СПЕКТРОСКОПИЯ ОКРУЖАЮЩЕЙ СРЕДЫ

УДК 535.34:539.19

Ш.Ш. Набиев

ИК-спектроскопия интергалогенидов XF_3 и XF_5 (X = Cl, Br)

Российский научный центр «Курчатовский институт», г. Москва

Поступила в редакцию 1.07.99 г.

Изучены спектры ИК-поглощения молекул XF₃ и XF₅ (X = Cl, Br) в газовой фазе (T = 300 K) и растворах сжиженных Kr (T = 130 K) и Xe (T = 180 K) в широком диапазоне (200–2500 см⁻¹) частот, включая область переходов 3-го порядка. Определены интегральные коэффициенты поглощения полосы $v_7(E)$ XF₅, относительные интенсивности всех наблюдаемых полос в ИК-спектре XF₅, а также постоянные ангармоничности для некоторых колебаний XF₃ и XF₅. Показано, что, в отличие от BrF₃, расщепление полосы антисимметричного колебания связи (Cl–F)_{ах} в ClF₃ обусловлено кориолисовым взаимодействием близких по энергии уровней $v_1(A_1)$ и $v_4(B_1)$ при вращении молекулы вокруг оси наибольшего момента инерции. На основе анализа спектроскопических данных, результатов аb initio расчетов, а также оценок роли поляризационных *d*-функций центрального атома и эффектов электронной корреляции сделан вывод, что модель ИК-интенсивностей для молекул X_5 (X = Cl, Br) должна учитывать не только различие в характере связей (X–F)_{ах} и (X–F)_{еq}, но и вклады от нежестких внутримолекулярных перетруппировок по турникетному механизму.

Введение

В последнее время соединения интергалогенидов типа XF₃ и XF₅ (X = Cl, Br) начали широко использоваться в различных областях науки, техники и технологии. Фториды галогенов в качестве фторирующих агентов нашли применение в неводных («сухих») процессах переработки ядерных материалов [1, 2]. Кроме того, эти соединения активно используются в химической, электронной и металлургической промышленности, например при синтезе энергоемких комплексных фторсодержащих соединений [3-5], для газофазного травления полупроводников, при плавке и резке тугоплавких металлов [6, 7], а также представляют определенный интерес для лазерной техники и изготовления химических источников тока [8]. Наконец, интергалогениды являются одним из компонентов реактивных и ракетных топлив, а гипергольные свойства этих соединений могут быть использованы применительно к твердым ракетным топливам [9].

В то же время фториды Cl и Br могут являться одними из наиболее токсичных и химически активных компонентов в шлейфах аварийных выбросов упомянутых производств [10]. Эти соединения активно взаимодействуют с парами воды и другими газовыми составляющими атмосферы, в результате чего образуются молекулы галоген-водородов, оксифториды и оксиды хлора и брома, которые, в свою очередь, легко трансформируются в устойчивые молекулярные комплексы донорно-акцепторного типа (HHal)x...(H2O)v, где Hal = F, Cl, Br; $x + y \ge 2$ [11]. Для изучения механизмов реакций с участием XF₃ и XF₅ (X = Cl, Br) в атмосфере, их вторичных соединений, а также анализа границ применимости методов дистанционной лазерной диагностики необходима детальная информация 0 колебательных спектрах интергалоидов. Трифторид и пентафторид хлора и брома были впервые синтезированы достаточно давно [6, 7, 12]. Между тем сведения о колебательных спектрах соединений XF₃ и XF_5 (X = Cl, Br) малочисленны, а данные о спектроскопических параметрах, таких как постоянные ангармоничности, изотопические сдвиги колебательных частот, абсолютные и

относительные интенсивности полос основных, составных и обертонных переходов, включая область переходов высокого ($v \ge 3$) порядка, практически отсутствуют.

В данной работе изучены спектры ИК-поглощения молекул XF₃ и XF₅ (X = Cl, Br) в газовой фазе (T = 300 K) и растворах сжиженных Kr (T = 130 K) и Xe (T = 180 K) (преимущества этой методики перед спектроскопией газов хорошо известны [13]) в широком диапазоне (200–2500 см⁻¹) частот. Особое внимание уделено механизмам химических превращений этих соединений в условиях их взаимодействия с атмосферной влагой, а также определению интегральных коэффициентов поглощения колебательных полос, попадающих в диапазон лидаров (в том числе многоволновых) на основе молекулярных лазеров среднего ИК-диапазона.

1. Экспериментальная часть

Основными узлами экспериментальной установки, подробно описанной в [14, 15], являлись набор газовых кювет и криостатов, ИК-спектрофотометры, емкости с XF_3 и XF_5 (X = Cl, Br), фтором и инертными газами, система напуска исследуемых газов и газов-растворителей, датчики для контроля давления и температуры.

ИК-спектры образцов XF_3 и XF_5 (X = Cl, Br) регистрировались с помощью двулучевых дифракционных спектрофотометров «Perkin Elmer-325» и «Specord-75 IR» при спектральной ширине щелей 0,8-1,5 см⁻¹. Калибровку шкалы волновых чисел спектрофотометров проводили по спектрам CO, CO2, N2O, CH4, H2O с привлечением данных [16]. В диапазоне частот ниже 1000 см⁻¹ проводилось исправление спектра на отрицательные световые потоки [17]. Относительная ошибка определения интегральных коэффициентов поглощения наиболее интенсивных полос в ИК-спектрах XF₃ и XF₅ (X = Cl, Br) в криорастворе не превышала 15%. Значения полуширин колебательных полос исправлялись на конечную ширину щели согласно [18]. Значения интегральных коэффициентов поглощения пересчитывались для свободной молекулы по формуле [13]:

$$A_{\rm gas} = A_{\rm sol} \left[9n/(n^2 + 2)^2 \right] = K(n) A_{\rm sol} \,, \tag{1}$$

где n – показатель преломления криораствора. Для жидких Ar ($T \cong 90$ K) n = 1,23, Kr ($T \cong 130$ K) n = 1,29, а для Xe ($T \cong 180$ K) n = 1,39. Корректирующий множитель K(n) учитывает совокупность факторов, связанных в основном с изменением напряженности поля падающей световой волны в криогенном растворе по сравнению с вакуумом.

Давление в системе напуска контролировалось датчиками давления ДП-5, «Сапфир»-22ДА и манометрами, а температура рабочего объема в криостатах – специально разработанным измерителем температуры. Измерение температуры криорастворов проводилось с помощью термопар хромель – алюмель и медь – константан, которые вводились внутрь рабочего объема криостатов. В работе использовались многопроходные газовые кюветы на базе уайтовской схемы, позволяющие варьировать оптический путь в пределах 12–100 см, а также кюветы-криостаты с длиной оптического пути 3,5–10 см.

При приготовлении растворов XF₃ и XF₅ (X = Cl, Br) в жидких Kr и Xe использовалась методика растворения кристаллической фазы образцов в жидком инертном газе [19]. Для этого известное количество XF₃ и XF₅ намораживалось на тщательно запассивированные внутренние стенки рабочего объема криостатов, в которые после этого конденсировался благородный газ. Образцы XF₃ и XF₅ подвергались тщательной очистке. По данным количественного анализа, проведенного по методике [20], содержание наиболее распространенных примесей в образцах интергалогенидов, таких как HF, CF₄ и др., составляло менее 0,1%.

Точность определения концентрации XF_3 и XF_5 в криорастворах составляла 5–15%, а их температура поддерживалась постоянной с точностью ± 2 К.

