РАССЕЯНИЕ И ПЕРЕНОС ОПТИЧЕСКИХ ВОЛН В АТМОСФЕРЕ

УДК 551.521.16

Н.Г. Рябинина, Я.А. Тейфель, В.Е. Павлов

О ПЕРЕСЕЧЕНИИ ИНДИКАТРИС РАССЕЯНИЯ РАЗЛИЧНОЙ ФОРМЫ В УЛЬТРАФИОЛЕТОВОЙ ОБЛАСТИ СПЕКТРА

На основе модельных расчетов индикатрис яркости дневного неба в ультрафиолетовой области спектра изучается перемещение угла пересечения относительных суммарных индикатрис между собой, а также со сферической и рэлеевской индикатрисами. Выяснена роль каждого слагаемого индикатрисы яркости (аэрозольного, рэлеевского и кратного рассеяния) в дрейфе названных углов пересечения. Установлено, что кратные эффекты в ультрафиолетовой части спектра могут приводить к петлеобразному перемещению углов пересечения индикатрис.

Введение

Феноменологические и статистические исследования яркости дневного безоблачного неба в различных диапазонах спектра включали и поиск особых точек на небосводе, в частности областей неба, где яркость не зависит от формы индикатрисы рассеяния. Это облегчало математическое моделирование процессов рассеяния в особых областях и позволяло найти корреляционные зависимости интегральной величины — оптической толщи рассеяния света дисперсной средой т:

$$\tau = 2\pi \int_{0}^{\pi} \mu (\varphi) \sin \varphi d\varphi$$
⁽¹⁾

и коэффициента направленного светорассеяния $\mu(\varphi)$ для определенного угла рассеяния $\varphi = \varphi_0$, что используется, например, в нефелометрическом методе определения τ . Эти вопросы, как правило, оказывались связанными, поскольку угол φ_0 часто выбирался в точке пересечения реальной наблюдаемой индикатрисы $\mu_{\rm h}$ со сферической $\mu_{\rm cd}(\varphi_0 = \varphi_{\rm cd, h})$, где справедливо соотношение:

$$\tau_{\rm H} = 4\pi\mu_{\rm H}(\varphi_0). \tag{2}$$

(Величина $\tau_{\rm H}$ определяется формулой (1), в которой лишь индикатриса рассеяния μ заменена индикатрисой яркости $\mu_{\rm H}$).

Однако практика показала, что положение углов $\phi_{c\phi, \mu}$, ϕ_0 , казавшееся вначале неизменным для любых индикатрис рассеяния [1-3], зависит от того, в какой области спектра осуществлялись измерения, какие слои атмосферы исследовались и при каких ее оптических состояниях [4-7].

По наблюдениям в видимой части спектра относительные индикатрисы яркости $f_{\rm H}(\varphi)$, равные $\mu_{\rm H}(\varphi)/\tau_{\rm H}$, практически совпадают между собой при углах рассеяния $\varphi \gtrsim 40^{\circ}$ и пересекаются со сферической при $\varphi_{\rm cep, H} \sim 57^{\circ}$ [1–3]; для этого же угла $\varphi_0 = \varphi_{\rm cep, H} \sim 57^{\circ}$ отмечалась наиболее тесная корреляционная связь между интегралом $\tau_{\rm H}$ и вектором $\mu_{\rm H}(\varphi_0)$. В более поздних работах [4–6] показано, что угол пересечения реальных индикатрис яркости со сферической $\varphi_{\rm cep, H}$, а также с φ_0 незначительно мигрирует в зависимости от зенитного расстояния Солнца Z_{\odot} , физико-географических условий наблюдений. Однако для приземного слоя в этом же спектральном диапазоне $\varphi_0 \sim 45^{\circ}$, а $\varphi_{\rm cep, H} \sim 50 \div 55^{\circ}$ [4].

Таковы же значения ϕ_0 и $\phi_{c\phi, \mu}$ в близком инфракрасном участке спектра [7]. Наши измерения яркости неба в ультрафиолетовом (УФ) диапазоне дают совершенно иные значения: $\phi_0 = \phi_{c\phi, \mu} \sim 60^{\circ}$ [8].

