ОБРАТНЫЕ ЗАДАЧИ ОПТИКИ АТМОСФЕРЫ

УДК 551.521.3:535.36

О.И. Алдошина, М.Н. Горшков, А.Н. Рублев

ИМПУЛЬСНЫЕ ХАРАКТЕРИСТИКИ ОБЛАЧНОЙ АТМОСФЕРЫ В СФЕРИЧЕСКОЙ ГЕОМЕТРИИ ЗЕМЛИ ПРИ БОЛЬШИХ ЗЕНИТНЫХ УГЛАХ И ОПТИЧЕСКОЙ ТОЛЩИНЕ ТРАССЫ 1÷100

На основе метода Монте-Карло разработана методика и программа расчета откликов многослойной сферической облачной атмосферы с оптической толщиной 1÷100 на δ-импульс подоблачного точечного изотропного источника излучения.

Относительная методическая среднеквадратическая погрешность расчета в зависимости от оптической толщины облачного слоя изменяется в пределах от 2,5 до 25%.

Многие авторы [1-6] внесли вклад в понимание наблюдаемых эффектов переноса оптического излучения и взаимодействия между поверхностью и атмосферой, основываясь на методике Монте-Карло. Исследования относятся, как правило, к плоскопараллельному (солнечному) или узконаправленному (лазерному) источникам излучения.

В данной работе делается попытка провести расчеты импульсных характеристик (ИХ) J(t)откликов передающей среды (атмосферы) на δ -импульс точечного изотропного источника излучения.

Задача решается при следующих исходных данных:

 в атмосфере присутствует слой сплошной (слоистообразной) облачности с оптической толщиной т, изменяющейся от 1 до 100 единиц;

– отражающие свойства поверхности Земли характеризуются интегральным (по углам) коэффициентом отражения (альбедо А₃) и дифференциальным законом Ламберта [7];

— опорная длина волны излучения λ выбирается на стыке УФ- и видимого диапазонов спектра;

Рис. 1. Геометрическая схема расчета;

— источник излучения $H_{\text{ист}}$ расположен под облачным слоем, а приемник на высоте $H_{\text{пр}}$ — над облачным слоем H, выше «потолка» атмосферы $H_{\text{атм}}$ (рис. 1);

– зенитные углы визирования z из эпицентральной точки 0 на приемники Π_i (i = 1, 2,...; см. рис. 1) изменяются от 0 до 85°.

Для безоблачной атмосферы полная индикатриса рассеяния определяется как [8]

$$\chi\left(\theta
ight)=rac{eta_{_{\mathrm{M}}}\left(h
ight)\chi_{_{\mathrm{M}}}\left(heta
ight)+eta_{a}\left(h
ight)\chi_{a}\left(heta
ight)}{eta\left(h
ight)}$$
 ,

где θ — угол рассеяния, $h \in H$; $\beta_{M}(h) = 0,0119$, $(\lambda_0/\lambda^4) \cdot \exp(-0,125h)$ — молекулярный показатель рассеяния, км⁻¹ [14]; $\lambda_0 = 0,55$ мкм, $\tau_0 = 0,3$ (τ при λ_0);

$$\beta_{a}(h) = \left(\frac{3.91}{S_{M}} - 0.0119\right) \frac{\lambda_{0}}{\lambda} \cdot \exp\left[-\frac{\frac{3.91}{S_{M}} - 0.0119 h}{\tau_{0} - 0.095 h}\right] - \frac{1000}{\tau_{0}} + \frac{1000}{\tau_{0}} +$$

аэрозольный показатель рассеяния для высот $H \le 5$ км [9]; для H > 5 км использованы вертикальные профили аэрозольного показателя ослабления [10]

$$\beta(h) = \beta_{M}(h) + \beta_{a}(h);$$

S_м — метеорологическая дальность видимости.

Стратифицированная модель полного показателя рассеяния для атмосферы, разделенной по вертикали на 17 слоев (18-й слой — космос), показана в таблице. Там же приведены оптические толщины отдельных слоев и накопленные значения оптических толщин, отсчитываемые от земной поверхности.

Молекулярная индикатриса рассеяния определяется зависимостью [14]

$$\chi_{\rm M}(\theta)=\frac{3}{8}(1+\cos_2\theta).$$

Аэрозольная индикатриса рассеяния χ_a задается в табулированном виде согласно работе [13] для континентальной дымки L.

Облачные слои задаются сферически-подобными с высотой нижней границы $H_{\rm Hr}$ и толщиной $h \in H$ и включаются в стратифицированную модель безоблачной атмосферы. Показатель рассеяния облачного слоя является величиной постоянной.