2. Характер химических связей, структура и особенности гидролиза молекул XF₃ и XF₅ (X = Cl, Br)

По своей реакционной способности галоген-фториды XF_3 и XF_5 (X = Cl, Br) располагаются в ряд [21]:

$$ClF_3 > ClF_5 > BrF_5 > BrF_3, \tag{2}$$

причем в некоторых случаях химическая активность этих соединений значительно превышает химическую активность молекулярного фтора [7, 8]. Некоторые наиболее важные физико-химические постоянные молекул XF_3 и XF_5 (X = Cl, Br) приведены в табл. 1.

Таблица 1

Физико-химические свойства молекул XF_3 и XF_5 (X = Cl, Br)

Свойство	Значение						
	CF ₃	BrF ₃	CF ₅	BrF ₅			
Энергия связи X–F, ккал·моль ⁻¹	38,2	48,1	36,8	44,7			
Валентные силовые постоянные							
X—F _{ax} , мдин/Å:	2,704	4,084	3,331	4,248			
X—F _{еq} , мдин/Å:	4,193	3,009	2,991	3,423			
Дипольный момент, D	0,557	1,190	-	1,510			
Т _{пл} , К	196,8	281,9	181,0	212,7			
Т _{кип} , К	284,9	398,9	260,3	314,5			
$\Delta \mathrm{H}_{\mathrm{nn}}$, ккал·моль $^{-1}$	1,82	2,88	0,383	1,76			
$\Delta \mathrm{H}_{\mathrm{исn}}$, ккал·моль $^{-1}$	6,58	10,24	5,74	7,31			
$\Delta S_{\mu c \pi}$, 3.e.	23,1	25,7	21,8	23,3			
$\Delta { m H}_{298}^0$ (г), ккал·моль $^{-1}$	-39,35	-61,1	-57,7	-106,2			
Давление паров (300 К), торр	1530,6	13,5	2855,0	390,3			

Среди многообразия молекул типа XY₃ молекулы XF₃ (X = Cl, Br) занимают особое положение, поскольку имеют необычную плоскую T-образную структуру. Так, для ClF₃ такое строение обусловлено переходом одного из 3*p*-электронов в атоме хлора на 3*d*-орбиталь (Cl*): Cl° \rightarrow 3*s*²3*p*_x²3*p*_z¹; Cl* \rightarrow 3*s*²3*p*_x²3*p*_z¹3*d*_x¹. В результате образуется тригональная пирамида *sp*³*d* (XY₃E₂-конфигурация), состоящая из трех атомов фтора и двух несвязанных электронных пар с атомом хлора в центре (рис. 1, *a*).

Рис. 1. Геометрическое строение молекул XF₃ (*a*) и XF₅ (*б*): CIF₃ – β = 87,29°, R_1 = 1,698 Å, R_2 = 1,598 Å; BrF₃ – β = 86,13°, R_1 = 1,810 Å, R_2 = 1,721 Å; CIF₅ – β = 86,0°; R_1 = 1,571 Å, R_2 = 1,669 Å; BrF₅ – β = 84,13°, R_1 = 1,774 Å, R_2 = 1,721 Å

В молекулах XF₃ (X = Cl, Br) два атома фтора занимают аксиальные положения, две несвязанные пары (E_1 и E_2) и третий атом фтора – экваториальные положения, при этом $\angle F_{ax}$ -Cl- F_{eq} =87,29°, R(Cl- F_{ax}) = 1,698 Å, R(Cl- F_{eq}) = 1,598 Å (ra3) [22], $\angle F_{ax}$ -Cl- F_{eq} =86,59°, R(Cl- F_{ax}) = 1,716 Å, R(Cl- F_{eq}) = 1,621 Å (тв.) [23]. Для трифторида брома $\angle F_{ax}$ -Br- F_{eq} =86,13°, R(Br- F_{ax}) = 1,810 Å, R(Br- F_{eq}) = 1,721 Å (ra3) [24], $\angle F_{ax}$ -Br- F_{eq} =86,27°, R(Br- F_{ax}) = 1,85 Å, R(Br- F_{eq}) = 1,72 Å (тв.) [25]. Приведенные структурные данные свидетельствуют о том, что Т-образная структура молекул XF₃ как в газовой [22, 24], так и в твердой [23, 25] фазах слегка искажена ($\angle F_{ax}$ -X- $F_{ax} \cong 175°$), а величины длин валентных связей и углов хорошо согласуются с представлениями о значительном отталкивании несвязанных электронных пар [26].

Молекулы XF_5 (X = Cl, Br) имеют структуру тетрагональной пирамиды, которая, например для пентафторида хлора, обусловлена переходом двух электронов с *p*-орбитали на *d*-орбиталь. При переходе одного электрона создаются условия, аналогичные образованию ClF₃: Cl° $\rightarrow 3s^2 3p_x^2 3p_y^2 3p_z^1$; Cl* $\rightarrow 3s^2 3p_x^2 3p_y^1 3p_z^1 3d_{xy}^1$. При переходе второго электрона возникают условия для образования пяти связей с F-атомами: $Cl^{**} \rightarrow 3s^2 3p_x^1 3p_y^1 3p_z^1 3d_{xy}^1 3d_{yz}^1$. В результате образуется тетрагональная пирамида sp^3d^2 (ХҮ5Е-конфигурация), четыре атома фтора которой находятся в вершинах квадрата, образующего плоскость основания, а пятый F-атом и несвязанная электронная пара (E) занимают аксиальные положения (рис. 1, б). Структурные параметры молекул XF_5 (X = Cl, Br), полученные авторами [27, 28] из микроволновых спектров, следующие: $R(Cl-F_{ax}) = 1,571 \text{ Å}, \quad R(Cl-F_{eq}) = 1,669 \text{ Å}, \quad \angle F_{ax}-Cl-F_{eq} = 86,0;$ $R(Br-F_{ax}) = 1,774 \text{ Å}, R(Br-F_{eq}) = 1,721 \text{ Å}, \angle F_{ax}-Br-F_{eq} = 84,13^{\circ}.$ Как видно из приведенных структурных данных, молекулы XF_5 (X = Cl, Br) имеют конфигурацию искаженного октаэдра [29]. Реализация такой структуры связана с тем, что неподеленная электронная пара, расположенная на оси четвертого порядка, по-разному взаимодействует со связывающими электронными парами. Это ведет к небольшому изменению углов между связывающими парами и увеличению длины соседних связей, поскольку отталкивание *цис*-электронных пар сильнее, чем пары, находящейся в *транс*-положении. Кроме того, в XF₅ аксиальная связь становится более прочной, чем экваториальные связи. При этом влияние на атомы Cl и Br относительно невелико, поскольку они менее электроотрицательны, чем F [12, 30]. Результаты неэмпирических расчетов по методу Хартри– Фока–Рутана [12, 31] свидетельствуют о том, что во фторидах Br-связь более полярна по сравнению с аналогичными соединениями Cl. Так, полные заселенности атомов Br и F составляют 0,59 и 1,41 соответственно, а центр тяжести смещен от центра связи Br–F на 0,61 а.е. в сторону F-атома.