Естественно предполагать, что причиной такого различия в значениях φ_0 , $\varphi_{c\phi, \mu}$ является соотношение компонент однократного $\mu_1 = \mu_a(\varphi) + \mu_R(\varphi)$ и многократного $\mu_2(\varphi)$ рассеяния суммарной индикатрисы яркости ($\mu_{\mu}(\varphi) = \mu_1(\varphi) + \mu_2(\varphi)$, а также степень вклада аэрозольного $\mu_a(\varphi)$ и рэлеевского $\mu_R(\varphi)$ рассеяния. Роль процессов рэлеевского и многократного рассеяния света в приземном слое воздуха невелика, и рассеяние здесь носит существенно аэрозольный характер. В видимой части спектра кратные эффекты также не являются определяющими. Поэтому, нам кажется, наиболее благоприятной областью для изучения изменения положения угла пересечения индикатрис различной формы как между собой φ_i , так со сферической $\varphi_{c\phi, H}$ и рэлеевской $\varphi_{R, H}$ является ультрафиолетовая область спектра. Здесь роль каждой из составляющих индикатрисы яркости проявляется наиболее отчетливо.

В настоящей работе подробно рассматривается механизм миграций углов φ_i , $\varphi_{c\phi,H}$, $\varphi_{R,H}$ в зависимости от вклада разных компонент суммарной яркости. Анализируются рассчитанные и наблюдаемые УФ-индикатрисы яркости $f(\varphi)$. В этих индикатрисах превалирующей является рэлеевская часть, значительна компонента кратного рассеяния, а роль отраженного света в формировании яркости неба в летних условиях невелика [8]. Поэтому форма наблюдаемых индикатрис $f_{\rm H}(\varphi)$ слабо реагирует на вариации аэрозоля, да и то лишь вблизи Солнца. По полученным нами экспериментальным данным, начиная с углов рассеяния порядка 25—30° и вплоть до $\varphi \sim 160°$, относительные индикатрисы яркости $f_{\rm H}(\varphi)$ совпадают, их форма не меняется в различных географических пунктах [8], (рис. 1). Яркость неба в ореольной части определяется, в основном, рассеянием на крупных аэрозольных частицах и хорошо аппроксимируется расчетами, в основу которых заложены юнговские аэрозольные функции рассеяния с параметром распределения частиц по размерам v*~2,5; верхней границей радиуса частиц $r_{\rm max} \div 5-10$ мкм и вещественным показателем преломления n = 1.5 [9–12].

Рис. 1. Относительные индикатрисы яркости, полученные из наблюдений: а) $Z_{\odot} \sim 64^{\circ}$; точки — плато Ассы, 17.08.1976 г., до полудня (д.п.), $\tau_{a} = 0,11$; $\lambda = 313,5$ нм, ($Z_{\odot} = 64,15^{\circ}$); кружки — п. Крыжановка, 6.09.1972 г., д.п., $\tau_{a} = 0,75$, $\lambda = 311$ нм, ($Z_{\odot} = 64,1^{\circ}$); крестики — п. Кирбалтабай, 18.09.1973 г., после полудня (п.п.), $\tau_{a} = 0,34$, $\lambda = 311$ нм, ($Z_{\odot} = 63,6^{\circ}$). 6) $Z_{\odot} \sim 72-73^{\circ}$; точки — плато Ассы, 20.08.1976 г., п.п., $\tau_{a} = 0,09$, $\lambda = 313,5$ нм, ($Z_{\odot} = 72,3^{\circ}$); кружки — п. Кирбалтабай, 8.09. г., п.п., $\tau_{a} = 0,38$, $\lambda = 311$ нм, ($Z_{\odot} = 72,7^{\circ}$); крестики — п. Кирбалтабай, 17.09.1973 г., п.п., $\tau_{a} = 0,27$, $\lambda = 311$ нм, ($Z_{\odot} = 71,9^{\circ}$)

Наблюдаемые УФ-индикатрисы яркости $f_{\rm H}(\phi)$, как установлено нами [8—11], пересекаются со сферической $f_{\rm cch}(\phi)$ вблизи угла рассеяния $\varphi_{\rm cch, H} \sim 60^{\circ}$. Дополнительные исследования [14] показали, что местоположение $\varphi_{\rm cch, H}$ связано с мутностью атмосферы, характеризуемой аэрозольной оптической толщей $\tau_{\rm a}$. Например, для поселка Крыжановка Одесской области, где средняя за сезон наблюдений для длины волны $\lambda \sim 337$ нм аэрозольная толща $\overline{\tau}_{\rm a} \sim 0.6$, $\varphi_{\rm cch, H} \sim 60^{\circ}$; для поселка Кирбалтабай и АФИ АН КазССР, где $\overline{\tau}_{\rm a} \sim 0.25$, $\varphi_{\rm cch, H} \sim 57-59^{\circ}$ и для высокогорного Ассы-Тургенского плато, где $\overline{\tau}_{\rm a} \sim 0.08$, $\varphi_{\rm cch, H} \sim 55^{\circ}$.

