О.В. Зотов, В.С. Макаров, О.В. Науменко, А.Д. Быков

СПЕКТР ПОГЛОЩЕНИЯ H₂S В РАЙОНЕ 1,9 МКМ

Спектр поглощения молекулы H₂S зарегистрирован на Фурье спектрометре УФС-02 в диапазоне 5050...5257 см⁻¹ с разрешением 0,0098 см⁻¹. При теоретическом анализе спектра идентифицирована 261 линия полос 2v₁ и v₁+v₃. Определены 175 колебательно-вращательных уровней энергии до $J \le 14$ и $K_a \le 8$, вращательные, центробежные, резонансные постоянные колебательных состояний (200) и (101).

Знание колебательно-вращательной структуры спектра молекулы H_2S необходимо для обнаружения и оценки концентрации сероводорода в атмосфере Земли, поскольку он является загрязняющим газом. Надежные данные о параметрах спектральных линий H_2S представляют также основу для определения потенциальной функции этой молекулы и необходимы для детектирования H_2S в атмосферах планет-гигантов.

Спектры поглощения молекулы H_2S и ее изотопозамещенных модификаций явились предметом многочисленных исследовании [1-7], осуществленных в последние годы. Чисто вращательный спектр (основное состояние) был рассмотрен в [1, 2], полоса поглощения $v_2 - B$ [3, 4]; $2v_2$, v_1 н $v_3 - B$ [5]; v_1+v_2 , $v_2+v_3 - B$ [6] и, наконец, $2v_1+v_2$, $v_1+v_2+v_3$, $v_2+2v_3 - B$ [7].

Коротковолновая граница изученного спектрального диапазона, таким образом, достигает 1,6 мкм. Но, как нам известно, ранее спектры $H_2^{32}S$ около 1,9 мкм с высоким разрешением не исследовались. С низким разрешением спектр поглощения H_2S около 2 мкм был исследован в работе Аллена и Плулера [8]. В данной статье приведен анализ спектра высокого разрешения полос v_1+v_3 и $2v_i$ $H_2^{32}S$, расположенных около 1,9 мкм. Эти полосы являются наиболее сильными из шести полос, принадлежащих к первой гексаде резонирующих состояний. Центры и интенсивности полос первой гексады, взятые из [9], даны в табл. 1.

Таблица 1

v_1	v_2	v_3	Центр, см-1	Интенсивность, атм ⁻¹ · см ⁻²
0	4	0	4703,7	0,245 · 10 ⁻²
1	2	0	4960,1	0,638 · 10 ⁻²
0	2	1	4960,1	0,548 • 10-1
2	0	0	5154,5	0,359
1	0	1	5155,5	0,611
0	0	2	5251,2	0,365 · 10 ⁻¹

Центры и интенсивности полос поглощения H₂S около 1,9 мкм

Таблица 2

Основные характеристики Фурье спектра H₂S

Параметр	Значение
Спектральный диапазон, см-1	50505257
Спектральное разрешение, см-1	0,0098
Длина оптического пути, см	1005
Давление, Торр	22,1
Точность определения центров линий, см ⁻¹	не хуже 0,005
Количество зарегистрированных линий	287

Основные характеристики спектра приведены в табл. 2. Спектр был зарегистрирован с помощью Фурье спектрометра УФС-02 с разрешением 0,0098 см⁻¹ в диапазоне 5050-5257 см⁻¹. В спектре обнаружено 287 линий поглощения, 261 из которых были интерпретированы как переходы в полосах v_1+v_3 и $2v_1$. Список частот зарегистрированных линий (в см⁻¹) вместе с измеренным поглощением в пиках линий в процентах и колебательными и вращательными квантовыми числами представлен в табл. З. «Звездочкой» отмечены линии, не участвовавшие в определении уровней энергии.

Таблица З

v	S	$v_1 v_2 v_3$	J'	K_a'	K_c'	J‴	K_a''	Kc'	
1	2	3		4			5		
5050,551	0,30	101	5	4	2	6	4	3	
5051,824	0,15	101	9	0	9	9	2	8	
		101	9	1	9	9	1	8	
5052,007	0,15	200	10	2	8	10	3	7	
5056,136	0,60	200	6	1	5	7	2	6	
		200	6	2	5	7	1	6	
5056,212	0,80	200	7	0	7	8	1	8	
		200	7	1	7	8	0	8	
5058,492	0,80*	101	6	2	5	7	2	6	
		101	6	1	5	7	1	6	
5058,702	0,90	101	7	1	7	8	1	8	
		101	7	0	7	8	0	8	
5058,940	0,50	101	5	2	3	6	2	4	
5059,062	0,70	101	5	3	3	6	3	4	
5059,421	0,20	101	9	1	8	9	3	7	
		101	9	2	8	9	2	7	
5060,571	0,70	101	4	3	1	5	3	2	
5060,778	0,50	101	4	4	0	5	4	1	
5061,336	0,20	200	8	1	8	8	2	7	
		200	8	0	8	8	1	7	
5063,899	0,20	101	8	0	8	8	2	7	
,		101	8	1	8	8	1	7	
5066,040	0.40	200	4	2	2	5	3	3	
5067,541	0,70	200	5	1	4	6	2	5	
5067,597	0,80	200	6	1	6	7	0	7	
,		200	6	0	6	7	1	7	
5068,648	0.30	101	4	2	2	5	2	. 3	
5069,264	0.30	200	8	2	7	8	3	6	
		200	8	1	7	8	2	6	
5069,860	0,90	101	5	2	4	6	2	5	
		101	5	1	4	6	'1	5	
5070,009	0,90	101	6	0	6	7	0	7	
		101	6	1	6	7	1	7	
5071,117	0,90	200	4	3	2	5	2	3	
5071,746	0,20	101	8	1	7	8	3	6	
		101	8	2	7	8	2	6	
5075,235	0,60	200	3	2	1	4	3	2	
5075,752	0,40	101	7	0	7	7	2	6	
		101	7	1	7	7	1	6	
5075,950	0,20*	101	9	4	6	9	4	5	
5076,857	0,30	101	2	0	2	3	2	1	
5078,447	0,30	101	3	3	0	4	3	1	
5078 626	0.20	200	4	1	3	5	2	4	