Трифторид и пентафторид хлора и брома вступают в реакцию практически со всеми элементами периодической таблицы, за исключением элементов VIII Б группы и некоторых платиновых металлов [7, 8, 32]. Эти соединения особенно энергично взаимодействуют с атмосферной влагой, причем ход реакций гидролиза фторидов галогенов XF₃ и XF₅ (X = Cl, Br) несколько различается и зависит от соотношения реагентов [33]. Например, гидролиз трифторида и пентафторида хлора при избытке воды (ClF₃:H₂O, ClF₅:H₂O ≤ 2:3) идет по схемам (3)–(4):

$$4\text{ClF}_3 + 6\text{H}_2\text{O} \rightarrow 12\text{HF} + 2\text{Cl}_2 + 3\text{O}_2,$$
 (3)

$$4\text{ClF}_5 + 9\text{H}_2\text{O} \rightarrow 18\text{HF} + \text{ClO}_2\text{F} + \text{ClO}_3\text{F} + 2\text{ClO}_2, \tag{4}$$

тогда как при избытке ClF₃ и ClF₅ процесс гидролиза описывается реакциями (5)–(6):

$$2\text{ClF}_3 + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + \text{ClO}_2\text{F} + \text{ClF},$$
(5)

$$ClF_5 + 2H_2O \rightarrow 4HF + ClO_2F.$$
(6)

В процессе протекания реакций (4)–(6) образуется хлорилфторид, который, в свою очередь, медленно гидролизуется, давая в качестве продуктов реакции HF, ClO₂ и O₂ [33, 34]:

$$4\text{ClO}_2\text{F} + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + 4\text{ClO}_2 + \text{O}_2. \tag{7}$$

Необходимо отметить, что в ходе реакций (4) и (7) часть молекул ClO_2 может разлагаться на хлор и кислород, причем кислород в момент выделения, по-видимому, окисляет ClO_2F до инертного (по сравнению с другими оксифторидами хлора) ClO_3F .

Гидролиз химически активного монофторида хлора [см. реакцию (5)] при избытке H₂O проходит аналогично (3), при избытке CIF образуются HF, Cl₂, ClO₂F [7, 32]:

$$5\text{ClF} + 2\text{H}_2\text{O} \rightarrow 4\text{HF} + 2\text{Cl}_2 + \text{ClO}_2\text{F}, \tag{8}$$

а хлорилфторид в дальнейшем гидролизуется согласно схеме (7).

Кроме химически устойчивых соединений в качестве промежуточных продуктов гидролиза фторидов хлора допускается возможность существования неустойчивых хлорозилфторида ClOF (энтальпия образования $\Delta H_{298}^0 = -46,1 \ \text{кДж} \cdot \text{моль}^{-1}$ [12]), при разложении которого образуются монофторид хлора и кислород [34]:

$$2\text{ClOF} \to 2\text{ClF} + \text{O}_2,\tag{9}$$

а также структурно нежесткого молекулярного комплекса (аддукта) ClF_3 ·HF.

При гидролизе трифторида брома образуются молекулы HF, HBr, Br₂, O₂. Как и в случае фторидов хлора, не исключена возможность образования неустойчивого соединения BrOF, которое разлагается по схеме (9) на BrF и O₂.

Реакция пентафторида брома с водой происходит аналогично схеме (6) с образованием бромилфторида и дальнейшим гидролизом последнего согласно схеме (7). Однако, в отличие от процесса гидролиза пентафторида хлора, в роли промежуточного продукта взаимодействия BrF_5 с водой может выступать химически активный окситрифторид брома:

$$BrF_5 + H_2O \rightarrow 2HF + BrOF_3, \tag{10}$$

который гидролизуется гораздо быстрее BrF5

$$BrOF_3 + H_2O \rightarrow 2HF + BrO_2F$$
(11)

и поэтому обычно не фиксируется в продуктах гидролиза пентафторида брома [32].

3. Результаты и их обсуждение

Молекулы CIF₃ и BrF₃

Молекулы трифторида хлора и брома (точечная симметрия C_{2v}) имеют шесть нормальных невырожденных колебаний с типами симметрии:

$$\Gamma_{\rm vib} = 3A_1 + 2B_1 + B_2,\tag{12}$$

которые активны как в ИК-спектре, так и в спектре КР.

Колебательные спектры XF₃ (X = Cl, Br) в газовой фазе исследовались в работах [35, 36], а в конденсированном состоянии и в условиях матричной изоляции – в [37-40]. Авторами указанных работ проведено отнесение фундаментальных частот молекул CIF3 и BrF3, определен набор валентных силовых постоянных. В работах [35, 36] сделана попытка интерпретации нескольких полос переходов второго порядка в ИК-спектрах газообразных ClF₃ и BrF₃. В табл. 2 приведены значения частот полос ИК-поглощения молекул ClF₃ и BrF₃ в газовой фазе и растворах сжиженного криптона и ксенона, измеренные в настоящей работе. Здесь же для сравнения представлены данные по газовой фазе, полученные в работах [35, 36].

Таблица 2

Экспериментальные частоты (см⁻¹) и их интерпретация в ИК-спектрах молекул $XF_3(X = Cl, Br)$ в газовой фазе (T = 293 K) и растворах жидкого криптона (LKr, T = 130 K) и ксенона (LXe, T = 180 K)

	CF ₃			BrF ₃		Тип колебаний
Раствор	Газ	Газ [35]	Раствор	Газ	Газ [36]	и интерпретация
в LKr			в LXе			
1959	-	-	1865	-	_	$2v_1 + v_2(A_1)$
1860	-	_	1626	-	_	$v_1 + v_4 + v_5(B_1)$
1793	-	_	1571	-	_	$2v_1 + v_3(A_1)$
1761	_	-	1516	_	-	$v_1 + v_3 + v_4(B_1)$
1749	-	_	_	-	_	
1618	-	-	1504	-	-	$v_2 + v_4 + v_5(B_1)$
1551	1517	-	_	-	-	$v_2 + v_4 + v_6(B_2)$
1519	1541	_	1393	-	_	$v_2 + v_3 + v_4(B_1)$
1493	1501	1488	1335	1342	1340	2v1 (A1)
1486	1490	1466	1329	1334		
1455	1466	1466	1281	1290	1287	v1 + v4 (B1)
1437	1450	1451	1274	1282		

Продолжение табл. 2

1	2	3	4	5	6	7
1330	1343	1338	-	-	-	$2v_3 + v_4(B_1)$
1261	1274	1273	1209	1217	_	$v_1 + v_2(A_1)$
1214	1225	1223	1156	1165	1162	$v_2 + v_4(B_1)$
1205	1213		1149			
1050	_	-	_	_	_	$2v_3 + v_5(B_1)$
1015	1024	1022	901	_	_	$v_3 + v_4(B_1)$
948	958	957	884	_	_	$v_2 + v_5(B_1)$
839	850	845	706	_	_	$v_2 + v_3(A_1)$ или $2v_5(B_1)$
748	756	761	677	683	682	$v_1(A_1), v(X-F_{eq})$
735	739	741	667	670	668	
	712	711				
706	709	704				
696	704	701	615	619	621	
691	700	698	607	615	614	$v_4(B_1),$
684	697	694	598	605	604	v _{as} (X–F _{ax})
674	693	691				
	691					
647	653	-	_	-	-	$2v_3(A_1)$
527	525	535	540	558	557	$v_2(A_1),$
510	516	518	533	547	547	$v_s(X-F_{ax})$
			354	360	359	
430	433	434	335	352	350	$v_5(B_1),$
				340	342	δ (Х–F _{eq}) в плоск.
362	364	364	-	_	242	$v_6(B_2),$
						δ (X-F _{eq}) вне плоск.
327	331	332	_	-	242	$v_3(A_1),$
315	318	319	-	-		δ (X–F _{ax})
						· · ·

 Π р и м е ч а н и е .
 ν – валентное, δ – деформационное,
s – симметричное, аs – антисимметричное колебания.

Участок ИК-спектра ClF_3 в газовой фазе и растворе сжиженного Кг в области частоты колебания связи (Cl-F)_{ах} (v_4) приведен на рис. 2.