Чтобы проанализировать особенности пересечения индикатрис различной формы в УФ-диапазоне спектра, в настоящей работе использовались модельные расчеты индикатрис $\mu_{\rm H}(\varphi)$, выполненные методом Монте-Карло в ВЦ СО АН СССР [15] на базе юнговских аэрозольных индикатрис $\mu_{\rm a}(\varphi)$ с параметрами распределения частиц по размерам $v^* = 2$ и 4, что дало возможность поместить реальные величины индикатрис между вычисленными. Вариации значений аэрозольной оптической толщи $\tau_{\rm a}$, равные 0,15÷0,70, рэлеевской $\tau_R - 0,415$ ÷1,110 и озонной толщ поглощения $\tau_{\rm os} - 0,00$ ÷1,110 позволили охватить интервал длин волн 373÷307 нм в различных физико-географических условиях. Альбедо подстилающей поверхности *а* для лета равно 0,045 [8]. Зенитные расстояния Солнца принимали значения $Z_{\odot} = 63, 72$ и 76°, что обусловило разный вклад кратных эффектов рассеяния в распределении яркости вдоль альмукантарата светила.

Задача исследования заключалась в выяснении влияния каждой составляющей $\mu_a(\varphi), \mu_R(\varphi), \mu_2(\varphi)$ индикатрисы $\mu_{\rm H}(\varphi)$ на положение точки пересечения индикатрис яркости между собой, а также со сферической и рэлеевской и, в конечном итоге, в доказательстве эмпирического факта, что вблизи углов φ 55—60° яркость неба в УФ-области спектра не зависит от формы индикатрисы рассеяния. Схема исследований выглядела следующим образом: вначале рассматривались юнговские индикатрисы, к ним добавлялись рэлеевские, затем составляющие кратного рассеяния. Далее прослеживалось смещение точки пересечения индикатрис за счет того или иного слагаемого. Этот метод использован нами и в [14, 16].

1. Пересечение модельных индикатрис в УФ-области спектра между собой

Используемые в вычислениях аэрозольные юнговские индикатрисы $f_a(\varphi) = \mu_a(\varphi)/\tau_a$ со значениями параметра v^{*}, равными 2 и 4, пересекаются в передней полусфере при $\varphi_i \sim 18^\circ$, рэлеевское рассеяние смещает угол φ_i в область 22÷26°, именно здесь пересекаются индикатрисы первого акта $f_1(\varphi) = (\mu_a(\varphi) + \mu_R(\varphi))/(\tau_a + \tau_R)$, отличающиеся значениями юнговского параметра (v^{*} = 2 и 4), для всех моделируемых случаев, когда соотношение аэрозольной и рэлеевской оптических толщ τ_a/τ_R изменяется в пределах 0,135÷1,687.

Многократное рассеяние $\mu_2(\varphi)$ сдвигает φ_i в сторону еще больших углов, так что расчетные $f_{\rm H}(\varphi) = (\mu_{\rm a}(\varphi) + \mu_R(\varphi) + \mu_2(\varphi)/\tau_{\rm H}$ на базе юнговских с $\nu^* = 2$ и 4 для указанных случаев пересекаются между собой уже при $\varphi_i = 25 \div 50^\circ$, когда зенитное расстояние Солнца $Z_{\odot} \sim 63^\circ$. Причем угол φ_i тем больше, чем больше $\tau_{\rm a}$. Однако при суммарных толщах рассеяния $\tau_{\rm a} + \tau_R > 1,5$ и $Z_{\odot} > 75^\circ$ угол пересечения φ_i , описав петлю, смещается в противоположную сторону — к $30 \div 8^\circ$. В этих условиях кратные эффекты являются определяющими, индикатрисы многократного рассеяния становятся по форме практически сферическими, а суммарные индикатрисы $\mu_{\rm H}(\varphi)$ для $\nu^* = 2$ и 4 теряют асимметрию, сближаясь друг с другом не только при средних, но и при малых углах рассеяния, поэтому φ_i и начинает уменьшаться.

