АППАРАТУРА ДЛЯ ИССЛЕДОВАНИЙ И МЕТОДЫ ИЗМЕРЕНИЙ

УДК 535.8

Б.Д. Борисов, В.М. Климкин, В.А. Крутиков, А.А. Макаров, Г.В. Федотова, В.А. Чикуров

ВЫСОКОЧУВСТВИТЕЛЬНАЯ СТРОБИРУЕМАЯ ТЕЛЕВИЗИОННАЯ СИСТЕМА РЕГИСТРАЦИИ ИЗОБРАЖЕНИЙ

Рассмотрена система регистрации на основе микроканального усилителя яркости, супервидикона и запоминающей электронно-лучевой трубки. Экспериментально оценены эффективность счета квантов, интенсивность шумовых отсчетов и частотно-контрастные характеристики. Изложен алгоритм работы, представлено техническое исполнение.

В задачах технического зрения весьма часто встречается необходимость регистрации изображений слабой освещенности. Например, в спектроскопии такие проблемы возникают при исследовании веществ по спектрам комбинационного рассеяния и флуоресценции. Подобные случаи встречаются в физике плазмы, астрономии, медицине, лазерном зондировании атмосферы и океана, при наблюдении объектов через атмосферу и плотные рассеивающие среды.

Аппаратурное исполнение высокочувствительных систем регистрации может быть различным [1, 2]. Наибольшие возможности будет иметь система, в которой решение задачи накопления и обработки сигнала возложено на видеопроцессор. Однако в ряде случаев целесообразно эксплуатировать более простые и сравнительно доступные системы наблюдения. В данной статье представлено техническое исполнение алгоритма работы и некоторые технические характеристики простой системы для регистрации изображений как в токовом, так и в режиме счета фотонов.

Рис. 1. Внешний вид системы регистрации

Система регистрации (рис. 1) была выполнена на основе микроканального усилителя яркости (УЯ), высокочувствительной телевизионной передающей трубки (ТПТ) и запоминающей электроннолучевой трубки (ЭЛТ). Чувствительность этого устройства по световому потоку достигает предельных значений за счет способности УЯ, сочлененного с ТПТ, регистрировать одноэлектронные события. Временное стробирование регистратора осуществлено с помощью импульсного питания микроканальной пластины (мкп) УЯ. Минимальная экспозиция, определяемая генератором строб-импульсов, равна 100 нс. Запоминающая ЭЛТ способна накапливать изображение сотен ТВ-кадров и считывать суммарный сигнал в телевизионном стандарте.

Испытание и исследование системы регистрации проводилось на установке, структурная схема которой представлена на рис. 2. Инжекционный лазер 1 типа ЛПИ-103, запускаемый кадровыми синхроимпульсами (КСИ), генерировал импульсы излучения на длине волны $\lambda \simeq 0.9$ мкм, длительностью $\tau_{\rm H} \simeq 200$ нс, энергией $E_{\rm H} \simeq 5 \cdot 10^{-6}$ Дж с углом расходимости $2\alpha \simeq 40^{\circ}$. Через поворотное зеркало 13 это излучение освещало тест-объект 15 (размером 435×170 мм) в виде миры Фуко с переменной пространственной частотой. Изображение тест-объекта на фотокатоде УЯ 2 строилось светосильным объективом 14, просветленным в ближней ИК-области спектра с фокусным расстоянием $F \simeq 148$ мм и диаметром $D_{06} \simeq 100$ мм. С целью уменьшения помех, создаваемых видимой частью излучения окружающего фона, перед объективом устанавливался полосовой инфракрасный фильтр 16 типа ИКС-1. Используемый в установке микроканальный УЯ имел электронно-оптическое увеличение 0,9÷1,1, разрешающую способность для центра поля зрения в статическом режиме ≈ 22,6 штр/мм, многощелочной катод с рабочим диаметром $D_{\phi\kappa}$ \simeq 17 мм. В течение времени существования переотраженного тест-объектом лазерного сигнала на МКП УЯ, находившуюся под постоянным напряжением $U_{\rm m} \simeq 300$ В, подавался импульс напряжения длительностью $\tau'_{\rm m} \simeq 200$ нс, амплитудой $U_{\rm m} \simeq 700$ В, переводящий его в режим регистрации одноэлектронных событий. (Для токового режима работы его амплитуда составляла $\simeq 450$ В). Это напряжение формировалось генератором строб-импульсов 12, также запускаемым от КСИ. Блок задержки 9 позволял компенсировать временные задержки, связанные с распространением сигнала до тест-объекта и обратно, а также с формированием импульса излучения лазера и выхода микроканального УЯ на номинальный режим работы. Возникающее на экране УЯ изображение переносилось сдвоенными объективами типа «Гелиос-44-2» на фотокатод супервидикона ЛИ-702-3 5. В качестве базовой системы для монтажа супервидикона была использована серийная прикладная телевизионная установка ПТУ-50 4.

