В.И. Стариков, С.Н. Михайленко

ЭФФЕКТИВНЫЙ ДИПОЛЬНЫИ МОМЕНТ НЕЖЕСТКИХ МОЛЕКУЛ ТИПА H₂X. ПРИЛОЖЕНИЕ К H₂O

Развита теория эффективного дипольного момента нежёстких молекул типа H₂X. Учтено колебание большой амплитуды, описываемое координатой ρ . Для молекулы H₂O из решения обратной задачи проведено восстановление параметров в модельных представлениях функций $\mu_x^e(\rho)$, $\mu_x^1(\rho)$ и $\mu_z^3(\rho)$ из разложения дипольного момента молекулы в ряд по нормальным координатам q_i (i = 1; 3).

Введение

Теоретическое исследование интенсивностей колебательно-вращательных (КВ) линий поглощения молекул приводит к необходимости расчета матричных элементов эффективного дипольного момента (ЭДМ) в базисе колебательно-вращательных волновых функций, соответствующих нулевому приближению гамильтониана молекулы (либо матричных элементов от дипольного момента в базисе КВ волновых функций, полуденных с помощью теории возмущений). Кроме того, информация об этих матричных элементах может быть получена из экспериментальных интенсивностей. Данная статья посвящена исследованию функции дипольного момента молекулы H_2O , основанному на экспериментальных данных по параметрам эффективного дипольного момента, приведенных в работах [1-7], а также на теоретических соотношениях, связывающих эти параметры с функцией дипольного момента и параметрами КВ гамильтониана H нежесткой молекулы [8]. В предположении малости колебаний в молекуле (в базисе гармонических волновых функций) подобные теоретические соотношения (для молекул типа асимметричного волчка) получены в [9].

Общие соотношения для оператора ЭДМ

Преобразованный оператор дипольного момента μ'_{Z} (рассматривается одна Z компонента оператора **µ** в пространственной системе координат) имеет вид

$$\mu'_{Z} = \mu_{Z} + [iS, \mu_{z}] + \frac{1}{2} [iS, [iS, \mu_{z}]] + \dots,$$
(1)

в котором iS — оператор колебательного контактного преобразования исходного гамильтониана H молекулы к эффективному вращательному гамильтониану $H^{э\phi}$. Вращательным контактным преобразованием μ'_z сводится к оператору эффективного дипольного момента

$$\widetilde{\mu}_{Z} = \mu_{Z}' + [i^{R}S, \mu_{Z}'] + \dots .$$
⁽²⁾

Приведенные соотношения точно такие же, как и в модели квазижесткой молекулы [9]. Основное отличие в вычислениях, проводимых в настоящей статье, от подобных вычислений из [9] заключается в следующем. Во-первых, функции $\mu_{\alpha}(\rho, q_i)$ — компоненты дипольного момента μ в молекулярной системе координат ($\alpha = x, y, z$), связанные с μ_Z соотношением

$$\mu_Z = \sum_{\alpha} \phi_{\alpha} \mu_{\alpha} ,$$

где ϕ_{α} — направляющие косинусы, разлагаются в ряд только по координатам q_i , соответствующим колебаниям малой амплитуды:

$$\mu_{\alpha}(\rho, q_i) = \mu_{\alpha}^{e}(\rho) + \sum_{i} \mu_{\alpha}^{i}(\rho, q_i) + \frac{1}{2} \sum_{ij} \mu_{\alpha}^{ij}(\rho) q_i q_j + \dots, \ i, j = 1, \ 3.$$
(3)

Коэффициенты разложения (3) являются функциями координаты большого колебания ρ [8]. Вовторых, в качестве базисных колебательных волновых функций используются функции $\Psi_n(\rho) \cdot \varphi_v(q)$, в которых $\varphi_v(q)$ – собственные функции гамильтониана $H_0^{sm, vib}(q)$, описывающего гармонические

колебания в молекуле, а $\Psi_n(\rho)$ — волновые функции, получаемые путем численного интегрирования уравнения Шрёдингера [10]

$$H_{0}^{b}\psi_{n}(\rho) = \left\{-B_{\rho}(\rho)\frac{\partial^{2}}{\partial\rho^{2}} - \left[\frac{\partial}{\partial\rho}B_{\rho}(\rho)\right]\frac{\partial}{\partial\rho} + U_{0}(\rho) + V_{0}(\rho)\right\}\Psi_{n}(\rho) = E_{n}\psi_{n}(\rho)$$
(4)

