ОПТИЧЕСКИЕ МОДЕЛИ И БАЗЫ ДАННЫХ ОПТИЧЕСКОЙ ИНФОРМАЦИИ ОБ ОКРУЖАЮЩЕЙ СРЕДЕ

УДК 535.361

В.В. Веретенников

Численное моделирование оптико-микрофизических характеристик морской воды в задачах лидарного зондирования

Институт оптики атмосферы СО РАН, г. Томск

Поступила в редакцию 25.12.2000 г.

Представлены результаты численного моделирования малоугловых характеристик рассеяния для полидисперсной взвеси в морской воде, образованной двумя фракциями частиц: мелкодисперсной терригенного и грубодисперсной биогенного происхождения, при вариациях их параметров и соотношения между фракциями. Результаты моделирования необходимы в качестве априорной информации для решения обратных задач лазерного зондирования морской воды.

Введение

При зондировании морской воды лидарный сигнал зависит от многократного рассеяния света, которое можно учитывать в малоугловом приближении [1, 2]. Для перехода к этому приближению в индикатрисе рассеяния выделяют вытянутую вперед малоугловую часть. Такая малоугловая индикатриса рассеяния часто аппроксимируется с помощью элементарных функций типа экспоненциальной [3] или гауссовой [4]. В [5] предложена приближенная формула для описания рассеяния в области малых углов на частицах, показатель преломления которых близок к единице. Эта формула получена из общих формул Ми и, в отличие от [3, 4], в явном виде описывает зависимость индикатрисы рассеяния от размера частиц.

Эффективность решения задач лазерного зондирования моря, как и других обратных задач, в значительной степени зависит от правильного учета априорной информации об исследуемой среде. Одним из априорно выбираемых параметров в рассматриваемой задаче является относительная доля однократно рассеиваемой энергии, приходящейся на малоугловую область. Эта величина определяется отношением малоуглового коэффициента рассеяния σ_1 к его истинному значению $a_1 = \sigma_1 / \sigma$ и может быть определена как малоугловой фактор асимметрии. Априорная информация о малоугловой индикатрисе рассеяния необходима при восстановлении профиля коэффициента ослабления из лидарного сигнала с учетом многократного рассеяния [6, 7]. Эту информацию можно заменить значением одного параметра – эффективного размера частиц в случае, когда угол поля зрения приемника достаточно велик. Целью настоящей работы является численное исследование влияния параметров микроструктуры взвеси морских вод на их оптические характеристики, априорно задаваемые при обращении данных лидарных экспериментов.

1. Модель характеристик рассеяния морской воды

Для частиц, взвешенных в морской воде, относительный показатель преломления *m* близок к единице. Это приводит к тому, что при прохождении сквозь частицу лучи слабо отклоняются от первоначального направления и в случае, когда сдвиг волны по фазе $\delta = 2kr |m - 1| \approx 1$ за частицей невелик, происходит интерференция дифрагированного и проходящего света. В результате угловое распределение излучения, рассеянного «мягкими» частицами, можно описать с помощью следующей приближенной формулы [5]:

$$\beta_1(\gamma) = q \ \beta^{(D)}(\gamma), \tag{1}$$

где β^(D)(γ) – коэффициент направленного светорассеяния в приближении дифракции Фраунгофера, который определяется по известной формуле Эйри [8]:

$$\beta^{(D)}(\gamma) = \frac{r^2 J_1^2(kr\gamma)}{\gamma^2}, \quad \gamma = \sin(\theta),$$
(2)

 θ – угол рассеяния. Поправочный множитель q в формуле (1) имеет вид

$$q = 4 |R(i\delta)|^2, \tag{3}$$

где

$$R(z) = \frac{1}{2} + \frac{e^{-z}}{z} + \frac{e^{-z} - 1}{z^2}$$
(4)

– функция Хюлста [9]. С учетом вида R(z) (4) для функции $q(\delta)$ можно получить

$$q(\delta) = 1 + \frac{4}{\delta^2} \left[1 + \left(1 + \frac{2}{\delta^2} \right) (1 - \cos \delta - \delta \sin \delta) \right].$$
 (5)