Индикатриса рассеяния облачного слоя задается в табулированном виде согласно работе [13] для облака С. 1.

№ слоя	Граница слоя		Показатель	Оптическая толщина	
	нижняя, км	верхняя, км	рассеяния, км ⁻¹	слоя	накопления
1	0,0	0,2	0,1930	0,0386	0,0386
2	0,2	0,5	0,1580	0,0474	0,0860
3	0,5	1,0	0,1150	0,0575	0,1435
4	1,0	2,0	0,0663	0,0603	0,2098
5	2,0	3,0	0,0339	0,0339	0,2437
6	3,0	4,0	0,0200	0,0200	0,2637
7	4,0	5,0	0,0135	0,0135	0,2772
8	5,0	7,0	0,0125	0,0250	0,3022
9	7,0	9,0	0,0100	0,0200	0,3222
10	9,0	12,0	0,0082	0,0246	0,3468
11	12,0	15,0	0,0064	0,0192	0,3650
12	15,0	20,0	0,0046	0,0230	0,3890
13	20,0	25,0	0,0019	0,0095	0,3985
14	25,0	30,0	0,0008	0,0040	0,4025
15	30,0	35,0	0,0004	0,0020	0,4045
16	35,0	50,0	0,0001	0,0015	0,4060
17	50,0	80,0	0,000044	0,0003	0,4063
18	>80		0	0	(<u> </u>

Стратифицированная модель безоблачной атмосферы ($\lambda = 0,4$ мкм) $S_{\rm M} = 20$ км

Угловой закон отражения (закон Ламберта) имеет вид

$$\chi_3(\theta') = 2\cos\theta,$$

где θ' — угол отражения относительно нормали к поверхности.

В основу расчетов положен метод Монте-Карло [7]. В соответствии с работой [7] производится непосредственное моделирование траекторий фотонов.

Значение ИХ для каждой градации t_j рассчитывается как нормированное математическое ожидание функционала

$$J^{*}(t_{j}) = E^{-1}(\Pi_{i}) M \Big[\sum_{n=1}^{N} Q_{n} \varphi_{n}(\boldsymbol{r}_{ni}, \boldsymbol{r}_{n}) \Delta t_{j} \Big],$$

где $E^{-1}(\Pi_i)$ — нормировочный множитель; $E(\Pi_i) = M \left[\sum_{n=1}^N Q_n \varphi_n(\mathbf{r}_{ni}, \mathbf{r}_n) \right]$ — плотность потока оптиче-

ского излучения на Π_i приемнике; $M \Biggl[\sum_{i=1}^N Q_n \varphi_n(\mathbf{r}_{ni}, \mathbf{r}_n) \Delta \Biggr] J(t_j)$ – ненормированная ИХ; M – символ

математического ожидания; N — число столкновений фотонов; Δ — индикатор попадания времени прихода фотона в данную градацию t_j .

Индикатор Δ определяется следующим образом:

$$\Delta = \begin{cases} 1, \text{ если } t_j \leqslant t < t_j + \Delta t, \\ 0 - \text{иначе.} \end{cases}$$

Время прихода t определяется по формуле

$$t = (L - R_{ni}^*) / c,$$

где L – суммарная длина траектории фотона; R_{ni}^* – расстояние между источником и приемником $(L_{ni} \approx R_{ni})$; c – скорость света.

Величина $\varphi_n(\mathbf{r}_{ni}, \mathbf{r}_n)$ под знаком математического ожидания имеет смысл статистического веса фотона при использовании модифицированной локальной оценки метода Монте-Карло [7]. Статистический вес рассчитывается в каждой точке рассеяния или отражения фотона при условии наличия прямой видимости из данных точек на приемник Π_i .

Аналитическая форма представления статистического веса фотона имеет вид

$$\varphi_n(\boldsymbol{r}_{ni}, \boldsymbol{r}_n) = \frac{\exp\left[-\tau(\boldsymbol{r}_{ni}, \boldsymbol{r}_n)\right]\chi(\boldsymbol{\mu})}{2\pi |\boldsymbol{r}_{ni} - \boldsymbol{r}_n|^2},$$

где n — порядковый номер столкновения фотона; \mathbf{r}_n — радиус-вектор точки столкновения; \mathbf{r}_{ni} — радиус-вектор точки приема излучения; $\tau(\mathbf{r}_{ni}, \mathbf{r}_n)$ — оптическая толщина отрезка $[\mathbf{r}_{ni}, \mathbf{r}_n]$; $\chi(\mu)$ — соответствующая индикатриса рассеяния, $\mu = \cos\theta'$; θ' — угол между направлением фотона до столкновения и вектором $\mathbf{r}_{ni} - \mathbf{r}_n$.