Петлеобразный дрейф угла φ_i , за счет возрастания в $\mu_{\rm H}(\varphi)$ вклада высших порядков рассеяния позволяет объяснить среднестатистическое значение $\varphi_i \sim 25 - 30^\circ$ для всех наблюдаемых индикатрис яркости в УФ-диапазоне. В видимом же участке спектра толщи рассеяния τ_1 недостаточны, как правило, чтобы кратные эффекты стали возвращать к малым углам. В связи с этим, очевидно, среднестатистическое значение угла φ_i равно ~ 40° [3].

Как показало сравнение наблюдаемых и вычисленных методом Монте-Карло индикатрис яркости [14], в УФ-области спектра наблюдаемые абсолютные индикатрисы яркости $\mu_{\rm H}(\varphi)$ заключены между вычисленными; расчетные индикатрисы $\mu_{\rm H}(\varphi)$, отличающиеся лишь значением параметра распределения аэрозолей по размерам ($2 \le v^* \le 4$) в области углов рассеяния $\varphi_i \le \varphi < 160^\circ$, совпадают в пределах ошибок вычисления $\mu_{\rm H}(\varphi)$, которые заданы одинаковыми с ошибками экспериментального определения $\mu_{\rm H}(\varphi)$. Поэтому в рассматриваемом спектральном диапазоне имеет смысл говорить не о точках пересечения наблюдаемых относительных индикатрис между собой, а об окрестности углов рассеяния в передней полусфере вблизи φ_i , где наблюдаемые $f_{\rm H}$ (или модельные) индикатрисы начинают расходиться веером, благодаря различию аэрозольных компонент.

2. Пересечение модельных индикатрис первого акта рассеяния со сферической и рэлеевской индикатрисами

Чтобы найти область углов рассеяния, где яркость неба в УФ-области спектра не зависит от формы индикатрисы, были определены точки пересечения модельных индикатрис $f_{\rm H}(\varphi)$ на базе юнговских $f_{\rm a}(\varphi)$ для $\nu^* = 2$ и 4 со сферической и рэлеевской. Естественно, эти точки должны были располагаться при углах $\varphi > \varphi_i$.

На начальном этапе установлено, что юнговские индикатрисы первого акта рассеяния пересекаются со сферической и рэлеевской при углах $\varphi_{c\phi,a}$ и $\varphi_{R,a}$, приведенных в табл. 1.

Таблица 1

Углы рассеяния φ , при которых пересекаются модельные юнговские индикатрисы ($v^* = 2$ и 4) со сферической и рэлеевской

	φ			
v*	$\phi^0{}_{c\Phi, a}$	$\Phi^{0}{}_{R, a}$		
2	51	49		
4	60,5	63,5		

Добавка к $\mu_a(\varphi)$ рэлеевской составляющей $\mu_R(\varphi)$ приводит к перемещению точки пересечения $\varphi_{cb.1}$ суммарной индикатрисы первого акта рассеяния $f_1(\varphi)$ со сферической $f_{c\phi}(\varphi)$.

На рис. 2 представлено смещение $\varphi_{cb,1}$ в зависимости от асимметрии индикатрис рассеяния Γ_1 :

$$\Gamma_{1} = \int_{0}^{\pi/2} \mu_{1}(\varphi) \sin\varphi d\varphi / \int_{\pi/2} \mu_{1}(\varphi) \sin\varphi d\varphi.$$

 Γ_1 изменяется в соответствии с долей μ_a и μ_R в μ_1 в пределах от $\Gamma_a = 11,1$ ($v^* = 2$) или $\Gamma_a = 6,06$ ($v^* = 4$) до $\Gamma_R = 1$. Рис. 2 свидетельствует о том, что с возрастанием роли рэлеевского рассеяния значения $\varphi_{c\phi,1}$ от $\varphi_{c\phi,a}$ ($v^* = 2$ и 4), дающих две ветви точек (табл. 1), приближаются $\varphi_{c\phi,R} = 54,7$ как для чисто рэлеевской индикатрисы. Для анализируемых нами модельных индикатрис угол $\varphi_{1,c\phi}$ равен $51\div53^{\circ}$ ($v^* = 2$) и $54,7\div59^{\circ}$ ($v^* = 4$).

Что касается пересечения модельных индикатрис первого акта рассеяния $f_1(\varphi)$ с рэлеевской $f_R(\varphi)$, то угол $\varphi_{1,R}$ варьирует в пределах46÷52° для $\nu^* = 2$ и 60÷63° для $\nu^* = 4$, то есть определяется, в основном, пересечением $f_a(\varphi)$ с $f_R(\varphi)$ (табл. 1). На рис. 3 приведены вариации $\varphi_{1,R}$ в функции Γ_1 .