Список линий поглощения молекулы H₂S около 1,9 мкм

Продолжение табл. З

-										
	1	2	3		4			5		
	5078,726	0,70	200	5	0	5	6	1	6	
			200	5	1	5	6	0	6	
×	5078,793	0,50	200	4	2	3	5	1	4	
	5079,263	0,60	101	2	1	1	3	3	0	
	5079,850	0,10*	101	8	2	6	. 8	4	5	
	5080,971	0,80	101	4	1	3	5	11	4	
	5081,013	0,25	101	- 4	2	3	5	2	4	
	5081,081	0,80	101	5	1	5	6	1	6	
			101	5	0	5	6	0	6	
	5083,895	0,30	101	7	1	6	7	3	5	
			101	7	2	6	7	2	5	
	5084,962	0,30	200	6	1	6	6	2	5	
		•	200	6	0	6	6	1	5	
			200	9	4	5	9	5	4	
	5085,082	0,50	101	3	3	1	4	3	2	
	5086,305	0,30	200	2	2	0	3	3	1	
	5086,813	0,20	200	3	3	1	. 4	2	2	
	5087,379	0,50	101	6	0	6	6	2	5	
		. •	101	6	1	6	6	1	5	
	5088,949	0,70	200	3	1	2	4	2	3	
	5089,608	0,80	200	4	0	4	5	1	5	
			200	4	1	4	5	0	5	
	5089,946	0,15	200	8	5	4	8	6	3	
	5090,516	0,15	200	7	2	5	7	3	4	
	5091,728	0,60	101	3	1	2	4	1	3	
	5091,919	0,90	101	4	1	4	5	I	5	
			101	4	0	4	5	0	5	
	5092,227	0,70	101	3	2	2	4	2	3	
	5092,854	0,20	101	7	3	5	7	3	4	
	5095,695	0,40	101	6	1	5	6	3	4	
	5096,422	0,70*	200	5	1	5	5	2	4	
	5096,462	0,40*	200	5	0	5	5	1	4	
		•	100	2	2	0	3	2	1	
	5098,262	0,30	200	- 2	1	1	3	2	2	
	5098,804	0,50*	101	5	1	5	5	1	4	
	5100,207	0,30	000		•	•				
	5100,230	0,70	200	3	0	3	4	I	4	
	5100,247	0,40	200	3	1	3	4	0	4	
	5101,136	0,20	200	6	3	4	6	4	3	
	5101,157	0,15	200	1	1	1	2	2	0	
	5101.599	0,60	101	2	1	1	3	1	2	
	5102,517	1,00	101	3	0	3	4	0	4	
	5100 000	0.40	101	3	1	3	4	1	4	
	5103,398	0,40	101	0	2	4	0	4	3	
	5103,721	0,80	200	2	2	1	3	0	2	
	5104,292	0,40	101	2	2	2	3	2	2	
	5104,307	0,40	200	0	4	4	7	0	2	
	5105 200	0,40	200	5	1	7	5	9	3	
	5105,802	0,30	200	5	.1	4	0	2	5	

ς.