Модификация по сравнению с простой локальной оценкой [7] заключается в том, что вес $\varphi_n(\mathbf{r}_{ni}, \mathbf{r}_n)$ рассчитывается с усреднением по нескольким приемникам, расположенным в одной плоскости на высоте H_{ni} равномерно по окружности с центром на вертикали источника.

Этот прием позволяет в 1,3−1,7 раза снизить дисперсию методической ошибки расчетов для приемников с углами визирования $z \ge 45^{\circ}$.

Весовые коэффициенты Q_n позволяют учитывать без обрыва траекторий фотонов поглощение излучения на атмосферном аэрозоле

$$Q_n = \omega Q_{n-1},$$

где ω — вероятность выживания кванта (в данных вариантах расчетов принята равной единице) и подстилающей поверхности

$$Q_n = A_3 Q_{n-1}$$

Относительная методическая среднеквадратическая погрешность а расчетов величины $E(\Pi_i)$ составляет 1–2% при безоблачной атмосфере и увеличивается при наличии облачного слоя в зависимости от его оптической толщины τ согласно формуле (количество траекторий фотонов составляет приблизительно 2 · 10³-4 · 10³)

$$\sigma \approx 2,5\sqrt{\tau_{obn}}$$
,

где σ — в процентах; угол визирования $z = 0^{\circ}$.

Для сокращения времени счета ЭВМ при больших т была предпринята модификация, заключающаяся в том, что моделирование начального направления фотона производится в соответствии с плотностью

$$f'(\mu) = \frac{f_0}{1 - d\mu},$$

где μ — косинус угла направления вылета частицы; d — безразмерный множитель; f_0 — нормирующий множитель, найденный из условия нормировки

$$\int_{-1}^{1} f'(y) \, dy = 1; \ f_0 = \frac{d}{\ln\left(\frac{1+d}{1-d}\right)};$$
$$f'(y) = \frac{d}{\ln\left(\frac{1+d}{1-d}\right)} \cdot \frac{1}{1-dy}.$$

тогда

$$q = \frac{2d}{\ln\left(\frac{1+d}{1-d}\right) \cdot (1-d\mu)}.$$

Расчет, проведенный в соответствии с модификацией, дает результат, находящийся в согласии с основным, однако эффективность алгоритма повышается только для случаев, когда приемник расположен близко от зенита ($z \le 45^{\circ}$).

Рис. 2. Зависимости нормировочных коэффициентов ИХ от угла визирования zи оптической толщины τ

В результате расчетов получены ИХ атмосферы (безоблачной и с облачным слоем) на приемниках излучения для следующего набора параметров: $\lambda = 0,4$ мкм; $H_{\rm np} = 4 \cdot 10^4$ км; $H_{\rm hr} = 1$ км; $H_{\rm hct} = 0,3$ км; $A_3 = 0,3$; $S_{\rm M} = 20$ км; $\tau_0 = 0,3$.

На рис. 2 приведены плотности потоков E, определяющие величину сигналов на приемнике в зависимости от угла визирования для различных значений $\tau_{обл}$, а также для безоблачной атмосферы и

для вакуума (зависимость E от z для вакуума выражена очень слабо, т. к. расстояния R_n мало изменяются с возрастанием угла s).

На рис. 2, *а* видно, что при малых оптических толщинах облачного слоя $1 \le \tau \le 10$ и углах визирования $z \le 45^{\circ}$ плотность потока излучения на приемниках превышает плотность потока прямого излучения в вакууме и безоблачной атмосфере, а также плотность потока рассеянного излучения в безоблачной атмосфере.

Рис. З. Нормировочные импульсные характеристики

Из рис. 2, где в том числе показаны зависимости E от оптической толщины τ (рис. 2, δ), следует также, что плотности потоков при наличии облачного слоя с $\tau \leq 60$ сравнимы (достаточно близки) с плотностями потока суммарного (прямого+рассеянное) излучения при безоблачном небе, если угол визирования $z \leq 45^{\circ}$.

Форма импульсных характеристик в зависимости от оптической толщины для углов визирования $z = 0, 45, 70^{\circ}$ показана на рис. 3.

ИХ нормированы условием

$$\int_{0}^{\infty} J^*(t) dt = 1.$$

Это позволяет рассматривать их как плотность вероятности случайных времен, затрачиваемых отдельными фотонами на путь от источника до приемника за вычетом времени пути прямого луча.

Тогда, как и любые функции плотности вероятности, ИХ обладает числовыми характеристиками, представленными на рис. 4.