Рис. 2. Перемещение точки пересечения $\phi_{c\phi,1}$ индикатрис первого акта рассеяния со сферической индикатрисой при изменении асимметрии: точки $v^* = 2$; кружки — $v^* = 4$

Рис. 3. Положение точки пересечения $\varphi_{R,1}$ индикатрис первого акта рассеяния с рэлеевской индикатрисой в зависимости от асимметрии модельных индикатрис: точки – $v^* = 2$; кружки – $v^* = 4$

Рис. 4. Дрейф точки пересечения $\varphi_{c\phi,H}$ модельных индикатрис $f_{\rm H}(\phi)$ со сферической индикатрисой при изменении асимметрии $\Gamma_{\rm H}$. $1 - Z_{\odot} = 63^{\circ}$, $2 - Z_{\odot} = 72^{\circ}$, $3 - Z_{\odot} = 76^{\circ}$; точки $-v^* = 2$; кружки $-v^* = 4$. $a - \tau_{\rm a} = 0,70$, $\tau_{\rm R} = 0,415$, $\lambda = 373$ нм; $\delta - \tau_{\rm a} = 0,30$, $\tau_{\rm R} = 0,975$, $\lambda = 311$ нм; $\theta - \tau_{\rm a} = 0,70$, $\tau_{\rm R} = 1,111$, $\lambda = 306,8$ нм; $\epsilon - \tau_{\rm a} = 0,15$, $\tau_{\rm R} = 0,415$, $\lambda = 373$ нм

3. Влияние кратных эффектов на пересечение индикатрис различной формы

Добавление величины $\mu_2(\varphi)$, обусловленной многократным рассеянием света, к асимметричным модельным индикатрисам первого акта рассеяния $\mu_1(\varphi)$ смещает точку пересечения $\varphi_{c\varphi, \mu}$ индикатрис яркости $f_{\mu}(\varphi)$ со сферической в область больших углов по сравнению с $\varphi_{c\varphi, \mu}$ (рис. 4, *a*, *b*, *b*, *c*). Это смещение тем значительнее, чем больше τ_a , но с изменением Z_{\odot} может приобретать петлеобразный характер, если $\tau_R > \tau_a$ или $\tau_R > 1$ (рис. 4, *b*, *c*). Все случаи, охваченные модельными расчетами [14], дают интервал изменения $\varphi_{c\varphi,\mu}$: 52÷75° ($\nu^* = 2$) и 58÷75° ($\nu^* = 4$).

Факт увеличения $\varphi_{c\phi, \mu}$ для асимметричных индикатрис за счет многократного рассеяния иллюстрирует и табл. 2, в которой приведены значения $\varphi_{c\phi, \mu}$ для двух вытянутых индикатрис $\mu_{\mu}(\phi)$ VII и VIII по данным работы [17].

Таблица 2

Инди- катри- са т ₁	-	f_1		$Z_{\odot} = 60^{\circ}$		$Z_{\odot} = 75^{\circ}$	
	τ_1	$\phi^0_{c\phi, 1}$	$\Phi^{0}{}_{R, 1}$	$\phi^0{}_{c\varphi,\ 2}$	Ф ⁰ сф, н	$\phi^0{}_{c\varphi,\ 2}$	ф ⁰ сф, н
VII 0, 0,	0,6	57,6	58,5	72	60	72	62
	0,8			73	61	73,7	64,7
VIII 0,6 0,8	0,6	54,8	54,5	67	59	67,5	60
	0,8			68,5	60	69,5	62,2
f _R	0,4	54,7	Инди-	55	54,7	50	53
	0,6		совпадают	56,5	55	53,5	54,7
	0,8		точками	56	55	52,5	53,5

Положение угла пересечения индикатрис f_н(ϕ) (VII и VIII, [17]) и рэлеевской [18] со сферической индикатрисой при изменении вклада многократного рассеяния

Продолжая анализ табл. 2, отметим следующее. При рассеянии на молекулах в области средних и больших углов φ компонента многократного рассеяния имеет существенно сферический характер [18] и поэтому не изменяет $\varphi_{c\phi,R(H)}$ вплоть до $Z_{\odot} \sim 75^{\circ}$. С переходом к зенитным расстояниям Солнца $Z_{\odot} \geq 75^{\circ}$ суммарная индикатриса $\mu_{R(H)} = \mu_R + \mu_{2R}$ сама по форме приближается к сферической, а $\varphi_{c\phi,R(H)}$ сдвигается в сторону меньших углов: $\varphi_{c\phi,R(H)} < \varphi_{c\phi,R}$. Последний вывод касается и суммарных индикатрис $\mu_H = \mu_a + \mu_K + \mu_2$ в УФ-области спектра, когда доминирующей становится компонента μ_2 ($Z_{\odot} > 80^{\circ}$) и асимметрия Γ_H стремится к 1, не достигая ее (глубинный режим [3]).