Рис. 2. Участок спектра ИК-поглощения молекул ClF_3 в газовой фазе (*a*) и растворе жидкого криптона (*б*) вблизи моды $v_4(B_1)$

Как видно из данных табл. 2, нам удалось зарегистрировать и провести интерпретацию более 30 (CIF₃) и 20 (BrF₃) колебательных полос в области 2000–300 см⁻¹, включая полосы переходов третьего порядка. Обращает на себя внимание тот факт, что контуры полосы антисимметричного колебания аксиальной связи v₄(B_1) молекул CIF₃ и BrF₃ в газовой фазе являются суперпозицией нескольких перекрывающихся полос с частотами 712, 709, 704, 700, 697, 693, 691 см⁻¹ (CIF₃) и 619, 615, 605 см⁻¹ (BrF₃). Это хорошо согласуется с данными работ [35, 36], авторы которых также наблюдали сложную структуру полосы v₄, состоящую из нескольких полос с частотами 711, 704, 701, 698, 694, 691 см⁻¹ (CIF₃) и 621, 614, 604 см⁻¹ (BrF₃). Наличие сложного контура полосы v₄ связано, на наш взгляд, с проявлением кориолисова взаимодействия, характерного для T-образных молекул симметрии C_{2v} [41].

Для Т-образных молекул XY₃ возможны три типа кориолисова взаимодействия основных колебаний: (A_1, B_1) , (A_1, B_2) и (B_1, B_2) . Последний тип взаимодействия связан с тем обстоятельством, что молекулы XY₃ (C_{2v}) не имеют основных колебаний с симметрией A_2 . Вращение вокруг оси симметрии этих молекул приводит к тому, что силы Кориолиса при колебании $v_5(B_1)$ возбуждают колебание $v_6(B_2)$. Поскольку частоты указанных колебаний близки между собой, возникает ощутимое взаимодействие этих колебательных состояний. Достаточно сильно могут взаимодействовать также близкие по частоте колебания $v_3(A_1)$ и $v_6(B_2)$ при вращении вокруг оси среднего момента инерции. Наиболее сильное взаимодействие, на наш взгляд, может происходить между близкими по частоте колебаниями $v_1(A_1)$ и $v_4(B_1)$ при вращении вокруг оси наибольшего момента инерции.

При переходе от газовой фазы к криораствору в спектрах ИК-поглощения CIF₃ и BrF₃ вблизи моды $v_4(B_1)$ вместо сложного контура наблюдаются достаточно хорошо разрешенные полосы с частотами 706, 696, 691, 684, 674 и 615, 607, 598 см⁻¹ с соотношением интенсивностей 0,25:0,11:0,07:1,0:0,35 и 0,77:1,0:0,46 соответственно. Расщепление полос v_1 , v_2 и v_5 , как и в случае v_4 , видимо, также связано с наличием кориолисова взаимодействия. Необходимо отметить, что интенсивность полосы v_4 в ИК-спектрах CIF₃ и BrF₃ аномально велика (более чем на порядок) по сравнению с интенсивностью полосы v_1 и примерно на два порядка превышает интенсивности остальных фундаментальных полос. Указанный факт, повидимому, является характерной особенностью молекул XY₃ (C_{2v}) с T-образной структурой.

Как и в случае ряда других многоатомных молекул [13–15], переход газ – криораствор сопровождается низкочастотным сдвигом колебательных полос трифторида хлора и брома. Среди основных полос наибольший сдвиг характерен для полос валентных колебаний, а величина сдвига для полос деформационных колебаний примерно в два раза меньше. Сдвиг полос составных колебаний и обертонов достигает нескольких десятков сантиметров в минус первой степени. При этом сохраняется примерная аддитивность, позволяющая надеяться, что значения постоянных ангармоничности, рассчитанные для растворов трифторида хлора и брома в жидких благородных газах, будут близки к соответствующим значениям Х_{ik} в газовой фазе.

С учетом этих соображений, а также на основании совокупности полученных спектроскопических данных о частотном положении ряда составных полос и обертонов нами были рассчитаны постоянные ангармоничности для некоторых колебаний молекул CIF₃ и BrF₃: X_{33} =-7,0, X_{11} =-5,0, $X_{25} = -9,0 \text{ см}^{-1}$ (ClF₃) и $X_{11} = -6,0$, $X_{25} = -10,0 \text{ см}^{-1}$ (BrF₃). Определение величины X_{ik} для других колебаний ClF₃ и BrF₃, в частности X_{4k} или X_{i4} (*i*, *k* = 1, 2, ..., 6), сопряжено с определенными трудностями вследствие расщепления полосы v₄ из-за кориолисова взаимодействия.

Молекулы ClF₅ и BrF₅

Молекулы пентафторида хлора и брома относятся к точечной группе C_{4v} и характеризуются девятью нормальными колебаниями с типами симметрии

$$\Gamma_{\rm vib} = 3A_1 + 2B_1 + B_2 + 3E. \tag{13}$$

В спектре ИК-поглощения этих молекул активны только колебания симметрии $A_1(v_1, v_2, v_3)$ и $E(v_7, v_8, v_9)$, в спектре КР – все девять колебаний.

Колебательные спектры ClF_5 и BrF_5 в газовой и жидкой фазах исследовались в работах [37, 42–44], а авторами работ [40, 45, 46] получены данные о спектрах пентафторида хлора и брома, изолированных в матрицах инертных газов. В перечисленных работах проведена интерпретация основных полос ClF_5 и BrF_5 [42, 44], получены значения амплитуд колебаний, констант Кориолиса [43]. В работах [45, 46] определены изотопические сдвиги некоторых колебательных частот.

Частоты, относительные интенсивности $A_{\text{огн}}$ и идентификация наблюдаемых полос ИК-поглощения молекул ClF₅ и BrF₅ в газовой фазе и растворах сжиженных криптона и ксенона приведены в табл. 3 и 4. Здесь же представлены частоты полос ИК-поглощения газообразных ClF₅ и BrF₅, полученные в [42, 44].

Участок ИК-спектра ClF₅ в растворе сжиженного ксенона в области переходов 2-го и 3-го порядков приведен на рис. 3.

Рис. 3. Участок спектра ИК-поглощения молекул ClF₅ в растворе жидкого ксенона в области переходов второго и третьего порядков

Из данных табл. 3 и 4 следует, что в ИК-спектре раствора пентафторида хлора и брома в жидком ксеноне в диапазоне 2300–200 см⁻¹ нам удалось зарегистрировать более 50 (ClF₅) и 40 (BrF₅) колебательных полос. В то же время ИК-спектры растворов ClF₅ и BrF₅ в жидком криптоне характеризуются меньшим количеством (32 (ClF₅) и 26 (BrF₅)) полос поглощения в диапазонах 1700–300 и 1400–215 см⁻¹ соответственно, что связано с меньшей растворимостью этих интергалоидов в жидком Кг по сравнению с жидким Хе.

Аналогично спектрам ClF₅ и BrF₅ в газовой фазе в спектрах растворов пентафторидов хлора и брома в сжиженных Kr и Xe в указанных выше частотных диапазонах наблюдаются разрешенные правилами отбора для C_{4v} конфигураций полосы основных колебаний v₁, v₂, v₃ (симметрия A_1) и v₇, v₈, v₉ (симметрия E) [47]. Для BrF₅ отнесение наблюдаемых фундаментальных частот как в газовой фазе, так и криорастворах не вызывает особых сомнений. В то же время в случае ClF₅ интерпретация только трех фундаментальных колебаний с частотами 718,7; 537,0; 516,0; 476,5 см⁻¹ (жидкий Xe); 720,0; 540,0; 518,0; 476,5 см⁻¹ (жид-

кий Kr); 731,8; 541,0 см⁻¹ (газовая фаза) представляется однозначной. Для полос фундаментальных колебаний с частотами в области 710 и 480 см⁻¹ проведена групповая интерпретация. Что касается составных колебаний и обертонов, то для ClF₅ и BrF₅ примерно половина из них интерпретируется однозначно. Для остальных полос переходов второго и третьего порядков допустима только групповая интерпретация. Необходимо отметить, что отнесение упомянутых колебательных полос к определенному переходу возможно только при наличии данных, полученных из спектров КР растворов пентафторидов хлора и брома в жидких благородных газах.