Сигнал с выхода установки подавался на мишень запоминающей ЭЛТ, входящей в состав серийно выпускаемого устройства памяти 6 типа УП-4. Это устройство позволяло производить одно- и многокадровую (до 500 ТВ-кадров) запись ТВ-сигналов, их хранение, а также воспроизведение (считывание) с помощью ВКУ 7. Для обработки экспериментальных результатов в состав установки входила система ввода и обработки изображения (СВОИ) [3], позволяющая запоминать в памяти до четырех полукадров изображения в телевизионном стандарте форматом 256×256×6 бит.

Рис. 2. Структурная схема экспериментальной установки: 1 — инжекционный лазер ЛПИ-103; 2 — микроканальный УЯ; 3 — объективы «Гелиос-44-2»; 4 — ПТУ-50; 5 — ЛИ-702-3; 6 — блок памяти УП-6; 7 — ВКУ1; 8 — АЦП; 9 — блок задержки; 10 — кадровая память; 11 — ВКУ2; 12 — генератор высоковольтных импульсов; 13 — поворотное зеркало; 14 — приемный объектив; 15 — мишень; 16 — светофильтр ИКС-1; 17 — одноплатная микроЭВМ; 18 — электронный диск; 19 — контроллер DL-4; 20 — ЭВМ СМ-4

Расчет энергии, приходящей на фотокатод УЯ (в джоулях), создаваемой одним лазерным импульсом, производился по приближенному соотношению:

$$E_{\phi\kappa} \simeq K_{6} K_{\rm HKC} K_{\rm LG} \frac{E_{\mu}}{4\pi} S_{\mu} \left(\frac{D_{\rm LG}}{2RF \, {\rm tg} \, \alpha} \right)^{2},$$

где $K_{\rm икc} \simeq 0,1$; $K_{\rm o6} \simeq 0,9$ — коэффициенты пропускания инфракрасного фильтра и объектива соответственно; $K_6 \simeq 0,35$ — коэффициент отражения белой полоски тест-объекта; R = 8210 мм — расстояние между приемным объективом и тест-объектом; $S_{\rm H} \simeq 0,6$ см² — площадь изображения тест-объекта на фотокатоде УЯ, контраст которого принимался равным 100%.

Оцененная таким образом энергия составила величину $E_{\phi\kappa} \simeq 0.9 \cdot 10^{-15} \, \text{Дж}$, что соответствует количеству фотонов $N_{\phi\kappa} \simeq 45 \cdot 10^3 \, \text{фот}$.

Так как экспериментально регистрируемое за экспозицию среднее число одноэлектронных событий N_{per} $\simeq 45$, то квантовая эффективность системы наблюдения ($\lambda = 900$ нм) не превышала значения $Q = N_{\rm per}/N_{\rm fr} \simeq 10^{-3}$.

В максимуме спектральной чувствительности фотокатода УЯ ($\lambda \simeq 550$ нм) квантовая эффективность последнего возрастает почти в 50 раз (данные завода-изготовителя) и квантовая эффективность системы наблюдения составляла $Q \simeq 5.0 \cdot 10^{-2}$.

Экспериментальная оценка количества шумовых отсчетов, создаваемых шумовыми сцинтилляциями УЯ, интенсивность которых превышает пороговую чувствительность супервидикона ($\simeq 2,4 \cdot 10^3 \text{ фот/сцинт}$ [4]), не превышала 7 отсчетов за 10 строб-импульсов или $\simeq 1,5 \cdot 10^6 \text{ отсч} \cdot \text{см}^{-2} \cdot \text{c}^{-1}$, что совпадает с данными [5].

Качество передачи изображения разработанной системы наблюдения оценивалось по максимальному количеству пар линий $N_{\rm max}$, разрешаемых с заданным контрастом. При этом $N_{\rm max}$ определялось пространственным периодом тест-объекта, а контраст оценивался по известному соотношению

$$K = \frac{U_6 - U_{\mathrm{q}}}{U_6 + U_{\mathrm{q}}},$$

где U_6 и $U_{\rm q}$ — амплитуды видеосигналов соответственно от центров белой и черной полос, усредненных по их длине. В ходе эксперимента было отмечено, что в зависимости от величины энергии излучения, приходящего на фотокатод УЯ, изменяется как $N_{\rm max}$, так и паи меньшее число накапливаемых ТВ-кадров $N_{\rm TB}$, необходимых для достижения этого $N_{\rm max}$ (рис. 3). Кроме этого было отмечено, что система наблюдения имеет пороговую энергию $E_{\rm nop} \approx 10^{-16}$ Дж, так как при меньшем ее значении изображение неформировалось, что в данном случае, по-видимому. связано с преобладанием процессов растекания зарядов на мишени запоминающей ЭЛТ над процессами формирования потенциального рельефа. Экспериментальные результаты, представленные на рис. 4, дают оценку максимального количества пар линий, разрешаемых системой — кривая 1, а также характеризуют зависимость ЧКХ от числа накапливаемых TB-кадров – кривые 2, 3, 4.