с ангармонической потенциальной функцией V₀(ρ). Гамильтониан нулевого приближения

$$H_0 = H_0^{sm.vib}(q) H_0^b,$$
(5)

используемый при преобразовании исходного гамильтониана H нежесткой молекулы к эффективному $H^{\diamond \phi}$, получается из разложения потенциальной функции $V(\rho, q_i)$ и обратного тензора инерции $\mu_{\alpha\beta}(\rho, q_i)$ в ряды по координатам q_i

$$V(\rho, q_i) = V_0(\rho) + \sum_i \phi_i(\rho) q_i + \frac{1}{2} \sum_{ij} \{\omega_i(\rho) \delta_{ij} + \phi_{ij}(\rho)\} q_i q_j + \frac{1}{6} \sum_{ijl} \phi_{ijl}(\rho) q_i q_j q_l + \dots;$$
(6a)

$$\frac{1}{2} \mu_{\alpha\beta}(\rho, q_i) = B_{\alpha}(\rho) \,\delta_{\alpha\beta} + \sum_i B_{i}^{\alpha\beta}(\rho)q_i + \sum_{ij} B_{ij}^{\alpha\beta}(\rho)q_iq_j + \dots \,.$$
(66)

Схема расчета операторов преобразования *iS* в модели нежесткой молекулы при нулевом приближении H_0 (5) изложена в [11]; вид генератора $i^R S$ приведен в [9], поэтому подробно останавливаться на вычислениях отдельных вкладов в $\tilde{\mu}_Z$ не будем, а перейдем к рассмотрению матричных элементов от $\tilde{\mu}_Z$ в базисе колебательных волновых функций. Заметим только, что все вычисления проведены до второго порядка параметра малости $K \cong (\overline{B} / \overline{\omega})$, в котором \overline{B} – среднее значение вращательной постоянной, а $\overline{\omega}$ – среднее значение частоты гармонического колебания. Для удобства эти матричные элементы будем приводить к виду, что и в [9], однако в отличие от [9] связь этих матричных элементов с молекулярными параметрами и параметрами функции дипольного момента будет иной.

Эффективный дипольный момент в данном колебательном состоянии

Следуя работе [9], запишем этот матричный элемент в виде

$$\widetilde{\mu}_{Z}(n,\nu) = \langle n, \nu | \widetilde{\mu}_{Z} | \nu, n \rangle = \sum_{\alpha} \varphi_{\alpha} \widetilde{\mu}_{\alpha}^{e}(n,\nu) + \sum_{\alpha\beta\gamma} \frac{1}{2} \{\varphi_{\alpha}, J_{\beta}J_{\gamma}\}^{\alpha,\beta,\gamma} \widetilde{M}_{2}(n),$$
(7)

где $|n, v\rangle = |\Psi_n\rangle |\varphi_{v_1}\rangle |\varphi_{v_3}\rangle$, $\{A, B\} = AB + BA$. Для параметров $\tilde{\mu}^e_{\alpha}(n, v)$ и ${}^{\alpha, \beta, \gamma}\tilde{M}_2(n)$ были найдены соотношения

$$\tilde{\mu}_{a}^{e}(n, v) = \mu_{a}^{e}(n) + \sum_{\kappa} \left(v_{\kappa} + \frac{1}{2} \right) \left\{ \frac{1}{2} \mu_{a}^{\kappa\kappa}(n) - \frac{1}{4} \sum_{l} \frac{\mu_{a}^{l}(n) \phi_{l\kappa\kappa}(n)}{\omega_{l}} - \sum_{s} \frac{\tilde{\phi}_{\kappa\kappa}(ns) \mu_{a}^{e}(sn)}{\Omega_{sn}} \right\}.$$
(8)

$$^{\alpha,\beta\gamma}\widetilde{M}_{2}(n) = 2\sum_{s} \frac{B_{\beta}(ns)\,\mu_{\alpha}^{e}(sn)}{\Omega_{ns}}\delta_{\beta\gamma} - \sum_{\kappa} \frac{B_{\kappa}^{\beta\gamma}(n)\,\mu_{\alpha}^{\kappa}(n)}{\omega_{\kappa}} + S_{111}^{(n)}\sum_{\delta} \varepsilon_{\beta\gamma\delta}(\delta_{\alpha\gamma}\,\mu_{\beta}^{e}(n) - \delta_{\alpha\beta}\,\mu_{\gamma}^{e}(n)), \tag{9}$$