Так как многократное рассеяние приближает индикатрису ($\mu_R + \mu_{2R}$) к сферической, то условия пересечения наблюдаемых индикатрис $\mu_{\rm H}/\tau_{\rm H}$ с ($\mu_R + \mu_{2R}$)/ $\tau_{\rm H}$ близки к условиям пересечения $\mu_{\rm H}/\tau_{\rm H}$ со сферической индикатрисой: $\varphi_{\rm co,H} \simeq \varphi_{R({\rm H}),{\rm H}}$.

Таким образом, использование модельных расчетных индикатрис яркости $\mu_{\rm H}$ на основе аэрозольных юнговских с $\nu^* = 2$ и 4 для УФ-области спектра, когда толщи рассеяния заключены в пределах: 0,4 $\leq \tau_R \leq 1,11$ и 0,15 $\leq \tau_a \leq 0,7$, охватывающих реальные наблюдаемые нами индикатрисы $\mu_{\rm H}$, а также асимметричных индикатрис VII и VIII (для анизотропного рассеяния и толщин $\tau_1 = 0,6$ и 0,8), смоделированных в ИФА АН СССР [17], показало, что в случае равенства толщин рассеяния τ_1 и вариаций зенитных расстояний Солнца Z_{\odot} в пределах ~ 63÷75° точка пересечения модельных индикатрис $\mu_{\rm H}/\tau_{\rm H}$ со сферической и рэлеевской может дрейфовать в довольно широком интервале углов рассеяния $\Delta \phi_{\rm H(cb,R(h))}$ 52÷75°.

Однако реальные индикатрисы $\mu_{\rm H}$, по нашим данным, в УФ-области спектра обладают существенно меньшим разнообразием форм, чем проанализированные расчетные и, как говорилось, близки к модельным индикатрисам яркости на базе юнговской аэрозольной индикатрисы с параметром распределения $\nu^* \sim 2,5$. В связи с этим при ограничении зенитного расстояния альмукантарата Солнца, (в котором измерялись $\mu_{\rm H}$), значением $Z_{\odot} < 75^{\circ}$ интервал $\Delta \phi_{\rm H}(c_{\phi,R({\rm H})})$ сужается до пределов ~ 55+65°. Именно поэтому среднестатистическая величина коэффициента связи $\gamma(60^{\circ})$ между $\mu_{\rm H}(60^{\circ})$ и $\tau_{\rm H}$ близка к 4 π как для сферической индикатрисы:

$$\tau_{\rm H} = \gamma \, (60^\circ) \, \mu_{\rm H} \, (60^\circ)$$
.

Это иллюстрирует табл. 3, в которой приведены значения $\gamma(60^\circ)$ для указанного выше интервала зенитных расстояний Солнца для четырех мест наблюдений.

Таблица З

Место наблюдений	μ _н (60°)	σµ _н (60°)	$ au_{ m H}$	$\sigma \tau_{\scriptscriptstyle H}$	$R\mu_{\scriptscriptstyle \rm H}\tau_{\scriptscriptstyle \rm H}(60^\circ)$	γ(60°)	σγ(60°
АТВП, 1976 г., N* _{сл} =16	0,15	0,02	2,01	0,21	0,97	13,0	0,4
АФИ АН КазССР, 1971 г., N _{e.1} =162	0,38	0,18	4,86	2,25	1,00	12,9	0,4
п. Кирбал- табай, 1973 г., N _{сл} =43	0,85	0,80	10,9	10,1	1,00	12,7	0,2
п. Крыжа- новка, 1972 г., N _{сл} =51	2,43	2,74	30,6	34,3	1,00	12,6	0,2
Все места наблю- дения			(a)			12,8	0,3

Корреляция R между $\mu_{\rm H}(60^\circ)$ и $\tau_{\rm H}$ и коэффициенты связи между этими величинами $\gamma(60^\circ)$ в УФ-полосе поглощения озона, $\lambda < 340$ нм

*Число анализируемых случаев.