Как видно из данных табл. 3, наиболее интенсивные полосы поглощения CIF₅ в растворе жидкого Хе с частотами 718,7; 713,5; 710,0; 707,5 см⁻¹ принадлежат колебаниям v₁ и v₇ двух изотопических модификаций пентафторида хлора, при этом соотношение интенсивностей $[A_1({}^{35}\text{CIF}_5,{}^{37}\text{CIF}_5) + A_7({}^{37}\text{CIF}_5)]:[A_7({}^{35}\text{CIF}_5)] = 0,39$. Проведенные оценки показали, что относительная интенсивность полосы 707,5 см⁻¹ составляет $\cong 23\%$ от интенсивности полосы v₇(${}^{35}\text{CIF}_5$), а суммарная интенсивность полос v₁ (${}^{35}\text{CIF}_5$,

³⁷ClF₅) с частотами 710,0 и 713,5 см⁻¹ \cong 15% от интенсивности той же полосы. Последняя величина согласуется с данными [44] (\cong 20 %), полученными из ИК-спектра ClF₅ в газовой фазе. Аналогичная ситуация наблюдается для полос 491,5; 481,0 и 472,5 см⁻¹, отнесенных к колебаниям v₃ и v₈ молекул ³⁵ClF₅ и ³⁷ClF₅. В этом случае соотношение интенсивностей [$A_3(^{37}ClF_5)$]:[$A_8(^{35}ClF_5)$] = 0,13, а суммарные относительные интенсивности $A_3(^{35}ClF_5)$]:[$A_8(^{35}ClF_5)$] = 0,44. Полученная нами величина A_8 также согласуется с данными [44] (190), в то время как для величины A_3 авторы [44] дают значение 30. Здесь необходимо отметить, что авторы работы [42] в ИК-спектре газообразного ClF₅ наблюдали только одну полосу в области 480 см⁻¹, которая была отнесена ими к колебанию v₃(A_1).

Таблица З

Параметры полос поглощения (см⁻¹) молекул CIF₅ в газовой фазе и растворах жидкого ксенона и криптона (LXe и LKr соответственно)

Раствор	Раствор	Газ	Газ	A_{oth}	Тип колебаний
в LXe	в LKr		[42]		и интерпретация
2251	-	2199	2202	0,3	$3v_7(E),$
2188				0,8	$v_1 + 2v_7(A_1)$
					$2v_7 + v_8 + v_9(E)$
1932	_	1938	1940	0,2	$v_2 + 2v_7(A_1)$
1927					
1880	-	_	-		
1859	-	1871	_	0,8	$v_1 + v_6 + v_7(E)$
1854	-	_	-		
1811	-	1825	1828	0,3	$2v_2 + v_7(E)$
1786	-	1794	-	0,2	$v_1 + 2v_2(A_1)$
1710	1712	1706	1704	0,3	$v_2 + v_3 + v_7(E)$
1701	1704				$2v_3 + v_7(E)$
					$2v_7 + v_9(E)$
1684	1687	_	-	0,2	$v_3 + v_7 + v_8(E)$
					$2v_3 + v_7(E)$?
1492	1494	1517	1500	1,0	$v_3 + v_7 + v_9 (A_1 + B_1 + B_2)$
1434	1437	1449	1444	10	$2v_7(E)^{35}Cl$
1411	1412	_	_	3,5	$v_1 + v_7(E)$
					$2v_7(E)^{37}Cl$
1306	1307	1316	1322	10	$v_7 + 2v_9(E)$
1290	1291				
1255	1256	1260	1274	15	$v_2 + v_7(E)$
1242	1244	1249			$v_1 + v_2(A_1)$
					$v_7 + v_8(E)$
		1213	1220	15	$v_1 + v_3(A_1)$
1199	1203				$v_3 + v_7(E)$
1185	1186				$v_4 + v_7(E)$
					$v_1 + v_8(E)$
		1213	1220	15	v7 + v8 (E)
1199	1203				v1 + v3 (A1)
1185	1186				v3 + v7 (E)
					v4 + v7 (E)
					v1 + v8 (E)
1076	1077	1084	1088	0,1	2v2(A1)
1054	1056	1060	_	2.0	$v_{5} + v_{7}$ (E)
1017	1020	1023	1028	1.0	v7 + v9 (E)
1014				-,-	$v^{2} + v^{8}(E)$
					$v_2 + v_3 (A1)$
998	_	_	_	0.4	$v_1 + v_9$ (E)
988	_	_	_	0.2	$v_3 + v_4$ (B1)
977	980	981	981	3,0	2v3(A1)
972	200	201	201	5,0	$v_3 + v_8$ (F)
<i></i>					v5 v0(L)

Продолжение табл. 3

1	2	3	4	5	6
875	876	978	-	0,5	$v_3 + v_6 (A_1 + B_1 + B_2)$
835	837	842	840	3,0	$v_2 + v_9(E)$
782	784	785	786		$v_3 + v_9(E)$
744	-	-	-	60	$v_8 + v_9(E)$
737	-	-	-		$v_4 + v_9(E)$
718,7	720,0	731,8	732	1000	$v_7(E), v_{as}({}^{35}Cl-F)_{ax}$
713,5					$v_1(A_1), v_8(^{35}Cl-F)_{eq}$
710,0	708,9	_	_	390	$v_1(A_1), v_s({}^{37}\text{Cl}-\text{F})_{eq}$
707,5					$v_7(E), v_{as}({}^{37}Cl-F)_{ax}$
617	618	_	_	0,5	$v_5 + v_9(E)$
607	608				
597	601				
587	590	608	598	1,0	$2v_9(A_1)$
584					
537	540	541	541	6,0	$v_2(A_1), v_s(Cl-F)_{ax}$
516	518				
491,5	494	-	-	70	$\nu_3(A_1),$
					$\delta_s (F_{ax} - {}^{35}Cl - F_{ax})$
481	482	485	486	180	$v_3(A_1),$
					$\delta_{s}(F_{ax}-^{37}Cl-F_{ax})$
					$v_8(E), \delta_{as}(F_{eq}-{}^{35}Cl-F_{ax})$ вне
					плоск.
476	477	-	-	45	$v_8(E), \delta_{as}(F_{eq}-{}^{37}Cl-F_{ax})$ вне
					плоск,
299	301	303	302	200	$v_9(E), \delta_{as}(F_{ax}-Cl-F_{ax})$ в
					плоск.

В случае BrF₅ (см. табл. 4) соотношение интенсивностей $[A_1 + A_7]$: $[A_7]$ резко отличается от соответствующей величины для ClF₅, величины A_3 и A_8 составляют 75 и 41, при этом $[A_3]$: $[A_8] = 1,83$. Отметим, что определенная нами из криоспектров величина A_3 достаточно хорошо согласуется с данными [44] (70), тогда как для A_8 авторы этой работы приводят значение 20.