в которых введены обозначения: $f(nm) = \langle \Psi_n | f(\rho) | \Psi_m \rangle$, f(n) = f(nn), $\phi_{\kappa\kappa}(\rho) = \phi_{\kappa\kappa}(\rho) + 2\Delta\omega_{\kappa}(\rho)$, $\Delta\omega_{\kappa}(\rho) = \omega_{\kappa}(\rho) - \omega_{\kappa}(\rho_e)$, $\Omega_{ns} = E_n - E_s$, $\varepsilon_{\alpha\beta\gamma}$ – антисимметричный единичный тензор третьего ранга. Связь параметра $S_{11}^{(n)}$ с параметрами эффективного гамильтониана остается такой же, как и в модели полужесткой молекулы [12], однако связь последних с молекулярными параметрами меняется [13, 14]. В предельном случае модели полужесткой молекулы справедливы разложения

$$\mu_{\alpha}^{e}(\rho) = \mu_{\alpha}^{e}(\rho_{e}) + \frac{\partial \mu_{\alpha}}{\partial q_{2}}\Big|_{\rho_{e}} \cdot q_{2} + \dots;$$

$$B_{\alpha}(\rho) = B_{\alpha}(\rho_{e}) + \frac{\partial B_{\alpha}}{\partial q_{2}}\Big|_{\rho_{e}} \cdot q_{2} + \dots, q_{2} = \mathbf{x}(\rho - \rho_{e})$$
(10)

и аналогичные разложения для функции $\mu_{\alpha}^{i}(\rho), B_{\kappa}^{\alpha\beta}(\rho), \dots$ Ангармоничные волновые функции $|n\rangle$ можно представить в виде разложения по функциям гармонического осциллятора $|m\rangle_{0}$

$$|n\rangle = |n\rangle_{0} + \frac{1}{6} \sum_{m} \frac{0 < m |\phi_{222} \cdot q_{2}^{3}| n >_{0}}{(n-m) \omega_{2}} |m\rangle_{0} + \dots$$
(11)

Подстановка соотношений (10), (11) в формулы (8), (9) приводит к известным соотношениям из [9].

Эффективный дипольный момент, связывающий изгибные колебательные состояния

Искомый матричный элемент записывается в виде

$$\widetilde{\mu}_{Z}(nm) = \langle n, v = 0 | \widetilde{\mu}_{Z} | v = 0, m \rangle = \sum_{\alpha} \varphi_{\alpha} \widetilde{\mu}_{\alpha}(nm) - i \sum_{\alpha\beta} \frac{1}{2} \{\varphi_{\alpha}, J_{\beta}\}^{\alpha,\beta} \widetilde{M}_{2}(nm).$$
(12)

Для коэффициентов $\tilde{\mu}_{\alpha}(nm)$ и ${}^{\alpha\beta}\tilde{M}_{2}(nm)$ получены соотношения:

$$\widetilde{\mu}_{\alpha}(nm) = \mu_{\alpha}^{e}(nm) + \frac{1}{2} \sum_{s}^{*} \sum_{i} \left\{ \frac{\widetilde{\phi}_{i}(ns) \mu_{\alpha}^{i}(sm)}{\Omega_{ns} - \omega_{i}} + \frac{\mu_{\alpha}^{i}(ns) \widetilde{\phi}_{i}(sm)}{\Omega_{ms} - \omega_{i}} \right\} + \frac{1}{4} \sum_{s} \sum_{\kappa} \left\{ \frac{\widetilde{\phi}_{\kappa\kappa}(ns) \mu_{\alpha}^{e}(sm)}{\Omega_{ns}} + \frac{\mu_{\alpha}^{e}(ns) \widetilde{\phi}_{\kappa\kappa}(sm)}{\Omega_{ms}} \right\};$$

$$\overset{\alpha,\beta}{M}_{2}(nm) = i \sum_{s}^{*} \sum_{\kappa} \left\{ \frac{T_{\kappa}^{\beta}(ns) \mu_{\alpha}^{\kappa}(sm)}{\Omega_{ns} - \omega_{\kappa}} + \frac{\mu_{\alpha}^{\kappa}(ns) T_{\kappa}^{\beta}(sm)}{\Omega_{ms} - \omega_{\kappa}} \right\} + \sum_{s} \varepsilon_{\alpha\beta\delta} \left\{ \frac{B_{\beta}(ns) \mu_{\delta}^{e}(sm)}{\Omega_{ns}} - \frac{\mu_{\delta}^{e}(ns) B_{\beta}(sm)}{\Omega_{ms}} \right\}.$$

$$(13)$$

В этих выражениях используются следующие обозначения:

Звездочка у Σ^* означает, что в сумме отсутствуют слагаемые, содержащие «резонансные» знаменатели с $\omega_i \approx \Omega_{ps}$. При наличии случайных резонансов типа Ферми $\omega_1 \approx \Omega_{mn}$ или Кориолиса второго типа ($\omega_3 \approx \Omega_{mn}$) в формулах (13) и (14) необходимо сделать замену

$$\frac{\phi_{1}(mn) \mu_{a}^{1}(m)}{\Omega_{mn} - \omega_{1}} \rightarrow \frac{\phi_{1}(nm) \mu_{a}^{1}(m)}{\Omega_{mn} + \omega_{1}};$$

$$\frac{T_{3}^{3}(mn) \mu_{a}^{3}(n)}{\Omega_{mn} - \omega_{3}} \rightarrow \frac{T_{3}^{3}(nm) \mu_{a}^{3}(m)}{\Omega_{mn} + \omega_{3}}.$$
(15)

Эффективный дипольный момент для комбинационных полос

Искомый матричный элемент $\tilde{\mu}_{Z}(n, v_{\kappa}; v_{\kappa} + 1, m) = \langle n, v_{\kappa} | \tilde{\mu}_{Z} | v_{\kappa} + 1, m \rangle$ так же, как и в модели полужесткой молекулы, может быть приведен к виду

$$\widetilde{\mu}_{Z}(n, v_{\kappa}; v_{\kappa}+1, m) = \left(\frac{v_{\kappa}+1}{2}\right)^{1/2} \left[\sum_{\alpha} \varphi_{\alpha} \widetilde{\mu}_{\alpha}^{\kappa}(nm) - i \sum_{\alpha\beta} \frac{1}{2} \{\varphi_{\alpha}, J_{\beta}\}^{\alpha,\beta} \widetilde{M}_{\kappa}(nm)\right],$$
(16)

в котором

$$\widetilde{\mu}_{\alpha}^{\kappa}(nm) = \mu_{\alpha}^{\kappa}(nm) + \frac{1}{2} \sum_{s} \left\{ \frac{\mathscr{D}_{\kappa\kappa}(ns) \,\mu_{\alpha}^{\kappa}(sm)}{\Omega_{ns}} \left(v_{\kappa} + \frac{1}{2} \right) + \frac{\mu_{\alpha}^{\kappa}(ns) \,\widetilde{\mathscr{D}}_{\kappa\kappa}(sm)}{\Omega_{ms}} \left(v_{\kappa} + \frac{3}{2} \right) \right\} + \sum_{i} \frac{\mathscr{D}_{i\kappa}(nm) \,\mu_{\alpha}^{\kappa}(n)}{(\Omega_{mn} + \omega_{i})^{2} - \omega_{\kappa}^{2}} +$$

~

$$+\sum_{s}^{*}\left\{\frac{\tilde{\mathscr{G}}_{\kappa}(ns)\,\mu_{\alpha}^{e}(sm)}{\Omega_{ns}-\omega_{\kappa}}+\frac{\mu_{\alpha}^{e}(ns)\,\tilde{\mathscr{G}}_{\kappa}(sm)}{\Omega_{ms}+\omega_{\kappa}}\right\}-i\sum_{s}^{*}\sum_{\beta\gamma}\varepsilon_{\alpha\beta\gamma}\left\{\frac{T_{\kappa}^{\beta}(ns)\,\mu_{\alpha}^{e}(sm)}{\Omega_{ns}-\omega_{\kappa}}+\frac{\mu_{\alpha}^{e}(ns)\,T_{\kappa}^{\beta}(sm)}{\Omega_{sm}-\omega_{\kappa}}\right\},\tag{17}$$