Анализ табл. З показывает, что значение $\overline{\gamma(60^\circ)}$ меняется в пределах от 12,6 (~ 4 π) для поселка Крыжановка, близ Одессы, где индикатрисы $\mu_{\rm H}$ существенно аэрозольного характера, до 13 на высокогорном плато Ассы, когда наблюдаемые индикатрисы — практически рэлеевские и пересекаются со сферической при $\varphi_i \sim 55^\circ$, а не при 60°. И еще один существенный вывод из табл. З и всего сказанного ранее. Несмотря на значительный разброс $\sigma\mu_{\rm H}(60^\circ)$ и $\sigma\tau_{\rm H}$ абсолютных величин направленного коэффициента светорассеяния $\mu_{\rm H}(60^\circ)$ и интеграла $\tau_{\rm H}$, полученного по формуле, аналогичной (1), в УФдиапазоне спектра для различных географических пунктов, относительные величины $\mu_{\rm H}(60^\circ)/\tau_{\rm H}$ практически совпадают не только в разных местах наблюдений, но мало отличаются от $\mu_{\rm c}\phi(60^\circ)/\tau_{\rm H}$ для сферической и $\mu_R(60^\circ)/\tau_{\rm H}$ для рэлеевской индикатрисы яркости. Этот факт говорит о том, что вблизи $\varphi_i \sim 60^\circ$ яркость неба в УФ-области спектра не зависит от формы индикатрисы: здесь пересекаются реальные индикатрисы со сферической и рэлеевской.

Заключение

1. Выводы, полученные в работе на базе модельных расчетов в УФ-области спектра, носят общий в спектральном отношении характер, что заложено самой методикой исследований: к юнговским (натурно-усредненным) добавляются рэлеевские индикатрисы и индикатрисы кратного рассеяния.

2. Выяснено, что изменение соотношения между компонентами аэрозольного, рэлеевского и кратного рассеяния, абсолютный вклад которых в индикатрису яркости определяется значением оптических толщин ($\tau_a = 0,15\div0,7$ и $\tau_R = 0,45\div1,11$) и зенитным расстоянием Солнца ($Z_{\odot}=63^{\circ}\div76^{\circ}$), приводит к смещению положения угла пересечения $\varphi_{\mu(c\varphi,R)}$ расчетных индикатрис со сферической в пределах 51÷75° ($v^* = 4$) и с рэлеевской в пределах 46÷75° ($v^* = 2$); 60÷75° ($v^* = 4$), включая и индикатрисы первого акта. Установлено, что кратные эффекты могут приводить к петлеобразному дрейфу этого угла в УФ-области спектра. Как правило, для индикатрис яркости с непреобладающим рэлеевским рассеянием кратные добавки увеличивают, по сравнению с индикатрисами первого акта, угол $\varphi_{\mu,c\varphi}$ пересечения суммарных индикатрис со сферической. Когда же $\tau_R > \tau_a$ или $\tau_R > 1$ угол $\varphi_{\mu,c\varphi}$ с ростом Z_{\odot} первоначально увеличивается, но при зенитных расстояниях Солнца $Z_{\odot} \gtrsim 76^{\circ}$ начинает смещаться в противоположную сторону — к меньшим углам. Аналогично поведение угла пересечения φ_i индикатрис μ_n/τ_{μ} и $v^* = 2$ и 4 между собой, интервал изменения φ_i 8÷50°.

3. Вариабельность наблюдаемых индикатрис $f_{\rm H}$ и оптических аэрозольных толщин $\tau_{\rm a}$ в конкретной местности гораздо уже, чем у моделируемых. В УФ-области спектра форма наблюдаемых инди-

катрис хорошо описывается модельной на основе юнговской аэрозольной индикатрисы с параметром распределения частиц по размерам v^{*} ~ 2,5. Поэтому относительные наблюдаемые индикатрисы $\mu_{\rm H}/\tau_{\rm H}$ практически совпадают в области углов рассеяния $\varphi > \varphi_i$ независимо от метеогеографических условий измерений яркости неба и лишь при $\varphi < \varphi_i$ расходятся веером. Угол пересечения наблюдаемых индикатрись катрис между собой φ_i варьирует в узких пределах: 25÷30°.

4. Поскольку вариации аэрозоля в УФ-спектральном диапазоне проявляются лишь в ореольной части наблюдаемых индикатрис, вклад которой в интеграл $\tau_{\rm H}$ незначителен, величина интеграла $\tau_{\rm H}$ не зависит от формы индикатрисы рассеяния; относительные наблюдаемые индикатрисы яркости $f_{\rm H}$ пересекаются со сферической и рэлеевской индикатрисами в области углов $\varphi_{\rm H},_{(c\phi,R)} = 55\div60^\circ$; яркость неба вблизи этих углов $\varphi_{\rm H},_{(c\phi,R)}$ не зависит от формы индикатрисы рассеяния, поэтому и нефелометрическое соотношение, связывающее величину интеграла $\tau_{\rm H}$ с вектором направленного светорассеяния $\mu_{\rm H}$, имеет вид (2), как для сферической индикатрисы.