Таблица 4

Параметры полос поглощения (см⁻¹) молекул BrF₅ в газовой фазе и растворах жидкого ксенона и криптона (LXe и LKr соответственно)

Раствор	Раствор	Газ	Газ	A_{oth}	Тип колебаний
в LXe	вLKr		[44]		и интерпретация
2134	-	-	_	-	$3v_7 + v_9(E)$
1968	-	1991	1995	0,01	$2v_1 + v_7(E)$
1955					$2v_7 + v_8 + v_9(E)$
1944	-	_	-	0,01	$v_1 + 2v_7(A_1)$
1896	-	1915	1920	0,02	3v7 (E)
1862	-	_	_	0,08	v2 + 2v7 (A1)
1777	-	1797	1800	0,06	2v2 + v7 (E)
1754	-	1767	1770	0,017	v2 + v4 + v7 (E)
1712	_	1730	1732	0,08	2v4 + v7 (E)
1693	_	_	_	0,12	2v7 + v8
1593	_	_	_	0,03	$v_2 + v_3 + v_7(E)$
1495	_	-	-	0,01	$2v_7 + v_9(E)$
1402	-	-	_	0,05	$v_3 + v_7 + v_8(E)$
1345	1348	1365	1368		$2v_3 + v_7(E)$
1334	1335	1330	1324	13,3	$2v_1(A_1)$
1321	1324	1279			$v_1 + v_7(E)$
1257	1260				$2v_7(E)$
1249	_	_	_	0,04	$v_1 + v_2(A_1)$
1196	1199	1210	1211		$v_3 + v_7 + v_9 (A_1 + B_1 + B_2)$
1159	1164	1171	1175	27	$v_2 + v_7(E)$
					$v_4 + v_7(E)$
1080	1081	1090	-	0,15	v1 + v8 (E)
1044	1047	1054	-	0,24	v7 + v8 (E)

Продолжение табл. 4

1	2	3	4	5	6
1029	1032	1041	1042		$v_1 + v_3(A_1)$
1020	1023	1030	1032	1,1	$v_6 + v_7(E)$
990	994	1003	998		$v_3 + v_7(E)$
					$v_2 + v_3(A_1)$
955					$v_2 + v_8(E)$
920	-	_	_	0,018	$v_4 + v_8(E)$
914					$v_1 + v_2(E)$
					$v_3 + v_4(B_1)$
903	_	_	_	0,09	$v_5 + v_7(E)$
855	859	870	874	0.3	$v_7 + v_9(E)$
798	801	806	807	0.2	$2v_{s}(E)$
				<i>,</i>	$v_2 + v_2(E)$
765	766	770	771	0,6	$v_4 + v_9(E)$
758	761	767	750	0,4	$v_3 + v_8(E)$
709	711	716	716	3.2	$2v_3(A_1)$
677	680	683	683	28	$v_1(A_1)$, $v_s(Br-F)_{eq}$
663	669	673	674	0.1	$v_3 + v_6 (A_1 + B_1 + B_2)$
634	637	645	644	1000	$v_7(E)$, $v_{as}(Br-F)_{ax}$
592	595	601	602	0.8	$v_2 + v_0(E)$
582	584	588	587	4,8	$v_2(A_1)$, $v_2(Br-F)_{av}$
505	510	512	510	1.7	$v_5 + v_0(E)$
462	465	470	473	1.4	$2v_{0}(A_{1})$
412	414	416	415	41	$v_{\circ}(E), \delta_{\alpha}(F_{\alpha}-Br-F_{\alpha})$ BHe
					плоск.
358	360	363	369	75	$v_3(A_1), \delta_s(F_{ax}-Br-F_{ax})$
232	233	≅235	237	2,0	$v_0(E), \delta_{av}(F_{av}-Br-F_{av}) B$
				,-	плоск.

Проведенные в настоящей работе оценки интегрального коэффициента поглощения наиболее интенсивной полосы $v_7(E)$ молекул ³⁵ClF₅ и BrF₅, помещенных в среду жидких благородных газов, показали, что его величина достаточно велика и составляет $(370 \pm 50) \cdot 10^{-8}$ и $(325 \pm 60) \cdot 10^{-8}$ см²·молек⁻¹·с⁻¹ соответственно.

Сравнение частот полос фундаментальных колебаний ClF₅ и BrF₅ для газовой фазы и раствора пентафторида хлора и брома в жидких криптоне и ксеноне показало, что наибольший низкочастотный сдвиг при переходе газ криораствор испытывает полоса антисимметричного колебания v₇(E). При этом величины сдвига в спектре составляют 11,8 и 13,1 см⁻¹ (ClF₅), 8,0 и 11,0 см⁻¹ (BrF₅) для жидких Кr и Xe соответственно. Сдвиг полосы v2 несколько меньше: 1,0 и 4,0 см⁻¹ (ClF₅), 4 и 6 см⁻¹ (BrF₅), а сдвиги полос v₁, v₃, v₈, v₉ для BrF₅ равны 3; 3; 2; 2 см⁻¹ (жидкий Кr) и 6; 5; 4; 3 см⁻¹ (жидкий Xe) соответственно. Практически все однозначно интерпретированные составные с v7 полосы претерпевают сильный сдвиг (до 25 см⁻¹), в то время как составные полосы и обертоны с участием других квантов претерпевают более слабый сдвиг. О сдвигах частот других основных полос ClF₅, а также полос переходов более высокого порядка трудно сказать что-либо определенное из-за неоднозначности их отнесения к тому или иному колебательному переходу. Как и в случае молекул ClF₃ и BrF₃, на основании полученных значений частот ряда составных колебаний и обертонов были рассчитаны постоянные ангармоничности X_{ik} для некоторых колебаний молекул ClF₅ и BrF₅ (см⁻¹):

$$X_{22} = -3; \quad X_{33} = -6; \quad X_{77} = -3,4;$$

 $X_{12} = -5; \quad X_{27} \cong -1 \quad (ClF_5);$ (14)

$$X_{12} = -10; \quad X_{33} = -8; \quad X_{18} = -9; \quad X_{78} = -2;$$

$$X_{38} = -12; \quad X_{39} = -2; \quad X_{99} = -3 \quad (BrF_5).$$
 (15)

Что касается величины X_{ik} для других колебаний ClF₅ и BrF₅, то ее определение затруднительно из-за неоднозначности отнесения соответствующих полос к определенному колебательному переходу.

Измерение изотопических сдвигов (Δv_i) некоторых колебательных полос ClF₅ показало, что их величина составляет (см⁻¹):

$$\Delta v_7 = 11,2; \quad \Delta v_3 = 10,5; \quad \Delta v_1 = 3,5; \quad \Delta v_8 = 4,5.$$
(16)

Отметим, что изотопические сдвиги для основных колебаний ClF₅ экспериментально измерялись в работах [45, 46], посвященных исследованию ИК-спектров пентафторида хлора в условиях матричной изоляции. По данным авторов указанных работ, они равны (см⁻¹):

$$\Delta v_7 = 12,8; \quad \Delta v_3 = 10,0; \quad \Delta v_8 = 3,3 \ [46];$$

$$\Delta v_7 = 12,7; \quad \Delta v_3 = 3,5; \quad \Delta v_1 = 4,5 \ [45]. \tag{17}$$

Из вышеприведенного видно, что значения Δv_i , полученные в данной работе, достаточно хорошо согласуются с соответствующими значениями, измеренными в [46], и Δv_1 и Δv_7 , определенными в [45]. В то же время значение Δv_3 из [45] почти в три раза меньше соответствующего значения, полученного нами и авторами [46]. Этот факт, повидимому, можно объяснить наличием спектральных эффектов матричного расщепления.

В результате детального анализа полученных нами спектроскопических данных для молекул ClF_5 и BrF_5 был выявлен ряд аномалий в соотношениях интенсивностей полос поглощения, величинах как основных силовых постоянных, так и констант взаимодействия и др.

Известно, что расчет интенсивностей колебательных полос в ИК-спектрах многоатомных фторсодержащих молекул обычно производится с использованием эмпирической модели полярных тензоров атома фтора, имеющего вид [48]:

$$P_{x}^{F} = \begin{pmatrix} \partial p_{x} / \partial x_{F} & \partial p_{x} / \partial y_{F} & \partial p_{x} / \partial z_{F} \\ \partial p_{y} / \partial x_{F} & \partial p_{y} / \partial y_{F} & \partial p_{y} / \partial z_{F} \\ \partial p_{z} / \partial x_{F} & \partial p_{z} / \partial y_{F} & \partial p_{z} / \partial z_{F} \end{pmatrix},$$
(18)

где p_i – компоненты дипольного момента, преобразующиеся по представлению соответствующего декартова смещения; x, y, z – пространственно-фиксированные координаты атома фтора.