Продолжение табл. З

	and the second								
	1	2	3		4		· .	5	
-	5107,071	0,30	101	5	1	4	5	3	3
	5107,538	0,30*	200	4	1	4	4	2	3
	5107,892	0,20							
	5108,118	0,60	101	5	2	4	5	2	3
	5109,847	0,60	101	4	0	4	4	2	3
	5110,491	0,40	200	2	0	2	3	1	3
	5110,731	0,70	200	2	1	2	3	0	3
	5112,102	0,15							
	5112,804	0,80	101	2	0	2	3	0	3
	5112,938	0,40	101	2	1	2	3	1	3
	5114,807	0,15							
	5114,883	0,50	101	1	1	0	2	1	1
	5115,044	0,50	200	4	2	3	4	3	2
	5116,328	0,30	101	4	2	2	4	4	1
	5117,220	0,60	101	4	1	3	4	3	2
	5117,632	0,40	200	5	2	3	5	3	2
	5119,576	0,30	101	7	5	3	7	5	2
	5119,982	0,20							
	5120,074	0,70	200	1	0	1	2	1	2
	5120,296	0.20	101	3	0	3	3	2	2
	5120,462	0,60	101	5	3	3	5	3	2
	5120,942	0,30	101	4	2	3	4	2	2
	5121,644	0,50	101	3	1	3	3	1	2
	5122,690	0,50	101	1	0	1	2	0	2
	5122,898	0,15	200	3	2	2	3	3	1
	5123,544	0,80	101	1	1	1	2	1	2
	5123,680	0,15	200	5	3	2	5	4	1
	5126,175	0,40	101	8	8	0	8	8	1
	5126,989	0,30	200	2	1	2	2	2	1
	5127,468	0,40	101	8	7	1	8	7	2
	5128,705	0,50	101	7	6	2	7	6	1
	5129,064	0,40	101	2	0	2	2	2	1
	5129,901	0,20	200	0	0	0	L	1	1
	5129,990	0,40	200	3	1	2	3	- 2	1
	5130,339	0,00	101	7	7	1	7	7	0
	0130,013	0,40	101	. /	6	0	1	1	1
	5131 215	0.30	200	6	5	2	6	5	1
	5131 814	0,30	200	3	9	2	2	2	1
	5131 857	0.20	200	5	2	1	5	3	0
	5132,580	0.80	101	5	4	2	5	4	1
	5133.131	0.50	101	4	3	2	4	3	1
	5133,273	0.80*	101	2	1	2	2	1	1
	1	*	101	3	2	2	3	2	1
	5133,481	0,70	101	0	0	0	1	0	1
	5134,489	0,50	101	6	6	1	6	6	0
	5135,040	0,80	101	6	6	0	6	6	1
	5136,286	0,30	200	2	1	1	2	2	0
	5137,738	0,90	101	5	5	1	5	5	0

Продолжение табл. 3

1	2	3		4			5	
5138,894	0,60	101	5	5	0	5	5	1
5138,993	0,50	200	1	0	1	- 1	1	0
5139,264	0,60	101	6	5	1	6	5	2
5140,160	0,80	101	4	4	1	4	4	0
5141,657	0,70	101	3	3	1	3	3	0
5142,318	0,80	101	2	2	1	2	2	0
5142,458	1,00*	101	1	1	- 1	1	1	0
	•	101	4	4	0	4	4	1
5143,517	0,30	· .						-
5145,017	0,30	101	5	4	1	5	4	2
5145,753	0,70	101	3	3	0	3	3	1
5148,463	0,50*	200	7	5	2	7	4	3
5148,685	0,80	101	2	2	0	2	2	1
5150,050	0,50	200	1	1	0	1	0	1
5150,505	0,20	200	2	2	0	2	1	1
5150,931	0,40	101	1	1	0	1	1	1
5151,613	0,50	200	3	3	0	3	2	1
5151,892	0,40*	101	6	4	2	6	4	3
		200	4	3	1	4	2	2
5152,806	0,20	200	6	4	2	6	3	3
5153,499	0,30	.200	4	4	0	4	3	1
5154,144	0.60	200	3	2	1	3	1	2
5154,719	0,40							
5154,886	0,20	101	3	2	1	3	2	2
5154,940	0,40							
5155,156	0,30							
5155,887	0,50	200	5	5	0	5	4	1
5156,638	0,15	200	2	1	1	2	0	2
5157,674	0,50	200	5	3	2	5	2	3
5158,157	0,15	200	6	6	0	6	5	1
5158,355	0,20	101	2	1	1	2	1	2
5159,060	0,20							
5159,529	0,30	200	1	1	1	0	0	0
5160,146	0,40	200	7	4	3	7	3	4
5160,484	0,60	200	2	2	1	2	1	2
5160,711	0,30	101	1	0	1	0	0	0
5160,759	0,30	200	3	3	1	3	2	2
5161,191	0,60	200	4	4	1	4	3	2
5161,641	0,15	200	5	5	1	5	4	2
5161,940	0,70	200	6	6	1	6	5	2
5162,291	0,30	200	4	2	2	4	1	3
5162,391	0,50	200	6	5	2	6	4	3
5163,995	0,20	101	3	3	í	3	1	2
5164,131	0,30	200	5	4	2	5	3	3
5165,729	0,20							
5165,947	0,40	200	3	1	2	3	0	3
5166,038	0,60							
5166,253	0,30							
5168,327	0,10							

· .