Из оптической теоремы для фактора эффективности ослабления $K_{ex} = \varepsilon/\pi r^2$ следует его связь с функцией $R(i\delta)$:

$$K_{\rm ex} = 4 {\rm Re}[R(i\delta)], \tag{6}$$

откуда для больших «мягких» частиц можно получить формулу Хюлста

$$K_{\rm ex} = 2 - \frac{4}{\delta} \sin \delta + \frac{4}{\delta^2} (1 - \cos \delta). \tag{7}$$

При $\delta > 3,5 - 4,0$ можно пренебречь мнимой частью $R(i\delta)$ по сравнению с действительной Im $[R(i\delta)] \ll \text{Re} [R(i\delta)]$, откуда следует, что

$$q = K_{\rm ex}^2 / 4 = K_{\rm sc}.$$
 (8)

При $\delta \to \infty$, $K_{ex} \to 2$ малоугловой фактор эффективности рассеяния $K_{sc} \to 1$ и $\beta_1(\gamma) = \beta^{(D)}(\gamma)$.

В рассматриваемом приближении поправочный коэффициент *q* не зависит от угла рассеяния. Поэтому для нормированной индикатрисы рассеяния можно записать

$$x_{1}(\gamma) = \beta_{1}(\gamma) / \sigma_{1} = x^{(D)}(\gamma),$$

$$x^{(D)}(\gamma) = \frac{J_{1}^{2}(kr\gamma)}{\pi\gamma^{2}}, \quad \sigma_{1} = q \ \sigma^{(D)},$$
(9)

откуда следует, что для «мягких» частиц одного размера нормированная индикатриса рассеяния имеет тот же вид, что и в случае дифракции на непрозрачном экране.

Для полидисперсного ансамбля частиц нормированная индикатриса рассеяния определяется выражением

$$x_1(\gamma) = \int_{r_{\min}}^{r_{\max}} x^{(D)}(\gamma, r) \tilde{f}(r) dr, \qquad (10)$$

где функция

$$\tilde{f}(r) = s(r) q(r) / \int_{r_{\min}}^{r_{\max}} s(r) q(r) dr$$
(11)

пропорциональна распределению геометрического сечения частиц по размерам $s(r) = \pi r^2 n(r)$ в единичном объеме с весовым коэффициентом $q(r) = K_{sc}(r)$.

Аналитическое описание лидарного сигнала [1, 7] с учетом многократного рассеяния содержит зависимость не от самой малоугловой индикатрисы рассеяния, а от ее преобразования Ганкеля. Для частиц одинакового радиуса *R* преобразование Ганкеля $\tilde{x}^{(D)}(p)$ индикатрисы рассеяния $x^{(D)}(\gamma, r)$ в дифракционном приближении (9) имеет вид $\tilde{x}^{(D)}(p) = G(p/2kR)$, где функция G(t) определяется по формуле

$$G(t) = \begin{cases} (2 / \pi) [\arccos t - t \sqrt{1 - t^2}], & t \le 1, \\ 0 & t > 1. \end{cases}$$
(12)

Для полидисперсного ансамбля будем соответственно иметь

$$\tilde{x}_{1}(p) = \int_{r_{\min}}^{r_{\max}} G(p/2kr) \tilde{f}(r) dr .$$
(13)

Как показано в [7], при больших углах поля зрения приемника функцию $\tilde{x}_1(p)$ в лидарном уравнении можно заменить величиной производной $\tilde{x}'_1(0)$ в нуле. С учетом формулы для производной

$$\frac{dG(t)}{dt} = -\frac{4}{\pi} (1-t^2)^{1/2}, \quad t \le 1,$$

дифференцируя $\tilde{x}_1(p)$, получим

$$\tilde{x}'_{1}(0) = -\frac{2}{\pi k} \int_{r_{\min}}^{r_{\max}} r^{-1} \tilde{f}(r) dr .$$
(14)

В частном случае монодисперсной среды, радиус частиц в которой равен R, формула для производной $\tilde{x}'_1(0)$ существенно упрощается:

$$\tilde{x}_1'(0) = -2/(\pi k R).$$
 (15)

Интеграл, стоящий в правой части формулы (14), определяет некоторый эффективный размер частиц

$$R_{\rm eff} = \left[\int_{r_{\rm min}}^{r_{\rm max}} r^{-1} \tilde{f}(r) \, dr \right]^{-1}.$$
 (16)

С учетом введенного обозначения формула (14) будет аналогична формуле (15) при подстановке R_{eff} вместо R. Таким образом, задание производной $\tilde{x}'_{1}(0)$ эквивалентно заданию эффективного радиуса частиц R_{eff} (16).