Полярный тензор незначительно варьировался при переходе от одной молекулы к другой [44, 48], и для зонтиковых молекул симметрии C_{4v} (в том числе для пентафторидов галогенов), согласно [44], его можно записать в виде

$$P_{ax}^{F} = \begin{pmatrix} 0.21 & 0 & 0 \\ 0 & 0.21 & 0 \\ 0 & 0 & 0.90 \end{pmatrix} e$$
(19)

- для аксиального *F*-атома,

$$P_{\rm eq}^{F} = \begin{pmatrix} 0.25 & 0 & 0 \\ 0 & 0.25 & 0 \\ 0 & 0 & 1.00 \end{pmatrix} e$$
(20)

– для экваториального *F*-атома.

Здесь величины по диагонали – производные дипольного момента, соответствующие смещениям атома фтора в

ИК-спектроскопия интергалогенидов XF3 и XF5 (X = Cl, Br)

двух направлениях, перпендикулярных связи, и в направлении вдоль связи.

Анализ спектров ИК-поглощения рассматриваемых пентакоординационных соединений в растворах сжиженных благородных газов показал, что наблюдаемые интенсивности полос валентных колебаний ClF₅ и BrF₅ слабо коррелируют с известным соотношением для молекул симметрии C_{4v} , вытекающим из модели локальных осцилляторов [49]:

$$[I(v_1) + I(v_2)] : [I(v_7)] \cong 1:4.$$
(21)

Расчеты, проведенные в [44] для молекул ClF₅ и BrF₅, дают отношение 1:3,3 и 1:3,74 соответственно, при этом небольшое отклонение от (21) связано, по мнению авторов [44], с «примешиванием» деформационных координат. В работе [45] величина указанного соотношения для молекул ClF₅ составила 1:17, тогда как по нашим данным – 1:6,4 и \cong 1:30 для ClF₅ и BrF₅ соответственно. При подстановке в (21) $I(v_3)$ получаются отношения 1:11,1 (ClF₅) и 1:13,3 (BrF₅), при этом первая величина хорошо согласуется с данными [45] (1:11,0). Авторы [44] пришли к выводу, что различие отношений (21) для расчетных и экспериментально наблюдаемых интенсивностей основных полос поглощения ClF₅ и BrF₅ связано в первую очередь с некорректностью модели силового поля этих молекул.

В работах [30, 44, 45] отмечалось, что использование модели полярных тензоров для описания связей X-F_{ах} и X- $F_{eq} \; (X = Cl, Br)$ не совсем корректно, поскольку эффективный заряд на F_{ax} заметно меньше заряда на F_{eq}. Расчет производных функций дипольного момента молекулы ClF₅, проведенный в работе [45], а также наши оценки [49] показали, что при смещении F_{ax} и F_{eq} вдоль связи значения производных этих функций отличаются на порядок ($\cong -0,1 \ e$ и ≅ – 1,0 е), в то время как величины производных функций дипольного момента при смещении F_{eq} перпендикулярно связи сопоставимы (≅ + 0,26 е и ≅ + 0,14 е). Для молекул BrF5 расчет производных функций дипольного момента не проводился, однако, по нашим оценкам, ситуация по величинам производных функций дипольного момента при смещении F_{ax} и F_{eq} вдоль связи и F_{eq} перпендикулярно связи аналогична ClF₅. Поэтому можно утверждать, что связь $X-F_{ax}$ (X = Cl, Br) по своим электрооптическим параметрам существенно отличается не только от экваториальной связи, но и от связей в других пяти- или шестикоординационных фторидах (PF5, SF6 и др.), для которых был успешно применен тензор (18). Такой вывод находится в согласии с результатами квантово-химических расчетов для электронно-избыточных соединений интергалоилов [12, 50, 51] и свидетельствует о том, что связи в молекулах XF_5 (X = Cl, Br) могут подразделяться на две категории:

 связи, в которые дают вклад как *s*-, так и *p*-орбитали центрального атома (связь X–F_{ax});

– более ионные связи вдоль линейных группировок F-X-F, образованные исключительно *p*-орбиталями центрального атома (связи $X-F_{eq}$).

Обсуждение электрооптических параметров ClF_5 и BrF₅ возможно только после надежного определения валентно-силового поля этих соединений, поскольку окончательной ясности в данном вопросе нет. Различные упрощающие предположения, используемые при определении силовых параметров, особенно сильно сказываются на недиагональных членах F-матрицы [50], причем отличия наблюдаются не только в величинах F_{ij} , но и в знаках [12, 30, 46]. Модель ИК-интенсивностей для CIF₅ и BrF₅ наряду с различием в характере связей $X-F_{ax}$ и $X-F_{eq}$ (X = Cl, Br) должна учитывать вклады от диполя несвязанной электронной пары и от нежестких внутримолекулярных перегруппировок. В случае нежестких перегруппировок в CIF₅ и BrF₅ может происходить быстрый аксиальноэкваториальный обмен F-лигандов, о чем убедительно свидетельствуют спектры ЯМР [52].

В случае пентакоординационных соединений наиболее вероятными механизмами внутримолекулярных перегруппировок могут являться псевдовращение через конфигурацию тригональной бипирамиды (ТБП) и турникетный механизм обмена атомов фтора [53]. Так, согласно оценкам [50] барьер на пути псевдовращения в ClF_5 через ТБП-конфигурацию (D_{3h}) составляет $\cong 80$ ккал моль⁻¹, т.е. этот механизм внутримолекулярных перегруппировок может быть исключен из рассмотрения как энергетически невыгодный. Турникетный механизм обмена F-атомами в пентафторидах галогенов также рассматривался авторами [50] и аналогично упомянутому механизму псевдовращения был исключен из рассмотрения основании результатов соответствующих хартрина фоковских расчетов, причем выполненных не для пентакоординационных молекул XF₅, а для молекул SH₆ и SF₆ с двухэкспонентным sp-базисом [51]. Вместе с тем в [50] обращается внимание на заметную роль поляризационных dфункций центрального атома и эффектов электронной корреляции при определении барьеров внутримолекулярных перегруппировок у фторидов элементов III периода. Проведенные нами оценки [30, 54] показали, что при использовании более полных базисов и учета эффектов электронной корреляции следует ожидать умеренную высоту барьера перегруппировки по турникетному механизму, который, на наш взгляд, для ClF₅ и BrF₅ является наиболее вероятным. Однако отсутствие прямых ab initio расчетов потенциальной поверхности турникетного механизма, равно как и других вероятных механизмов обмена лигандов в ClF5 и BrF5, а также отсутствие належного валентно-силового поля для этих соединений оставляют открытым вопрос о величине вклада нежестких внутримолекулярных перегруппировок в формирование ИК-интенсивностей ClF5 и BrF5, подчеркивая тем самым необходимость дальнейших исследований с привлечением не только спектроскопических, но и современных физических методов в химии.

Автор выражает благодарность Л.П. Суханову за плодотворное обсуждение рассматриваемой проблемы.