Продолжение табл. З

					1			
1	2	3		4			5	
5168,406	0,60	200	2	1	2	1	0	1
	•	101	3	1	2	3	1	3
5169,224	0,30	101	3	2	2	3	0	3
5169,311	0,40	101	2	1	2	1	1	1
5169,640	0,50	101	6	3	3	6	3	4
5170,952	0,20	101	8	4	4	8	4	5
5171,150	0,40	200	5	2	3	5	1	4
5173;715	0,15							
5173,991	0,30	101	5	3	3	5	1	4
5174,038	0,20	200	7	3	4	7	2	5
5174,132	0,20							
5174,834	0,10	200	4	2	3	4	1	4
5176,407	0,40	200	3	1	3	2	0	2
5176,617	0,10	101	7	4	4	7	2	5
5177,010	0,30	101	4	1	3	4	1	4
5177,183	0,50							
5177,279	0,80	:101	2	1	1	1	1	0
5178,398	0,80	101	3	1	3	2	1	2
5178 ,669	0,60	101	3	0	3	2	0	2
5178,900	0,20	200	6	3	4	6	2	5
5181,162	0,20	101	6	2	4	6	2	5
5182,208	0,20	200	3	1	2	2	2	1
5182,806	0,20	200	5	1	4	5	0	5
5104 104	*	200	5	2	4	5	1	5
5184,494	0,30*	200	4	0	4	3	1	3
5184,528	0,60	200	4	1	4	3	0	3
5185,484	0,70	101	3	2	2	2	2	1
5160,041	0,15	200	7	3	5	7	2	6
5186 801	0.60	200		2	5	7	1	6
5186 838	0,00	101	4	1	4	3	1	3
5187 097	0,00	200	4	0	4	3	0	3
5187 241	0,40	200	3	2	2	2	1	1
5187 947	0,10							
5188.733	0.20	101	3	1	0	0		
5190,102	0,15	101	2	2	0	. 2	1	1
5190,552	0.20*	200	6	2	5	1	1	1
,	*	200	6	1	5	6	1	0
5191,877	0,15	200	Ŭ	.	0	U	0	0
5192,494	0,90	200	5	0	5	4	1	
		200	5	1	5	4	0	4
	•	200	4	1	3	3	2	
5193,954	0,50	200	4	2	3	3	1	2
5194,857	0,90	101	5	1	5	4	1	4
		101	5	0	5	4	Ō	4
5194,884	0,30	101	4	2	3	3	2	2
5196,131	0,80	101	4	1	3	3	1	2
5198,467	0,30							
5200,217	0,70	200	6	0	6	5	1	5
		200	6	1	6	5	0	5

•

Продолжение табл. З

	1	1						
1	2	3		4			5	
5200,436	0,20	101	4	3	2	3	3	1
5200,727	0,50	200	5	1	4	4	2	3
5201,015	0,20	200	5	2	4	4	1	3
5202,638	0,80	101	6	1	6	5	1	5
		101	6	0	6	5	0	5
5203,045	0,70	101	5	2	4	4	2	3
5203,316	0,60	101	5	1	4	4	1	-3
5203,820	0,30	200	3	3	0	2	2	1
5204,619	0,80	101	4	2	2	3	2	1
5206,918	0,80	101	4	3	1	3	3	0
5207,400	0,15	200	5	2	3	4	3	2
5207,670	0,70	200	7	0	7	6	1	6
		200	7	1	7	6	0	6
5208,272	0,20	200	6	2	5	5	1	4
5210,155	0,80	101	7	1	7	6	1	6
		101	7	0	7	6	0	6
5210,235	0,70	101	5	3	3	4	3	2
5210,574	0,40	101	6	2	5	5	2	4
5210,624	0,70	101	6	1	5	5	1	4
5211,485	0,35	200	5	3	3	4	2	2
5213,517	0,35	101	5	2	3	4	2	2
5214,255	0,60	101	5	4	2	4	4	1
5214,855	0,70	200	8	0	8	7	1	7
		200	8	1	8	7	0	7
5215,357	0,60	200	7	1	6	6	2	5
	*	200	7	2	6	6	1	5
5217,421	0,70	101	8	1	8	7	1	7
		101	8	0	8	7	0	7
5217,771	0,60	200	4	4	1	3	3	0
		101	7	2	6	6	2	5
5010.000	0.00	101	7	1	6	6	1	5
5218,396	0,30	101	6	3	4	5	3	3
5219,317	0,30	101	5	4		4	4	0
5219,420	0,70	101	6	2	4	5	2	3
5220,089	0,15	101	-	2	0		•	
5220,108	0,60	101	о 0	3	2	4	3	-1
5221,700	0,60	200	9	0	9	0	1	0
	0.00	200	9	1	9.	0	0	0 6
5222,210	0,30	200	0	1	7	7	2	6
	0.00	200	0	2	-	6		4
5223,246	0,20	200	6	2	0	0	3	. 4
5224,427	0,80	101	9	1	9	0	1	0
5004 605	0.60	101	9	0	9	8	0	8
0224,000	0,60	101	8	2	7	7	2	6
5006 009	0.15	101	8	1	7	7	1	6
5000 410	0,15	101	0	5	2	5	5	1
0220,410	0,00	200	10	0	10	9	1	9
5998 510	0.70	200	10	1	10	9	0	9
5999 794	0,70	200	0	4	3	5	3	2
0220,104	0,00	200	9	1	8	8	2	7