1. Пясковская-Фесенкова Е.В. Исследование рассеяния света в земной атмосфере. М.: Изд. АН СССР, 1957. 219 с.

2. Павлов В.Е. //Астрономический журнал. 1966. № 43. С. 889.

3. Лившиц Г.Ш. Рассеяние света в атмосфере. Алма-Ата: Наука, 1965. 177 с.

4. Бартенева О.Д., Довгялло Е.Й., Полякова Е.А. //Тр. ГГО. Л.: Гидрометеоиздат, 1967. Вып. 220. С. 101.

5. Кушпиль В.И., Петрова Л.Ф., Хазак К.Ф. Рассеяние света в земной атмосфере. Алма-Ата: Наука, 1972. С. 267.

6. Авдюшин С.И., Артёмкин Е.Е., Емельянов В.Н., Микиров А.Е., Семенкин В.И. //Тр. ИПГ. Атмосферная оптика. М.: Гидрометеоиздат, 1977. Вып. 32. С. 3.

7. Рассеяние инфракрасного излучения в безоблачной атмосфере / В.Н. Глушко, А.И. Иванов, Г.Ш. Лившиц, И.А. Федулин. Алма-Ата: Наука, 1974. 210 с.

8. Павлов В.Е., Рябинина Н.Г., Тейфель Я.А.идр. //Поле рассеянного излучения в земной атмосфере. Алма-Ата: Наука, 1974. С. 4.

9. Рябинина Н.Г. Прозрачность атмосферы и яркость дневного неба в полосе поглощения озона. Автореф. дис. ... канд. физ.-мат. наук/ТГУ. Томск, 1982.

10. Тейфель Я.А. //Всес. совещание по атмосферной оптике. (Тезисы докл.). Ч. 2. Томск, 1976. С. 24.

11. Рябинина Н.Г. Материалы Всес. совещания по распределению оптического излучения в дисперсной среде (Тезисы докл.). М.: Гидрометеоиздат, 1978. С. 162.

12. Тейфель Я.А. //Рассеяние света в земной атмосфере. Алма-Ата: Наука, 1980. С. 37.

13. Егорова Л.А., Павлов В.Е., Рябинина Н.Г.идр. //Ослабление света в земной атмосфере. Алма-Ата: Наука. 1976. С. 4.

14. Рябинина Н.Г., Тейфель Я.А. //II Всес. совещание по распространению лазерного излучения в дисперсной среде. (Тезисы докл.). Ч. 1. Обнинск, 1982. С. 88.

15. Назаралиев М.А., Павлов В.Е., Рябинина Н.Г. //Исследование оптических свойств атмосферы в коротковолновой области спектра. Алма-Ата: Наука, 1981. С. 5.

16. Рябинина Н.Г., Тейфель Я.А. //Материалы III Всес. совещания по атмосферной оптике и актинометрии. Ч. 1. Томск: ТФ СО АН СССР, 1983. С. 320.

17. Фейгельсон Е.М., Малкевич М.С., Коган С.Я. и др. Расчёт яркости света в атмосфере при анизотропном рассеянии. М.: Изд. АН СССР, 1957. 104 с.

18. Coulson K.L., Dave J.V., Sekera Z. Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering. Univers. of California Press. Berkeley. Los Angeles, 1960. 548 p.

Астрофизический институт им. акад. В.Г. Фесенкова АН КазССР, Поступила в редакцию Алма-Ата 10 мая 1989 г.

N.G. Ryabinina, Ya.A. Teifel, V.E. Pavlov. On the Intersection of Different Scattering Phase Functions in the Ultraviolet Spectral Region.

The displacement of the angle corresponding to the point of intersection of relative scattering phase functions is studied using the model calculations of the sky brightness angular distributions under clear conditions in the ultraviolet including the spherical and Rayleigh scattering phase functions. The role of each of the component composing the brightness angular distributions (the aerosol, Rayleigh, and multiple scattering) resulting in the angular shifts of the intersection point is examined. It is shown that multiple scattering effects in ultraviolet can produce a loop-like angular shifts of the intersection point.