Сравнение результатов расчетов малоугловой индикатрисы рассеяния по формуле (1) с данными, полученными из расчетов по точным формулам теории Ми для частиц с показателями преломления 1,02 и 1,15, показывает, что формула (1) позволяет с достаточно высокой точностью получать значения коэффициента направленного светорассеяния для «мягких» частиц практически любых размеров [5]. Возрастание ошибок в случае применения формулы (1) происходит при приближении к первому нулю функции Бесселя J₁(ω), который определяет положение дифракционного минимума в точке $\omega = kr\gamma \approx 3,83$. Для полидисперсных ансамблей частиц положения дифракционных минимумов различны для частиц разных размеров, что приводит к сглаживанию картины рассеяния. Вследствие этого различия между расчетами индикатрисы рассеяния по точной и приближенной формулам становятся менее заметными. Как показывают модельные расчеты [5], погрешность приближения составляет не более 15% при углах рассеяния $\theta \le 10^\circ$ для ансамблей частиц со степенной функцией распределения по размерам (распределение Юнге) $n(r) \sim r^{-v}$, v = 5 и граничными размерами $kr_{\min} = 20, kr_{\max} = 200.$

2. Результаты численного моделирования

По современным представлениям о микрофизических свойствах морской воды основной вклад в рассеяние света

вносят взвешенные в воде частицы двух фракций: мелкодисперсной фракции частиц минерального (терригенного) происхождения с размерами r < 1 - 2 мкм и относительным показателем преломления 1,15 и грубодисперсной фракции частиц органического (биогенного) происхождения (r > 1 мкм) с относительным показателем преломления в пределах 1,02 – 1,05. Соотношение вкладов в суммарный коэффициент рассеяния обеих фракций варьирует в широких пределах. Например, по данным [10], в зависимости от типа вод вклад органических частиц грубодисперсной фракции в коэффициент рассеяния составляет от 22 до 78%, что должно естественно отразиться на форме индикатрисы рассеяния морской воды и на поведении лидарных сигналов.

При моделировании оптических свойств взвеси спектр размеров мелкодисперсных терригенных (t) частиц описывался степенным законом

$$s_{\rm t}(r) = A_{\rm t} r^{-\nu} \tag{17}$$

с показателем v = 1 - 4 в интервале размеров 0,2 $\leq r \leq 2,0$ мкм. Для описания спектра размеров грубодисперсной фракции биогенных (b) частиц было выбрано модифицированное гамма-распределение

$$s_{\rm b}(r) = A_{\rm b} \left(\frac{r}{r_{\rm m}}\right)^{\alpha} \exp\left\{-\frac{\alpha}{\gamma} \left[\left(\frac{r}{r_{\rm m}}\right)^{\alpha} - 1\right]\right\}$$
(18)

с варьируемым модальным радиусом $r_m = 5 \div 20$ мкм и фиксированными параметрами $\alpha = 8$ и $\gamma = 3$. Весовые множители A_t и A_b в распределениях $s_t(r)$ и $s_b(r)$ выбирались таким образом, чтобы обеспечить заданное соотношение $\xi = \sigma_b/\sigma_t$ между вкладами указанных фракций в суммарный коэффициент рассеяния $\sigma = \sigma_t + \sigma_b$.

В проведенных исследованиях полагалось, что малоугловая картина рассеяния формируется за счет всех частиц b-фракции. Что же касается t-фракции, то здесь специальное внимание уделено изучению влияния границы «отсечки» $r_{\rm min}$ самых мелких частиц на малоугловые характеристики рассеяния.

На рис. 1 представлены отношение $a_1 = \sigma_1/\sigma$ и эффективный размер частиц $R_{\rm eff}$ (16) в зависимости от $r_{\rm min}$ при различном вкладе $p = \sigma_t / \sigma$ t-фракции в суммарный коэффициент рассеяния. Микроструктурные параметры фракций (17) и (18) были взяты следующие: v = 2 и $r_m = 10$ мкм. Крайнее левое положение на оси ординат при $r_{\min} = 0,2$ мкм соответствует учету в малоугловом рассеянии частиц t-фракции всех размеров согласно модели (17). В этом случае при любых значениях р отношение $a_1 > a_1^{(D)} = 0,5$, где $a_1^{(D)}$ – доля дифрагированного света при рассеянии на прозрачных оптически «жестких» больших частицах. Из рис. 1, а следует неожиданный, на первый взгляд, результат, показывающий, что с увеличением p, т. е. роли t-фракции, относительная доля энергии, рассеиваемой в малоугловой области, также возрастает. Это объясняется особенностями поведения факторов $K_{\rm sc}$ (8) и Кех (7), приводящими к увеличению отношения $K_{\rm sc}/K_{\rm ex}$ при малых r.