$$\overset{\alpha_{A}\beta}{\widetilde{M}}_{\kappa}(nm)=2i\sum_{s}^{*}\left\{\frac{T_{\kappa}^{\beta}(ns)\,\mu_{\alpha}^{e}(sm)}{\Omega_{ns}-\omega_{\kappa}}-\frac{\mu_{\alpha}^{e}(ns)\,T_{\kappa}^{\beta}(sm)}{\Omega_{sm}-\omega_{\kappa}}\right\}+$$

$$+\sum_{s}^{*}\sum_{\gamma\delta}\varepsilon_{\alpha\gamma\delta}\left\{\frac{B_{\kappa}^{\gamma\delta}(ns)\,\mu_{\delta}^{e}(sm)}{\Omega_{ns}+\omega_{\kappa}}+\frac{\mu_{\delta}^{e}(ns)\,B_{\kappa}^{\gamma\delta}(sm)}{\Omega_{sm}+\omega_{\kappa}}\right\}-4\sum_{j+\kappa}^{*}(\omega_{j}\omega_{\kappa})^{-1/2}\frac{B_{\beta}(n)\,\zeta_{j\kappa}^{3}(n)\,\mu_{\alpha}^{\kappa}(nm)}{\omega_{j}^{2}-\omega_{\kappa}^{2}}.\tag{18}$$

Резонанс Кориолиса 1-го типа ($\omega_1 \approx \omega_3$) может быть учтен в формуле (18) точно так же, как и в [9]. Наибольшее отличие от модели полужесткой молекулы появляется в тех формулах для матричных элементов, которые связывают состояния с различным значением квантового числа *n*. Если ЭДМ связывает состояния с одинаковым *n*, то искомые формулы мало отличаются от подобных формул в модели полужесткой молекулы, поэтому в дальнейшем рассматривать их не будем. В качестве примера приведем выражение для ЭДМ для случая комбинационных (разностных) полос с *n* = *m*.

Эффективный дипольный момент для комбинационных (разностных) полос с n = m

Искомый матричный элемент имеет вид

$$\begin{split} & \mu_{Z}(n, v_{\kappa}, v_{l}; v_{\kappa}+1, v_{l}\pm 1, n) = \langle v_{\kappa}, v_{l}, n | \mu_{Z} | n, v_{\kappa}+1, v_{l}\pm 1 \rangle = \\ & = \left(\frac{v_{\kappa}+1}{2}\right)^{1/2} L_{l}(\pm) \sum_{\alpha} \frac{1}{2} \varphi_{\alpha} \left\{ \mu_{\alpha}^{\kappa l}(n) + 4 \sum_{s} \frac{\phi_{\kappa l}(ns) \mu_{\alpha}^{e}(ns) \Omega_{ns}}{\Omega_{ns}^{2} - (\omega_{\kappa} \pm \omega_{l})^{2}} \right\} + 2 \sum_{\beta \gamma} \varepsilon_{\alpha \beta \gamma} \frac{B_{\beta}(n) \zeta_{\kappa l}^{\beta}(n) \mu_{\gamma}^{e}(n) (\omega_{\kappa} \pm \omega_{l})}{(\omega_{\kappa} \omega_{l})^{1/2} (\omega_{\kappa} \pm \omega_{l})} \bigg\} + \dots \end{split}$$

Функция $L_l(+) = \left(\frac{v_l+1}{2}\right)^{1/2}$ для v_l+1 , $L_l(-) = \left(\frac{v_l}{2}\right)^{/2}$ для v_l-1 . Эта формула отличается от приве-

денной в [9] вторым слагаемым и тем, что вместо постоянных ζ , B, ...в ней нужно использовать диагональные матричные элементы от функций $\zeta(\rho)$, $B(\rho)$ и т.д. В предельном случае (10–11) $\tilde{\mu}_{Z}(n, v_{\kappa}, ...)$ переходит в соответствующее выражение из [9].