Продолжение табл. З

-										
	1	2	3		4			5		_
-			200	9	2	8	8	1	7	
	5229,250	0,15	1/01	4	3	1	3	1	2	
	5229,821	0,15*	200	8	2	6	7	3	5	
	5229,854	0,30	200	8	3	6	7	2	5	
	5230,472	0,50	101	6	5	1	5	5	0	
	5231,176	0,40	101	10	1	10	9	1	9	
			101	10	0	10	9	0	9	
	5231,345	0,70	101	9	2	8	8	2	7	
			101	9	1	8	8	1	7	
	5232,214	0,15	101	8	3	6	7	3	5	
	5232,258	0,60	101	8	2	6	7	2	5	
	5232,726	0,70	101	7	4	4	6	4	3	
	5233,222	0,15	200	7	4	4	6	3	3	
	5234,769	0,40	200	11	0	11	10	1	10	
			200	11	1	11	10	0	10	
	5235,092	0,40	200	10	1	.9	9	2	8	
			200	10	2	9	9	1	8	
	5236,042	0,25	200	9	2	7	8	3	6	
	5237,448	0,60	101	7	5	3	6	5	9	
		-,	200	8	3	5	7	4	4	
	5237,647	0.65	101	n	1	11	10	1	10	
		-,	101	11	0	11	10	0	10	
	5237.741	0.70	101	10	2	0	10	0	10	
		-,	101	10	1	0	9	2	0	
	5238,283	0 20*	200	8	4	5	9	1	•	
	5238 516	0.20*	101	0	-	7	-	3	4	
	0200,010	*	101	9	0	7	•	3	. 0	
	5238 789	0.50	101	3	2	2	8	2	0	
	5239 808	0.95	101	0	0	z	6	6	1	
	5240 614	0,20	101	0	4	5	1	4	4	
	5240,852	0.00	101	8	3	5	. 7	3	4	
	0240,002	0,20	200	12	-10	12	11	1	14	
	5940 886	0.15	200	12	1	12	11	0	11	
	5941 100	0,15	101		6	1	6	6	0	
	0241,109	0,20	200		1	10	10	2	9	
	5949 001	0.00	200	11	2	10	10	1	9	
	0242,001	0,20	200	10	2	8	9	3	7	
	5045 550	0.00	200	10	3	8	9	2	7	
	5245,778	0,20	101	7	5	2	6	5	1	
		*	101	5	4	1	4	2	2	
	5245,936	0,40*	101	9	4	6	8	4	5	
	5246,663	0,20	200	13	1	13	12	0	12	
			200	13	0	13	12	1	12	
	5246,868	0,20	200	12	1	11	11	2	10	
			200	12	2	11	11	1	10	
	5249,184	0,40*	200	10	3	7	9	4	6	
			200	10	4	7	9	3	6	
	5249,737	0,30*	101	12	2	11	11	2	10	
	5040 000	*	101	12	1	12	11	1	10	
	5249,820	0,40*	101	13	1	13	12	1	12	
	5250:311	0.60*	101	11	3	9	10	3	8	
		-,			-					

.

п	p	0	Д	0	л	ж	e	н	И	e	Т	а	б	л.	3
	r	-	~				_			•	-	-	•		-

1	2	3		4		• .	5	
	*	101	11	2	9	 10	2	8
5251,596	0,20	101	8	4	4	7	4	3
5251,639	0,15*	101	10	4	7	9	4	6
5251,675	0,30*	101	10	3	7	9	3	.6
5252,345	0,20*	101	5	5	0	4	3	1
5252,627	0,20*	200	5	3	2	4	2	3
5253,036	0,30	101	9	5	5	8	5	4
5253,152	0,30	200	6	6	1	5	5	0
5254,119	0,25							
5255,495	0,30	101	14	0	14	13	0	13
		101	14	1	14	13	1	13
5255,809	0,20							
5255,867	0,50	101	8	6	2	7	6	1
		101	12	3	10	11	3	9
		101	12	2	10	1.1	2	9
5257,026	0,30	200	10	5	6	9	4	5
5257,652	0,40	101	8	5	3	7	5	2

При отнесении спектра для линий с $J \le 4$ использовался метод поиска комбинационных разностей основного состояния, а линии с более высокими J интерпретировались параллельно с решением обратной задачи по близости экспериментальных и расчетных значений центров. Идентификация значительной части линий оказалась возможной только благодаря хорошим предсказательным расчетам, так как комбинационные разности отсутствовали.

После интерпретации линий определены 175 вращательных уровней энергии колебательных состояний (101) и (200) (91 для состояния (101) и 84 для (200) до J = 14 и $K_a = 8$ (при этом использовались спектроскопические постоянные основного состояния из [1]). Значения экспериментальных уровней энергии, перечислены в табл. 4, где $\Delta E = E_{\rm эксп} - E_{\rm расч}$, а N обозначает число линий, из которых определялся данный уровень энергии. Как можно видеть из табл. 4, большая часть уровней, особенно с J > 7, определена из одной линии, что несколько снизило точность этих уровней и затруднило решение обратной задачи.