Зависимости параметра a_1 , как функции r_{\min} , носят монотонно убывающий характер, что объясняется исключением из рассмотрения в малоугловом рассеянии вклада частиц t-фракции $s_i(r)$ (17) с радиусами от 0,2 мкм до r_{\min} . Естественно, что скорость указанного убывания тем выше, чем значимее роль t-фракции. Интересным для практических приложений в задачах зондирования оказывается тот факт, что все кривые на рис. 1, *а* пересекаются в окрестности точки $r_{\min} = 0.45$ мкм. Следовательно, учет в малоугловом рассеянии вклада только тех частиц, радиус которых превышает 0,45 мкм, позволяет считать параметр a_1 постоянным и равным 0,52 при любых соотношениях между t- и b-фракциями частиц в интервале рассмотренных значений параметра $p = 0.2 \div 0.7$.

Рис. 1. Отношение $a_1 = \sigma_1/\sigma$ (*a*) и эффективный радиус R_{eff} (б) в зависимости от r_{\min} для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2 и $r_m = 10$ мкм при p = 0,2 (1), 0,5 (2) и 0,7 (3)

Рассмотрим теперь поведение эффективного радиуса $R_{\rm eff}$ (16), представленное на рис. 1, δ . Предварительно отметим, что каждая из фракций имеет собственный эффективный радиус частиц: $R_{\rm eff, t} = 0,46$ мкм для $s_{\rm t}(r)$ (17) при $r_{\rm min} = 0,2$ мкм и $R_{\rm eff, b} \approx r_m = 10$ мкм для $s_{\rm b}(r)$ (18). В зависимости от величины параметра p и выбора $r_{\rm min}$ эффективный радиус $R_{\rm eff}$ для суммы фракций изменяется между этими крайними значениями. Из приведенных на рис. 1, δ данных следует, что даже небольшая добавка к большим частицам b-фракции мелкодисперсных частиц t-фракции значительно уменьшает величину эффективного размера частиц суммарной взвеси (p = 0,2; кривая I).

Зависимости, аналогичные рис. 1, представлены и на рис. 2 для случая увеличения параметра v в распределении $s_i(r)$ до четырех.

Такое изменение приводит к увеличению степени «мелкодисперсности» t-фракции за счет усиления в ней роли наиболее мелких частиц. Закономерности, отмеченные для зависимостей, изображенных на рис. 1, сохраняются. Изменения касаются смещения влево точки пересечения кривых на рис. 2, a до $r_{\min} = 0,3$ мкм. Примечательно, что значение параметра a_1 в этой точке сохранилось практически прежним и равно 0,52.

Рис. 2. Отношение $a_1(a)$ и эффективный радиус $R_{\text{eff}}(\delta)$ в зависимости от r_{\min} для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 4 и $r_m = 10$ мкм при p = 0,2 (1), 0,5 (2) и 0,7 (3)

Как видно из сравнения рис. 1, б и 2, б, при увеличении параметра v происходят более быстрый рост и «насыщение» эффективного радиуса $R_{\rm eff}$ в зависимости от $r_{\rm min}$. В этом случае при v = 4 наблюдается общее понижение значений $R_{\rm eff}$ на левом краю интервала вследствие уменьшения величины $R_{\rm eff, t}$ для t-фракции до 0,31 мкм.

Еще один факт, обращающий на себя внимание при рассмотрении рис. 1 и 2, состоит в том, что положение точки r_{\min} , в которой параметр a_1 не зависит от соотношения фракций в смеси, близко к величине эффективного размера частиц t-фракции (0,45 и 0,46 мкм при v = 2; 0,3 и 0,31 при v = 4).