Приложение к молекуле H₂O

Полученные соотношения были применены для отыскания функций $\mu_x(\rho) \mu_x^1(\rho)$ и $\mu_z^3(\rho)$ из выражения (3) для молекулы H₂O. Для этих целей были использованы экспериментальные данные по коэффициентам $\tilde{\mu}_j \equiv {\tilde{\mu}_{\alpha}, \mu_{\alpha,\beta}}, j = 1, 2, ... M$ из разложений

$$\widetilde{\mu}_{z} = \widetilde{\mu}_{x} \varphi_{z} + \widetilde{\mu}_{x,y} \{\varphi_{x}, iJ_{y}\} + \widetilde{\mu}_{y,x} \{i\varphi_{y}, J_{x}\} + ...;$$

$$\widetilde{\mu}_{z} = \widetilde{\mu}_{x} \varphi_{x} + \widetilde{\mu}_{y,z} \{i\varphi_{y}, J_{z}\} + \widetilde{\mu}_{z,y} \{\varphi_{x}, iJ_{y}\} + ...,$$
(19)

применяемых для обработки экспериментальных данных полос типа A (Δv_3 нечетное) или $B(\Delta v_3 - чет$ ное) соответственно. Очевидно, что формулы (12) и (13) легко сводятся к виду (19). Функции μ_x^e и $\mu_a^i(\rho)$ (i = 1 при $\alpha = x$ и i = 3 при $\alpha = z$) были выбраны в виде

$$\mu_x^{\sigma}(\rho) = a_1 \sin(\rho/2) + a_2 \sin^2(\rho/2) + a_3 \sin^3(\rho/2); \tag{20}$$

$$\mu_{x}^{\sigma}(\rho) = a_{+2}\cos^{2}\left[(\pi - \rho)p\right] + a_{-2}/\cos^{2}\left[(\pi - \rho)p\right] - C;$$
(20a)

$$\mu_{z}^{3}(\rho) = b_{1}\cos(\rho/2) + b_{z}\cos^{2}(\rho/2) + b_{x}\cos^{3}(\rho/2), \qquad (206)$$

где о принимает индекс *е* или 1. При выборе представлений для рассматриваемых функций мы исходили из того, чтобы в случае линейной конфигурации молекулы

$$\mu_x^e(\rho=0) = 0, \ \mu_x^{\perp}(\rho=0) = 0. \tag{21}$$

Из условий (21) находится константа *C* в (20а), остальные параметры *a*, *b*, *p* объявлялись варьируемыми и находились при минимизации функционала

$$S = \sum_{j=1}^{M} \left[\left(\tilde{\mu}_{j}^{\text{skcn}} - \tilde{\mu}_{j}^{\text{shut}} \right) W_{j} \right]^{2}, \tag{22}$$

в котором W_j — вес, вводимый так, чтобы порядок всех используемых в подгонке данных был одинаков. Волновые функции $\Psi_n(\rho)$, входящие в матричные элементы, определялись путем численного интегрирования уравнения (9) с потенциальной функцией $V_0(\rho)$, имеющей вид

$$V_{0}(\rho) = f_{aa} \rho^{2} + \frac{H[1 + f_{aa} \cdot \rho_{e}^{2}/H]^{2}}{[1 + H\rho^{2}/f_{aa} \rho_{e}^{2}]}$$

с параметрами $f_{\alpha\alpha} = 12857,902 \text{ см}^{-1}, H = 10960,976 \text{ см}^{-1}$ и $\rho_e = 1,8208$ рад. При интегрировании уравнения (4) использовался метод Нумерова – Кули [15]. Вид молекулярных функций $B_{\alpha}(\rho), B_{\kappa}^{\alpha\beta}(\rho), \dots$ можно найти в [8, 13]. Функции $\phi_i(\rho), \omega_i(\rho), \dots$ из разложения потенциала молекулы вычислялись по схеме, изложенной в [10, 16], при этом силовые параметры f_{ij}, f_{ijl} ... брались из [16].

Таблица 1

Вычисленные и экспериментальные значения параметров $\tilde{\mu}_x$, $\tilde{\mu}_{yz}$ и $\tilde{\mu}_{zy}$ (в D)эффективного дипольного момента молекулы H₂O, связывающего состояния $|n\rangle$ и $|n + \Delta n\rangle$ ($v_1 = v_3 = 0$)