- Химическая технология облученного ядерного горючего / Под ред. В.Б. Шевченко. М.: Атомиздат, 1971. 448 с.
- Rahn F.J., Adamantiades A.G., Kenton J.E. et al. / Guide to Nuclear Power Technology. N.Y.: Wiley Interscience. 1984. 731 p.
- Макеев Г.Н., Соколов В.Б., Чайванов Б.Б. Неорганические фторокислители // Химия плазмы / Под ред. Б.М. Смирнова. 1977. Т. 2. С. 62.
- 4. Степин Б.Д. // Успехи химии. 1987. Т. 56. № 8. С. 1273.
- 5. Набиев Ш.Ш. // Изв. АН. Сер. хим. 1999. № 4. С. 715.
- 6. Исикава Н., Кабаяси Е. Фтор: химия и применение. М.: Мир, 1982. 276 с.
- Николаев Н.С., Суховерхов В.Ф., Шишков Ю.Д., Аленчикова И.Ф. Химия галоидных соединений фтора. М.: Наука, 1968. 348 с.
- Никитин И.В. Фториды и оксифториды галогенов. М.: Наука, 1989. 118 с.
- 9. Сорнер С. Химия ракетных топлив. М.: Мир, 1969. 488 с.
- Marshall V.C. Major Chemical Hazards. Chichester: Ellis Horwood Ltd., 1987. 672 p.
- 11. Набиев Ш.Ш., Пономарев Ю.Н. // Оптика атмосферы и океана. 1998. Т. 11. С. 1274.

- Буслаев Ю.А., Суховерхов В.Ф., Клименко Н.М. // Коорд. химия. 1983. Т. 9. С. 1011.
- Молекулярная криоспектроскопия / Под ред. М.О. Буланина. СПб: Изд-во СПбГУ, 1993. 298 с.
- 14. Nabiev Sh.Sh., Klimov V.D. // Mol. Phys. 1994. V. 81. P. 395.
- 15. Набиев Ш.Ш.// Изв. АН. Сер. хим. 1998. № 4. С. 560.
- 16. Воробьев В.Г., Никитин В.А. // Опт.-мех. пром-сть. 1974. №5. С. 60.
- 17. Степанов Б.И. Основы спектроскопии отрицательных световых потоков. Минск: Изд-во АН БССР, 1961. 442 с.
- 18. Сешарди К.С., Джонс Р.Н.// УФН. 1965. Т. 85. С. 87.
- 19. Nabiev Sh.Sh., Klimov V.D. // J. Fluor. Chem. 1992. V. 58. P. 263.
- 20. Кондауров В.А., Меликова С.М., Набиев Ш.Ш., Сенников П.Г., Щепкин Д.Н. // Высокочистые вещества. 1993. № 3. С. 119.
- 21. *Хьюи Дж.* Неорганическая химия. Строение вещества и реакционная способность. М.: Химия, 1987. 696 с.
- 22. Smith D.F. // J. Chem. Phys. 1953. V. 21. P. 609.
- 23. Burbank R.D., Bensey F.N.// J. Chem. Phys. 1953. V. 21. P. 602.
- 24. Magnuson D.W. // J. Chem. Phys. 1957. V. 27. P. 223.
- 25. Burbank R.D., Bensey F.N. // J. Chem. Phys. 1957. V. 27. P. 982.
- 26. Гиллеспи Р. Геометрия молекул. М.: Мир, 1975. 278 с.
- Goulet P, Jurek R., Chanussot J. // J. Phys. (France). 1976. V. 37. P. 495.
- 28. Robiette A.G., Bradley R.H., Brier P.N. // Chem. Commun. 1971. P. 1567.
- 29. Альтман А.Б., Мякшин И.Н., Суховерхов В.Ф., Романов Г.Ф. // ДАН СССР. 1978. Т. 241. № 2. С. 360.
- Набиев Ш.Ш., Суханов Л.П. // Журн. физ. химии. 1997. Т. 71. С. 1069.
- Чаркин О.П. Стабильность и структура неорганических молекул, радикалов и ионов. М.: Наука, 1980.
- 32. Stein L. Halogen Chemistry. N.Y.: Academic Press, 1967. 403 p.
- 33. Christe K.O. // Inorg. Chem. 1972. V. 11. P. 1220.
- Christe K.O., Schack C.J. // Adv. Inorg. Chem. Radiochem. 1976. V. 18. P. 319.
- Claassen H.H., Weinstock B., Malm J.G. // J. Chem. Phys. 1958. V. 28. P. 285.

- 36. Selig H., Claassen H.H., Holloway J.H. // J. Chem. Phys. 1970. V. 52. P. 3517.
- 37. Rousson R., Drifford M. // J. Chem. Phys. 1975. V. 62. P. 1806.
- Frey R.A., Redington R.L, Aijibury A.L.K. // J. Chem. Phys. 1971. V. 54. P. 344.
- Clarke M.R., Fletcher W.H., Mamantov G. // Inorg. Nucl. Chem. Lett. 1972. V. 8. P. 611.
- Smyri N.R., Mamantov G. // Adv. Inorg. Chem. Radiochem. 1978. V. 21. P. 231.
- Герцберг Г. Колебательные и вращательные спектры многоатомных молекул. М.: Изд-во иностр. лит-ры, 1949. 647 с.
- Begun G.M., Fletcher W.H., Smith D.F. // J. Chem. Phys. 1965. V. 42. P. 2236.
- 43. Ramaswamy K., Muthusubramanian P. // J. Mol. Struct. 1971. V. 7. P. 45.
- 44. Krohn B.J., Person W.B., Overend J. // J. Chem. Phys. 1977. V. 67. P. 5091.
- 45. Блинова О.В., Добычин С.Л., Щерба Л.Д. // Опт. и спектроск. 1986. Т. 61. С. 1209.
- 46. Christe K.O.// Spectrochim. Acta. 1971. V. 27A. P. 631.
- Накамото К. ИК-спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1991. 536 с.
- 48. Person W.B., Overend J. // J. Chem. Phys. 1977. V. 66. P. 1442.
- Набиев Ш.Ш., Суханов Л.П. // Тез. докл. Х Симп. по химии неорганических фторидов. Фторидные материалы (Москва, 1998). М.: Диалог-МГУ, 1998. С. 112.
- Pershin V.L., Boldyrev A.I. // J. Mol. Struct. (Teo-Chem.). 1987. V. 150. P. 171.
- 51. Болдырев А.И., Чаркин О.П. // Журн. структ. химии. 1984. Т. 25. № 4. С. 102.
- Габуда С.П., Гагаринский Ю.В., Полицук С.А. ЯМР в неорганических фторидах. Структура и химическая связь. М.: Атомиздат, 1978. 205 с.
- Набиев Ш.Ш., Суханов Л.П. // Физико-химические процессы при селекции атомов и молекул / Под ред. В.Ю. Баранова, Ю.А. Колесникова. М.: ЦНИИатоминформ, 1998. С. 35.
- 54. *Набиев Ш.Ш., Суханов Л.П.* // Изв. АН. Сер. хим. 1999. № 8. С. 1415.

Sh. Sh. Nabiev. IR-spectroscopy of interhalides XF₃ and XF₅ (X = Cl, Br).

Spectra of IR-absorption of molecules XF₃ and XF₅ (X = Cl, Br) in gaseous phase (T = 300 K) and solutions of liquified Kr (T = 130 K) and Xe (T = 180 K) within wide range (200–2500 cm⁻¹) of frequencies including the range of transitions of the 3rd order have been studied. The integral absorption coefficients for v₇(E) band of XF₅, anharmoniciity constants for some vibrations of XF₃ and XF₅, and relative intensities of all observable bands in XF₅ IR-sprctrum have been determined. Decomposition of band of antisymmetrical vibration bond (Cl–F)_{ax} in ClF₃ is shown, as opposite to BrF₃, to be stipulated by Coriolis interaction of energetically close levels v₁ (A_1) and v₄ (B_1), when molecule rotating about the axis of the maximum moment of inertia. Based on analysis of spectroscopic data, results of a binito calculations, and estimates of the role of polarization *d*-functions of central atom and effects of electron correlation, we have made a conclusion that the model of IR-intensities for molecules XF₅ (X = Cl, Br) should take into account not only some difference in the character of bands (X–F)_{ax} and (X–F)_{eq}, but also contributions of nonrigid intramolecular regroupings by turnstile mechanism.