Основные выводы, сделанные при анализе данных рис. 1 и 2, сохраняются также и при вариациях параметров фракции крупных органических частиц $s_b(r)$ (18). В качестве примера на рис. 3 изображено поведение параметра a_1 и эффективного радиуса $R_{\rm eff}$ (16) для модального радиуса b-фракции $r_m = 15$ мкм при различном соотношении между

фракциями, определяемом величиной *p*. Значения остальных параметров те же, что и на рис. 1. Положение точки пересечения кривых на рис. 3, *a* практически не изменилось. Отличие рис. 3, *б* проявилось в расширении диапазона изменения эффективного радиуса $R_{\rm eff}$ вследствие увеличения r_m .

Рис. 3. Отношение $a_1(a)$ и эффективный радиус $R_{\text{eff}}(\delta)$ в зависимости от r_{\min} для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2 и $r_m = 15$ мкм при p = 0,2 (1), 0,5 (2) и 0,7 (3)

На рис. 4 показаны те же характеристики a_1 и $R_{\rm eff}$ при неизменном виде t-фракции (v = 2) и равном соотношении обеих фракций (p = 0,5) для набора значений модального радиуса $r_m = 10$, 15 и 20 мкм. Как видно из рис. 4, *a*, вариации модального радиуса r_m практически не влияют на величину отношения a_1 .

Тот же вывод можно отнести и к поведению эффективного радиуса $R_{\rm eff}$ в области значений $r_{\rm min}$, где влияние t-фракции не ослаблено за счет исключения в малоугловом рассеянии вклада частиц с размерами менее 0,8-1 мкм.

Далее рассмотрим поведение малоугловых индикатрис рассеяния и их преобразований Ганкеля. Для всех приведенных ниже примеров модальный радиус b-фракции взвеси считался неизменным и равным 15 мкм.

На рис. 5 представлено семейство зависимостей коэффициента направленного светорассеяния $\beta_1(\theta)$, рассчитанных для рассмотренной микроструктурной модели взвеси с параметрами v = 2 и $r_m = 15$ мкм и различной нижней границей r_{\min} размеров частиц t-фракции, учитываемых в малоугловой картине рассеяния. При этом вклад в полный коэффициент рассеяния обеих фракций считался одинаковым (p=0,5). Кривая *I* на рис. 5 соответствует учету всех частиц t-фракции $s_t(r)$ (17) в интервале размеров $0, 2 \le r \le 2, 0$ мкм, а кривая 5 получена при полном отсутствии этих частиц и определяется исключительно рассеянием на частицах b-фракции $s_b(r)$ (18). Остальные кривые описывают промежуточные случаи.

На кривых (рис. 5) различаются две области, в которых преобладает рассеяние одной из фракций. Граница между этими областями проходит в районе углов рассеяния $\theta = 1 \div 2^{\circ}$. Положение границы смещается обратно пропорционально изменению модального радиуса r_m b-фракции. В пределах узкой первой области функция $\beta_1(\theta)$ убывает более чем на два порядка, затем ее убывание существенно замедляется, тем не менее общий диапазон изменчивости в пределах углов рассеяния $\theta < 45^{\circ}$ достигает 5-6 порядков. В первой области t-фракция вносит незначительный вклад, и ее вариации здесь проявляются слабо. Вторая область формируется преимущественно за счет частиц t-фракции, и изменения в микроструктуре этих частиц отчетливо проявляются в трансформации углового хода β₁(θ). По мере исключения из рассмотрения мелких частиц в малоугловой индикатрисе рассеяния она становится более вытянутой. На кривых β₁(θ) появляются локальные экстремумы, обусловленные сужением диапазона дисперсности t-фракции. Например, минимуму на кривой 3 ($r_{\min} = 0.6$ мкм) при $\theta \approx 20.7^{\circ}$ соответствует эквивалентный радиус частиц $r = 3,83/(k \sin \theta) \approx 0,69$ мкм, аналогично для минимума на кривой 4 ($r_{\min} = 0.8$ мкм) при $\theta \approx 15,2^{\circ}$ будем иметь $r \approx 0,93$ мкм.