Таблица 4

J	Ka	Kc	E_{101}	$\Delta E \cdot 10^4$	N	E ₂₀₀	$\Delta E \cdot 10^4$	N
0	0	0	5147,2270	0	1	5144,9910	0	1
1	0	1	5160,7085	7	2	5158,3695	29	2
1	1	1	5161,8410		1 .	5159,5270	-53	2
1	1	0	5166,0220	20	2	5158,7960	20	1
2	0	2	5184,2260	- 7	2	5181,95 45	-19	2
2	1	2	5184,4020	0	2	5182,1523	- 7	3
2	1	1	5196,6538	-27	1	5194,6540	24	3
2	2	1	5200,6850	27	3	5198,7790	21	2
2	2	0	5203,8470	<u> </u>	2	5201,6450	51	2
3	0	3	5216,6873	36	3	5214,4070	29	1
3	1	3	5216,6963	- 3	3	52,14,4210	,5	2
3	1	2	5239,8705	32	2	5237,3677	19	4
3	2	2	5240,6460	21	3	5238,2375		2
3	2	1	5251,2780	32	1	5249,2023	-10	3
3	3	1	5259,0493	-12	3	5257,1495	42	2
3	3	0	5261,0940	6	2	5258,9810	16	2
4	0	4	5258,2630	- 8	3	5255,9520	17	1
4	1	4	5258,2645	5	2	5255,9520	8	2

Колебательно-вращательные уровни энергии состояний (101) и (200) H₂S (см⁻¹)

Продолжение табл. 4

J	Ka	Kc	E ₁₀₁	$\Delta E \cdot 10^4$	'N	E ₂₀₀	$\Delta E \cdot 10^4$	N
4	1	3	5291,1870	14	4	5288,8900	-14	1
4	2	3	5291,2776	17	3	5289,0105		4
4	2	2	5311,9890	8	3	5310,4315	36	2
4	3	2	5315,7775	-17	2	5314,4600	36	1
4	3	1	5324,3080	2	3	5322,2270	72	1
4	4	1	5336,9620	-18	1	5335,1600	- 2	2
4	4	0	5338,1150	29	1	5336,1470	-25	1
5	0	5	5309,0270	15	2	5306,6710	22	2
5	1	5	5309,0300	15	2	5306,6680	- 7	2
5	1	4	5351,4577	16	3	5349,1463	28	4
5	2	4	5351,4620	35	3	5349,1550	-26	1
5	2	3	5383,8545	-47	2	5381,3680	27	3
5	3	3	5384,2045	25	4	5381,8200	50	1
5	3	2	5402,8160		1	5401,0170	-25	2
5	4	2	5409,9165	12	3	5408,5230	30	2
5	4	1	5416,1210	36	2		_	
5	5	1	5434,4150	19	1	5432,7470	10	1
5	5	0	5434,9980	-12	1	5433,2240	4	1
6	0	6	5368,9800	25	3	5366,5635	35	2
6	1	6	5368,9800	25	2	536 6,56 33	33	3
6	1	5	5420,8416	32	3	5418,4880	7	1
6	2	5	5420,8380	8	1	5418,4880	9	2
6	2	4	5462,7637	16	3	_	_	
6	3	4	5462,7880	13	1	5460,5020	50	2
6	3	3	5494,7860	91	.1		_	
6	4	3				5492,2495	23	2
6	4	2	_	_		5509,3210	104	1
6	5	2	5523,1020	9	2	5521,7570	25	1
6	5	1	5527,1485	-19	2	·— ,	_	
6	6	1	555,1,3350	20	1	5549,8265	24	2
6	6	0	5551,6150	13	1 .	5550,0440	73	1
7	0	7	5438,1040	18	3	5435,6170	14	2
7	1	7	5438,1040	18	3	5435,6 165	9	2
7	1	6	5499,3650	-28	1	5496 ,9590	- 2	1
7	2	6	5499,3725	50	2			
7	2	5		_		5548,3930	29	3
7	3	5	5550,7330		1	5548,3930	35	1
7	3	4	—			5589,5150	-128	1
7	4	4	5592,0933	27	3	5589,7370	36	1
7	4	3				5618,0250	110	1
7	5	3	5625,3320	38	2	_	-	
7	5	2	5637 ,6656	0	1			
7	6	2	5655,3575	-12	2			
7	6	1	5657,7330	28	1	-		
7	7	1	5687,5880	- 4	1	_	-	
7	7	0	5687,7190	31	1	_		
8	0	8	5516,3915	- 8	2	5513,8240	- 7	1
8	1	8	5516,3915	- 8	2	5513,8240	- 7	1
8	1	7	5587,0395	6	2	5584 ,5620	10	1
8	2	7	5587,0370	-18	1	5584,5610	0	2