Κ

1,0 0,8 0,6 0,4 0,2 0 3,4 58 102 135 170 N, пар линий

Рис. 3. Зависимость количества пар линий, разрешаемых с контрастом $K \simeq 0,1$, от энергии на фотокатоде. Цифрами на графике указано количество накопленных для данной энергии ТВ-кадров

Для иллюстрации возможностей системы наблюдения на рис. 5 представлены снимки тестобъекта, наблюдаемого на ВКУ без накопления (верхний снимок) и с накоплением 500 ТВ-кадров (нижний снимок) при энергии на фотокатоде, близкой к пороговой.

В проведенном эксперименте время экспозиции $T_{\rm s} \simeq 2N_{\rm TB} \tau'_{\rm n}$, было значительно меньше времени «регистрации» изображения $T_{\rm p} \simeq 2N_{\rm TB} T_{\rm crp}$, где $T_{\rm crp}$ — период повторения строб-импульсов. Так, для $N_{\rm TB} = 500$ соответственно получим $T_{\rm s} \simeq 2 \cdot 10^{-4}$ с, $T_{\rm p} \simeq 2$ с. Однако если использовать для подсветки тест-объекта лазеры с высокой частотой повторения импульсов генерации ($\simeq 10$ кГц), например на парах металлов, то время регистрации можно уменьшить до $\simeq 5 \cdot 10^{-2}$ с. Это, очевидно, приведет к увеличению экспрессности измерений, а также улучшению качества изображения и уменьшению $E_{\rm пор}$ за счет уменьшения растекания заряда на мишени ЭЛТ, в качестве которой можно использовать мишень супервидикона. Необходимо отметить, что требуемый в этом случае импульсный режим питания

МКП с частотой повторения строб-импульсов $F_{cтp} ≤ 10$ кГц не ухудшает одноэлектронных характеристик УЯ [6]. По-видимому, это связано с малой вероятностью срабатывания одного и того же канала МКП за каждый строб-импульс.

Рис. 5. Изображение регистрируемого тест-объекта: a — накопление отсутствует; δ — накопление 500 ТВ-кадров

Проведенные экспериментальные оценки системы позволяют отметить следующие ее особенности: 1. Качество передачи изображения существенно зависти от энергии на фотокатоде УЯ и числа накапливаемых ТВ-кадров. Это дает возможность при малой энергии подсветки исследуемого объекта или при необходимости временной отсечки оптических фонов существенно улучшить качество регистрируемого изображения методом накопления ТВ-кадров и согласования частоты следования и длительности импульсов подсветки с соответствующими характеристиками генератора строб- импульсов. С учетом всех этих обстоятельств и динамики исследуемого изображения возможен выбор оптимального, относительно качества и количества кадров, изображения (или времени регистрации) режима работы системы.

2. Чувствительность системы наблюдения, а также время экспозиции определяются пороговой энергией формирования потенциального рельефа на мишени запоминающей ЭЛТ.

 Weistrop D., Willians J.T., Faney R.P. //Adv. in Electronics and Electron. Phys. 1985. V. 64A. P. 133-140.

2. Горячева Г.С., Грудзинский М.А.идр. //Письма в ЖТФ. Т. 13. Вып. 15. С. 953–957.

3. Гондаренко А.Е., Карпов С.М., Путинцев В.Л.и др. //Аппаратура дистанционного зондирования параметров атмосферы. Томск: ТФ СО АН СССР, 1987. С. 138–142.

4. Макаров А.А., Чикуров В.А. //Оптика атмосферы. Т. 2. № 9. 1989. С. 997-999.

5. Ганичев В.А., Елкин С.К., Зайдель И.Н., Силькис Э.Г. и др. //ПТЭ. № 5. 1987. С. 152-155.

6. Замятин Н.В., Климкин В.М., Чикуров В.А. //Оптика атмосферы. Т. 1. № 3. 1988. С. 104—108.

Институт оптики атмосферы СО АН СССР, Томск

Поступила в редакцию 12 июня 1990 г.

B.D. Borisov, V.M. Klimkin, V.A. Krutikov, A.A. Makarov, G.V. Fedotova, V.A. Chikurov. Highly Sensitive Gated TV-System for Image Recording.

A recording system is considered in the paper, which is based on the use of a microchannel intensitier, supervidicon and storage CRT. Experimental estimations of the photons detection efficiency, noise level and frequency - contrast characteristics are given. The algorithm of operation and performance characteristics of the system are described.