Рис. 4. Отношение $a_1(a)$ и эффективный радиус $R_{\text{eff}}(\delta)$ в зависимости от r_{\min} для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2, p = 0,5 и различным модальным радиусом частиц биогенной фракции $r_m = 10$ (1), 15 (2) и 20 (3) мкм

Рис. 5. Малоугловой коэффициент направленного светорассеяния $\beta_1(\theta)$ для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2, $r_m = 15$ мкм, p = 0.5 при $r_{\min} = 0.2$ (1), 0.4 (2), 0.6 (3), 0.8 (4) и 2.0 (5) мкм

Рис. 6 дает представление о соотношении индикатрис рассеяния t-фракции (кривая *1*) и b-фракции (кривая *2*) в одной из суммарных зависимостей $\beta_1(\theta)$, приведенных на рис. 5 (кривая *3*).

Рис. 6. Составляющие коэффициента направленного светорассеяния $\beta_1(\theta)$ для частиц минеральной фракции (1) с параметрами v = 2, $r_{\min} = 0,6$ мкм, биогенной фракции (2) с модальным радиусом $r_m = 15$ мкм и их сумма (3) при p = 0,5

Рис. 7. Угловая зависимость коэффициента направленного светорассеяния $\beta_1(\theta)/\beta_1(0)$ для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2, $r_{\min} = 0,4$ мкм и $r_m = 15$ мкм при p = 0 (1), 0,2 (2), 0,5 (3) и 0,7 (4)

Рис. 7 описывает трансформацию коэффициента направленного светорассеяния $\beta_1(\theta)$ с ростом вклада t-фракции при неизменных остальных параметрах микроструктуры: $r_{\min} = 0.4$ мкм, v = 2 и $r_m = 15$ мкм.

На рис. 8 показано влияние наклона распределения $s_t(r)$ на поведение коэффициента направленного светорассеяния $\beta_1(\theta)$ при вариациях параметра v и $r_{\min} = 0,4$ мкм. В этом случае так же, как и на рис. 5, соотношение между вкладами обеих фракций в коэффициент рассеяния было равным (p = 0,5). Кривая 5 описывает индикатрису рассеяния только на частицах t-фракции.

Выводы, сформулированные при обсуждении рис. 5 относительно разделения малоугловой области на две зоны с преобладающим влиянием в каждой из них разных фракций взвеси, можно отнести и к результатам, приведенным на рис. 7 и 8.

Рис. 8. Угловая зависимость коэффициента направленного светорассеяния $\beta_1(\theta)/\beta_1(0)$ для полидисперсной взвеси частиц в воде с параметрами микроструктуры $r_{\min} = 0,4$ мкм, $r_m = 15$ мкм, p = 0,5 и v = 1 (1), 2 (2), 3 (3) и 4 (4)

Рис. 9. Преобразование Ганкеля $\tilde{x}_1(\rho)$ малоугловой индикатрисы рассеяния для полидисперсной взвеси частиц в воде с параметрами микроструктуры v = 2, $r_m = 15$ мкм, p = 0.5 при $r_{\min} = 0.2$ (1), 0,4 (2), 0,6 (3), 0,8 (4) и 2,0 (5) мкм

В заключение кратко рассмотрим, как отражаются изменения в индикатрисах рассеяния, наблюдаемые при вариациях микроструктуры взвеси, на поведении их преобразований Ганкеля. На рис. 9 и 10 приведены примеры преобразований Ганкеля $\tilde{x}_1(\rho)$ в зависимости от аргумента $\rho = p/k$ для индикатрис рассеяния, изображенных на рис. 5 и 6. Как и на рис. 5, кривая *I* на рис. 9 соответствует ситуации, когда в расчетах $\tilde{x}_1(\rho)$ полностью учитывались частицы обеих фракций. Противоположный случай, соответствующий учету в малоугловом рассеянии частиц только b-фракции, представлен кривой 5. Кривые 2 – 4 описывают трансформацию $\tilde{x}_1(\rho)$ по мере исключения из рассмотрения вклада частиц размерами менее 0,4 (кривая 2), 0,6 (3) и 0,8 (4) мкм соответственно.

Функция $\tilde{x}_1(\rho)$ – монотонно убывающая. Ее особенность состоит в том, что при каждом значении $\rho = p/k$ величина $\tilde{x}_1(\rho)$ зависит только от микроструктуры тех частиц, чей радиус $r > \rho/2$. Как результат, на рассматриваемых кривых выделяются два характерных масштаба: область малых значений ρ менее 4 мкм, которая характеризуется крутым наклоном кривых и в которой наблюдается совместное проявление обеих фракций, и область с более пологим убыванием $\tilde{x}_1(\rho)$ при $\rho > 4$ мкм, формируемая исключительно за счет частиц b-фракции. Положение ординаты на зависимостях $\tilde{x}_1(\rho)$ в окрестности изменения наклона характеризует соотношение между вкладами t- и b-фракций в малоугловой коэффициент рассеяния σ_1 .