Про	до	лж	ени	e	габ	л. 4
		1		1		

J	Ka	Kc	E ₁₀₁	$\Delta E \cdot 10^4$	N	E ₂₀₀	$\Delta E \cdot 10^4$	N
8	2	6	5647,7350	59	.1	_		
8	3	6	5647,7360	-24	1	5645,3310	38	1
8	3	5	5698,4930	7	1	5696,1170		1
8	4	5	5698,4760	83	1	_	_	
8	4	4	5738,8320	0	2			
8	5	4				5736,4050	27	1
8	5	3	5763,4080	-17	1	_	_	
8	6	2	5782,5204	15	1			
8	7	2	_	_		5805 5190	32	1
8	7	1	5807 9320	47	т			•
8	8	0	5843 0400	_10	1			
q	ñ	ğ	5603 8360	4	2	5601 1750		,
9	1	0	5603,8360	4	2	5601,1750	- 2	1
0	1	9	5692 9270	4	2	5001,1750	- 2	1
9	1	0	5003,0370		2	5681,2780	25	1
9	2	8	5683,8365		2	5681,2780	25	1
9	2	7		_		5751,3390	3	1
9	5	5	5863,7 600	. 0	1	—	•	
10	0	10	5700,4220	35	1	5697,6560	30	1
10	1	10	5700,4220	35	1	5697,6560	30	1
10	1	9	5789,7550	- 7	1	5787,1060	29	1
10	2	9	5789,7550	-7	1	5787,1060	29	1
10	2	. 0				5866 4140	29	1
10	4	7	_			5935 6720	21	1
10	5	6		_		5994 8870		1
11	0	11	5806,1190	67	1	5803,2410	-17	î
11	1	11	5806,1190	67	1	5803,2410	-17	1
11	1	10		_		5902,0050	66	1
11	2	10				5902,0050	66	1
12	0	12				5917,9240		1
12	1	12	— .	-		5917,9240	35	1
12	1	11	6028,8 6 40	- 5	1	6025,9950	76	1
12	2	11	6028,8 640	- 5	1	6025,9950	76	1
12	2	10	6126,4630	12	1	-		
12	3	10	6126,4630	12	1		_	
12	0	13	6044,8470	29	1	6041,6900	7	1
14	0	14	6177 8163	29	1	0041,0900	7	I
14	1	14	6177,8163	- 3	1			
•••			0111,0100					

Как показано в [1-3,5], уровни энергии молекулы H₂S могут быть рассчитаны с использованием эффективного гамильтониана:

$$H = \sum_{\mathbf{v}, v'} |v > H^{vv'} < v'|, \tag{1}$$

где H^{vv} — хорошо известный вращательный гамильтониан типа Уотсона в H представлении, а резонансные члены $H^{vv'}$ (при $v \neq v'$) имеют в нашем случае вид

$$H^{101,200} = C_y^{101,200} \, iJ_y + C_{xz}^{101,200} \, \{J_x, \ J_z\}; \tag{2}$$

$$H^{101,002} = C_y^{101,002} i J_y + C_{xz}^{101,002} \{J_x, J_z\};$$
(3)

$$H^{200,002} = F^{200,002}_{xy} J^2_{xy}; \tag{4}$$

$$J_{xy}^2 = J_x^2 - J_y^2, \ \{A, B\} = AB + BA.$$

Гамильтониан в форме (1)–(4) учитывает резонансы Кориолиса и Дарлинга – Деннисона между тремя колебательными состояниями (200), (101) и (002). Строго говоря, суммирование в (1) должно включать также v, v' = (021), (040), (120), то есть все состояния, входящие в первую гексаду. Но, поскольку центры полос $2v_2 + v_3$, $4v_2$, $v_1 + 2v_2$ значительно отстоят от центров анализируемых полос (см. табл. 1), то мы пренебрегли их влиянием.

Полученные в результате подгонки спектроскопические постоянные приведены в табл. 5. В скобках даны 68%-е доверительные интервалы в единицах последних значащих цифр. Константы без доверительных интервалов не варьировались в процессе подгонки. Вращательные константы и колебательная энергия состояния (002) были предварительно рассчитаны с использованием колебательновращательных и ангармонических параметров из [9].

Таблица 5

Параметр	(101)	(200)	(002)
E	5147,2270	5144,9910	5241,867 (11)
A	9,98976 ₂ (29)	10,007662 (26)	9,8594 (10)
B	8,809943 (22)	8,798147 (22)	8,85
С	4,606521, (30)	4,6013679 (33)	4,62
$\Delta_k \cdot 10^3$	3,3874 (15)	3,4228 (12)	3,4
$\Delta_{jk} \cdot 10^3$	-2,04822 (81)	-2,05161 (88)	-1,9
$\Delta_j \cdot 10^4$	6,178 ₉ (15)	6,2474 (18)	6,2
$\delta_k \cdot 10^4$	$-0,978_{0}$ (28)	$-1,209_{2}$ (37)	-1,0
$\delta_j \cdot 10^4$	2,79368 (81)	$2,940_0$ (10)	2,9
$H_k \cdot 10^6$	1,437 (14)	1,3	1,3
$l^{-200} = -0,27207$	$C_{z}^{101-002} \cdot 1$	$10^2 = -3,32_5$ (10)	
	$F_{xy}^{00-302} \cdot 10^2 = 4,9$	79 (10)	

Вращательные, цент	робежные и	резонансные	постоянные	состояний	(101)), (2	200)	И	(002)) H ₂	³² S (см ⁻¹)
--------------------	------------	-------------	------------	-----------	-------	-------	------	---	-------	------------------	-------------------	------------------	---

П р и м е ч а н и е . Стандартное отклонение $\sigma = 3.6 \cdot 10^{-3}$ для 175 уровней.

