАН С.Д. Творогову за внимание к работе, многочисленные полезные обсуждения проблемы уширения спектральных линий и финансовую поддержку в рамках гранта президента Российской Федерации «Школа» № 96-15-98. Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты № 98-05-22021 и 98-02-16375).

- 1. Browell E.W. // Optical and Laser Remote Sensing / D.K. Jillinger and A. Mooradian, Eds. Berlin: Springer-Verlag, 1983. P. 138–147.
- Zuev V.V., Ponomarev Yu.N., Solodov A.M., and Romanovsky O.A. // Opt. Lett. 1985. V. 10. P. 318–320.
- Belov S.P., Krupnov A.F., Markov V.N., Mel'nikova A.A., Skvortsov V.A., Tret'yakov M.Yu. // J. Mol. Spectrosc. 1983. V. 101. P. 258– 270.
- 4. Eng R.S., Calawa A.L., Harman. T.C., Kelley P.L., and Javan A. // Appl. Phys. Lett. 1972. V. 21. P. 303–305.
- 5. Eng R.S., Kelley P.L., Mooradian A., Calawa A.L., Harman. T.C. // Chem. Phys. Lett. 1973. V. 19. P. 524–528.
- 6. Eng R.S., Kelley P.L., Mooradian A., and Nill K.W. // Mol. Phys. 1974, V. 28, P. 653–664.
- 7. Yamada K.M.T., Harter M., and Giesen T. // J. Mol. Spectrosc. 1993. V. 157. P. 84–94.
- 8. Smith M.-A.H. Private communication.
- 9. Valentin A., Rachet F., Bykov A.D., Lavrent'eva N.N., Saveliev V.N.,
- and Sinitsa L.N. // JQSRT. 1998. V. 59. P. 165–170. 10. Chevillard J.-P., Mandin J.-Y., Flaud J.-M., and Camy-Peyret C. //
- Can. J. Phys. 1991. V. 69. P. 1286–1298.
 11. Avetisov V.G., Nadezhdinskii A.L., Khusnutdinov A.N., Omarova P.M., Zyrianov A.M. // J. Mol. Spectrosc. 1993. V. 160. P. 326–334.

- Grossman B.E. and Browell E.V. // J. Mol. Spectrosc. 1989.
 V. 136. P. 264–294.
- Grossman B.E. and Browell E.V. // J. Mol. Spectrosc. 1989.
 V. 138. P. 562–595.
- 14. Grossman B.E., Browell E.V., Быков А.Д., Капитанов В.А., Лазарев В.В., Пономарев Ю.Н., Синица Л.Н., Коротченко Е.А., Стройнова В.Н., Тихомиров В.А. // Оптика атмосферы. 1990. Т. 3. С. 675–690.
- 15. Gamache R.R., Lynch R., Plateaux J.J., and Barbe A. // JQSRT. 1997. V. 57. P. 485–496.
- 16. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. // Оптика и спектроскопия. 1997. Т. 83. С. 73–82.
- Быков А.Д., Коротченко Е.А., Макушкин Ю.С., Синица Ю.Н., Солодов А.М., Стройнова В.Н., Тихомиров В.А. // Оптика атмосферы. 1988. Т. 1. N 1. С. 40–46.
- 18. Buffa G., Tarrin O. // J. Mol. Spectrosc. 1983. V. 101. P. 271–277.
- 19. Davies W.R., Oli B.A. // JOSRT. 1978. V. 20. P. 95–120.
- 20. Lynch R. and Gamache R.R., and Neshyba S.P. // J. Chem. Phys. 1996. V. 105. P. 5711–5721.
- 21. Lynch R., Gamache R.R., and Brown L.R. // JQSRT. 1996. V. 56. P. 471–487.
- 22. Lynch R., Gamache R.R., and Neshyba S.P. // JQSRT. 1998. V. 59. P. 595–613.
- 23. Lynch R., Gamache R.R., and Neshyba S.P. // JQSRT. 1998. V. 59. P. 615–626.
- 24. Lynch R., Gamache R.R., and Neshyba S.P. // JQSRT. 1998. V. 59. P. 319–335.
- 25. Anderson P.W. // Phys Rev. 1949. V. 76. P. 657-661.
- 26. Tsao C.J. and Curnutte B. // JQSRT. 1962. V. 2. P. 41-91.
- 27. Черкасов М.Р.//Оптика и спектроскопия. 1976. Т. 40. С. 7-12.
- 28. Robert D. and Bonamy J. // J. De Phys. (Paris). 1979. V. 40. P. 923–943.
- 29. Camy-Peyret C., and Flaud J.-M. // Mol. Phys. 1971. V. 32. P. 523–537.
- 30. Stogryn D.E., Stogryn A.P. // Mol. Phys. 1966. V. 11. P. 371-393.
- 31. Murphy W.F. // J. Chem. Phys. 1977. V. 67. P. 5877-5882.
- 32. Camy-Peyret C., and Flaud J.-M. // Mol. Phys. 1976. V. 59. P. 327-337.
- Mandin J.-Y., Chevillard J.-P., and Camy-Peyret C. // J. Mol. Spectrosc. 1986. V. 116. P. 168–190.
- 34. Clough S.A., Beers Y., Klein G.P., and Rothman L.S. // J. Chem. Phys. 1973. V. 59. P. 2254–2259.
- 35. Shostak S.L., and Muenter J.S. // J. Chem. Phys. 1991. V. 94. P. 5883–5889.
- 36. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. // Оптика атмосферы и океана. 1992. Т. 5. С. 1127–1131.
- 37. Быков А.Д., Лаврентьева Н.Н., Синица Л.Н. // Оптика атмосферы и океана. 1992. Т. 5. N 9. С. 907–917.
- 38. Быков А.Д., Лаврентьева Н.Н. // Оптика атмосферы. 1991. Т. 4. N 7. C. 718–729.
- Lavrent'eva N.N., and Solodov A.M. // Fifth International Symposium on Atmospheric and Oceanic Optics. 1989. V. 3583. P. 93–99.

A.D. Bykov, N.N. Lavrent'eva, L.N. Sinitsa. The H₂O Line Shifts by Nitrogen, Oxygen, and Air in the Frames of Anderson Impact Theory.

The water vapor line shift coefficients were calculated using the Anderson impact theory for some bands in infrared regions. The analysis of vabrational and rotational dependencies of line shift coefficients was made, it was shown that compensation of different scattering channel contributions defines the variation of shift coefficients with quantum number increasing. In the calculations one fitted parameter – the mean dipole polarizability of upper vibrational state – has been used. Calculations are in satisfactory agreement with experimental data.