Рис. 10. Составляющие преобразования Ганкеля $\tilde{x}_1(\rho)$ для частиц минеральной фракции (1) с параметрами $\nu = 2$, $r_m = 0,6$ мкм, биогенной фракции (2) с модальным радиусом $r_m = 15$ мкм и их сумма (3) при p = 0,5

Для кривой 3 (см. рис. 9) на рис. 10 представлено разложение $\tilde{x}_1(\rho)$ на компоненты, соответствующие t- (кривая *I*) и b- (2) фракциям частиц. Из рис. 10 видно, что в области малых значений ρ кривая 2 меняется несущественно и изменение $\tilde{x}_1(\rho)$ происходит за счет b-фракции.

Заключение

С помощью численного моделирования нами исследована изменчивость малоугловых характеристик рассеяния дисперсных взвесей в морской воде при вариациях параметров их микроструктуры. В число рассмотренных характеристик, помимо малоугловой индикатрисы рассеяния, были включены также ее преобразование Ганкеля, малоугловой фактор асимметрии и эффективный размер рассеивателей. Перечень выбранных характеристик диктовался в первую очередь требованиями к априорной информации при решении обратных задач лидарного зондирования морской воды с учетом многократного рассеяния.

При выборе параметров микроструктуры взвеси предполагалось, что взвесь образована двумя фракциями частиц: мелкодисперсной фракцией терригенного происхождения и грубодисперсной фракцией биогенного происхождения. Результаты расчетов свидетельствуют о необходимости учета вклада терригенной фракции, без которых малоугловая картина рассеяния существенно изменяется.

Установлена нижняя граница размеров частиц терригенной фракции, для которой малоугловой фактор асимметрии сохраняется практически неизменным при вариациях в широких пределах соотношения между фракциями. При этом малоугловой фактор асимметрии также слабо чувствителен к изменению модального радиуса частиц биогенной фракции. Для малоугловой индикатрисы рассеяния и ее преобразования Ганкеля выделены области и оценены их размеры, в пределах которых в формировании этих характеристик доминируют указанные фракции взвеси. Представленные результаты могут быть полезны при интерпретации данных лидарных экспериментов.

- 1. Долин Л.С., Савельев В.А. // Изв. АН СССР. Сер. ФАО. 1971. Т. 7. № 5. С. 505–510.
- 2. Ермаков Б.В., Ильинский Ю.А. // Изв. вузов СССР. Радиофизика. 1969. Т. 12. № 5. С. 694–701.
- 3. *Долин Л.С. //* Изв. вузов СССР. Радиофизика. 1964. Т. 7. № 2. С. 380–382.
- 4. Scotts L.B. // JOSA. 1977. V. 67. N 6. P. 815-819.
- 5. Буренков В.И., Копелевич О.В., Шифрин К.С. // Изв. АН СССР. Сер. ФАО. 1975. Т. 11. № 8. С. 828–835.
- Зуев В.Е., Белов В.В., Веретенников В.В. Теория систем в оптике дисперсных сред. Томск: Изд-во «Спектр» ИОА СО РАН, 1997. 402 с.
- 7. Veretennikov V.V. // Proc. of SPIE. 1999. V. 3983. P. 260-270.
- 8. Борн М., Вольф Э. Основы оптики. М.: Наука, 1970. 856 с.
- 9. Ван де Хюлст Г. Рассеяние света малыми частицами. М.: Изд-во иностр. лит-ры, 1969. 536 с.
- Оптика океана / Под ред. А.С. Монина. Т. 1. Физическая оптика океана. М.: Наука, 1983. 372 с.

V.V. Veretennikov. Numerical simulation of the sea water optical-microphysical characteristics in the problems of lidar sensing.

The results of numerical simulation of small-angle characteristics of light scattering by the polydispersed suspension in the sea water are presented. The suspension is formed from particles of two fractions: fine particles of terrigenous origin and coarse ones of biogenic origin.

Variations of their parameters and ratios between the fractions were taken into account. The modeling results are necessary as *a priori* information in solving the inverse problems of laser sensing of the sea water.