Из подгонки оказалось возможным вследствие резонансного взаимодействия между состояниями (101), (200) и (002) уточнить значение E_v и вращательной постоянной A для (002). Спектроскопические постоянные из табл. 5 восстанавливают 175 экспериментальных уровней энергии со средней точностью 3,6 \cdot 10⁻³ см⁻¹. Анализ разностей $\Delta = E_{\rm эксп} - E_{\rm расч}$ показывает, что:

 $|\Delta| \le 0,002$ для 50,3% уровней 0,002 < $|\Delta| \le 0,004$ для 35,8% уровней 0,004 < $|\Delta| \le 0,006$ для 5,8% уровней 0,006 < $|\Delta| \le 0,019$ для 8,1% уровней

Таким образом, 86% всех уровней восстанавливается с точностью не хуже 0,004 см⁻¹.

Значения спектроскопических постоянных для колебательных состояний (101) и (200) очень близки, это происходит в результате локального характера валентных колебаний в H₂S. Резонансные постоянные $C_{x,z}^{101,000}$, $C_{xz}^{101,000}$ и $F_{xy}^{200,002}$ хорошо согласуются с величинами, полученными в [7] для колебательных состояний (111), (210) и (012). Определение параметров C_y в нашем случае оказалось невозможным из-за меньших, чем в [7], значений квантовых чисел J и K_a экспериментальных уровней энергии, включенных в подгонку.

В [7] было показано, что резонансы типа Кориолиса и Дарлинга-Деннисона являются очень сильными для H₂S, и вследствие этого наблюдается почти равное перемешивание колебательных состояний (111), (200) и (012) Мы пришли к выводу, что подобная картина наблюдается и в случае состояний(101), (200) и (002), но переходы на уровни (101), (200), связанные сильным резонансом с (002), в эксперименте обнаружены не были. Примеры резонансного перемешивания между состояниями (101), (200) и (002) даны в табл. 6.

J	Ka	Ke	υ	Еэксп	(101)	(200)	(002)
2	1	1	101	5196,653	0,819	0,180	0,00
2	2	1	200	5198,779	0,180	0,819	0.00
4	2	2	101	5311,989	0,567	0,432	0,00
5	3	2	101	5402,816	0,770	0,229	0,00
5	4	2	101	5409,916	0,872	0,127	0.00
5	4	2	200	5408,523	0,263	0,736	0.00
6	2	4	101	5462,763	0,975	0,006	0,018
6	3	4	101	5462,788	0,970	0.013	0.015
6	3	3	101	5494,786	0,710	0,288	0.00
6	4	3	101	5495,504	0.805	0.134	0.00
7	4	4	101	5592.093	0.920	0.058	0.020
8	4	4	101	5738,832	0,828	0,093	0,078

Коэффициенты смешивания волновых функций для некоторых уровней энергии состояний (101), (200) и (002) молекулы H₂S

В заключение отметим, что уровни (101) и (200) с J ≥ 7 могут возмущаться за счет взаимодействия с состояниями (021) и (120), как это следует из сравнения их энергетических спектров. Возможно, именно этим объясняются большие значения ΔE для некоторых уровней с $J \ge 7$.

- Flaud J.-M., Camy-Peyret C., Johns J.W.C. //Can. J. Phys. 1983. V. 61. P. 1462.
 Camy-Peyret C., Flaud J.-M., Lechuga-Fossat L., Johns J.W.C. // J. Mol. Spectrosc. 1985. V. 109. P. 300.
- 3. Strow L.L. //J. Mol. Spectrosc. 1983. V. 97. P. 9.
- 4. Lane W.C., Edwards T.H., Gillis J.R. et al. //J. Mol. Spectrosc. 1985. V. 111. P. 320.
 5. Lechuga-Fossat L., Flaud J.-M., Camy-Peyret C., Johns J.W.C. // Can. J. Phys. 1984. V. 62. P. 1889.
- 6. Snuder L.E., Edwards T.H. //J. Mol. Spectrosc. 1969 V. 31. P. 347.

7. Lechuga-Fossat L., Flaud J.-M., Camy-Peyret C. et al. //Mol, Phys. 1987. V. 61. P. 23.

- 8. Allen H.C., Plyler E.K. //J. Mol. Spectrosc. 1954. V. 22. P. 1104.
- 9. Senekowitsch J., Carter S., Zilch A. et al. //J. Chem. Phys. 1989. V. 90. P. 783.

Институт оптики атмосферы СО АН СССР, Томск Государственный институт прикладной оптики, Казань Поступила в редакцию 26 августа 1991 г.

O.V. Zotov, V.S. Makarov, O.V. Naumenko, A.D. Bykov. Absorption Spectrum of H₂S in the 1.9 µm Region.

The absorption spectrum of H_2S molecule between 5050 and 5270 cm⁻¹ has been recorded with Fourier-Transform spectrometer UFS-02 with resolution of 0.0098 cm⁻¹. The lines of $2v_1$ and v_1+v_3 bands have been identified and energy levels of (200), (101) vibrational states up to J = 14 and $K_a = 8$, rotational, Coriolis, and Darling-Dennison resonance constants have been determined.