Из рис. 4, *a*, *б* видно, что математические ожидания m_t ИХ для облачной атмосферы практически не изменяются при возрастании τ от 1 до 10 единиц и медленно возрастают при дальнейшем увеличении τ .

Рис. 4. Числовые характеристики m_t , σ_t , K_v и квантили нормировочных импульсных характеристик

Среднеквадратические отклонения σ_t имеют минимум в области $\tau = 10$. Это следует из вида плотностей вероятности (ИХ), приведенных на рис. 3.

Коэффициент вариации $K_v = \frac{\sigma_t}{m_t}$ при различных углах визирования изменяется не более чем на 10%, что свидетельствует о статистической устойчивости распределений времени прихода фотонов на приемник.

Квантили распределения t (рис. 4, a) порядка 80% как функции оптической толщины не имеют существенного разброса относительно средневзвешенных кривых. То же можно сказать о квантилях χ_p при p = 90%. А квантили порядка p = 95% уже имеют значительный разброс относительно средневзвешенных кривых, особенно при $\tau \ge 10$ единиц. Это согласуется с соответствующими значениями относительной методической среднеквадратической погрешности расчета плотности потока E, учиты-

вая, что
$$E = \int_{0}^{\infty} J(t) dt.$$

Выводы

1. Модификация локальной оценки позволила произвести расчет ИХ облачной атмосферы на вертикальных и наклонных трассах визирования для оптических толщин до 100 единиц и зенитных углов до 85°. При этом дисперсия снижена до 1,3–1,7 раза, время" расчета до 3–5 раз.

2. Анализ нормированных импульсных характеристик позволяет составить качественную картину формирования нестационарного во времени поля оптического излучения.

- 1. Белов В.В., Зуев В.Е., Крылов Г.М. //Изв. АН СССР. Сер. ФАО. 1982. Т. 18. № 742. С. 742-752.
- 2. Белов В.В., Борисов Б.Д., Генин В.Н., Кабанов М.В., Креков Г.М. //Изв. АН СССР. Сер. ФАО. 1982. Т. 18. № 12. С. 1303—1311.

- 3. Tanre D. Herman M., Deschamps P.Y., A. de Leffe //Appl. Opt. 1979. V. 18. P. 3587-3594
- J. Herman M., Deschamps P.Y. //Appl. Opt. 1980. V. 20. P. 3676-3684.
 Diner D.J., Martonchik J.V. //J. Quant. Spectrosc. Radiat. Transfer. 1984. V 32. P. 279-289.
 Pearce W.A. //Appl. Opt. 1986. V. 25. P. 438-447.
- 7. Метод Монте-Карло в атмосферной оптике/Под ред. Г.И. Марчука. Новосибирск: Наука, 1976. 289 с.
- 8. Мак Картни Э. Оптика атмосферы. М.: Мир, 1979. 421 с.
- 9. Шифрин К.С., Минин И.Н. //Труды ГГО. Л., 1957. Вып. 68. С. 5-76.
- 10. Mc Clatchey R.A. Optical properties of the atmosphere //Environment Res. Papers. AFCRL-71-0279. 1971. № 354. 91 р. 11. И в л е в Л. С. //Проблемы физики атмосферы. Вып. 7. Л.: Изд-во ЛГУ, 1969. С. 125—160.
- 12. Бусыгин В.П., Дмитриева Л.Р., Евстратов Н.А. //Труды ГГО. Л., 1981. Вып. 448. C. 64 - 69.
- 13. Дейрменджан Д. Рассеяние электромагнитного излучения. М.: Мир, 1971. 165 с.
- 14. З у е в В. Е. Распространение видимых и инфракрасных волн в атмосфере. М.: Сов. радио, 1970. 496 с.
- 15. Креков Г.М., Рахимов Р.Ф. Оптико-локационная модель континентального аэрозоля. Новосибирск: Наука, 1982. 198 с.

Всесоюзный научно-исследовательский институт оптико-физических измерений, Москва

Поступила в редакцию 26 июля 1989 г.

O.I. Aldoshina, M.N. Gorshkov, A.N. Rublev. Pulse Response of the Cloudy Atmosphere Calculated for the Spherical Geometry of the Earth at Large Zenith Angles and Optical Depths of Paths from 1 to 100.

The paper presents a technique and a program for calculating based on the use of Monte-Carlo method, the pulse response functions of the multilayer spherical cloudy atmosphere with the optical depths 1 to 100 illuminated by a 6 pulse from an isotropically emitting undercloud point source of radiation.

Relative error of the technique varies, depending on the optical depth, from 2,5 to 25 per cent.