n	μx	μ _{y. z}	μz, ν	μ _x	~ μ _{y, z}	μ, ν
	$\Delta n = 0$			$\Delta n = 1$		
0	-1.85[1]			1.27E-01[8	-6.5E-03	
0	-1.86			1.20E-01	-7.3E-03	-2.6E-04
1	-1.83[2]			1.82E-01[6]	-0.9E-02	
1	-1.83			1.77E-01	-1.2E-02	-3.4E-04
2	-1.79			2.26E-01	-1.8E-02	-3.9E-04
3				2.75E-01	-2.7E-02	-4.2E-04
4	1.69			3.27E-01	-4.5E-02	-4.4E-04
5	1.61			3.90E-01	-9.7E-02	-4.4E-04
6	-1.50			4.63E-01	-2.8E-01	-3.4E-04
7				5.15E-01	-6.1E-01	-4.1E-04
		$\Delta n = 2$			$\Delta n = 3$	
0	5.82E-03[4]	-0.4E-04	2.3E05	3.52E-04[5]	1,1E—05	3.2E-05
0	6.02E-03	-1.8E-04	2.0E-05	3.23E-04	1.6E-05	3.2E-05
1	1.05E-02		3.5E-05	4.12E-04	5.9E-05	6.2E-05
2	1.46E-02		5.3E-05	7.29E-05	1.9E-04	9.3E05
3	1.77E-02	-5.5E-05	7.8E-05	-1.33E-03	7.3E-04	1.3E-04
4	1.79E-02	2.3E-03	1.2E-04	-6.32E-03	2.7E-03	-1.8E-04
5	1.35E-02	1.3E-02	1.1E-04	-1.38E03	5.6E-03	3.3E05
		$\Delta n = 4$			$\Delta n = 5$	
0	4.9E05[7]		1.2E05	-4.0E-05ª	6.0E-07	5.0E-07
0	-4.0E-05	7.1E06	-1.1E-05	-1,2E-05b	-4.0E-07	7.0E-07
1	-1.6E-04	2.4E-05	-2.6E-05	4.0E-06°	3.0E-07	-1.0E-06
2	-4.3E-04	7.2E05	4.3E05			
3		1.6E-04	-1.3E-04			

^а Вычисления соответствуют знаку (-) для параметров $\tilde{\mu}_j$ полосы 4v₂ и функциям (20), (206).

^b Вычисления соответствуют знаку (–) для параметров $\tilde{\mu}_i$ полос $3v_2$, $4v_2$ и функциям (20), (206).

^с Вычисления с функциями (20а), (206).

Функция — $\mu_x^e(\gamma)$ (20), ($\gamma = \pi - \rho$), полученная для молекулы H₂O при минимизации функционала (22)

μx μ" με, γ μy, z μz, y μ_{y, z} n $\Delta n = 0$ $\Delta n = -1$ 0 0 -1.5E-02 1.5E-03 1 4.5E-03[6] -2.5E-04 -4.9E-04 1 -1.8E-02 1.7E-03 4.5E-03 -5.1E-05 1.0E-04 2 -2.0E-02 1.9E-03 -4.8E-04 6.0E-03 --7.9E-05 1.4E-04 -2.2E-02 2.2E-03 3 -4.7E-04 -1.1E-04 1.8E-04 6.7E-03 4 6.8E-03 -1.6E-04 2.1E-04 $\Delta n = +2$ $\Delta n = -2$ 0 -2.10E-03 -3.9E-06 1.0E-05 -1.6E-03 -7.0E-06 -7.3E-06 1 -3.50E-03 -1.4E-05 1.9E-05 -2.7E-03 -7.8E-06 -1.4E-05 2 -4.50E-03 -4.1E-05 2.9E-05 -3.7E-03 -2.5E-06 -2.1E-05

Вычисленные и экспериментальные значения параметров $\tilde{\mu}_x$, $\tilde{\mu}_{yz}$ и $\tilde{\mu}_{zy}$ (в D) эффективного дипольного момента молекулы H₂O, связывающего состояния $|n, v_1 = 0\rangle$ и $|n + \Delta n, v_1 + 1\rangle$ ($v_3 = 0$)

В табл. 1—3 представлены результаты расчета коэффициентов из разложений (19) и сравнение их с экспериментальными данными. Для случая $\Delta n = 0$ приведены значения матричных элементов из формулы (13). Общее количество используемых экспериментальных данных M равно 21. Восстановленные из решения обратной задачи значения параметров a и b приведены в табл. 4, а на рисунке показана восстановленная функция $\mu_x^e(\rho)$ (20 а).

Таблица З

Вычисленные и экспериментальные значения параметров $\tilde{\mu}_{z}$, $\tilde{\mu}_{xy}$ и $\tilde{\mu}_{yx}$ (в D) эффективного дипольного момента молекулы H₂O, связывающего состояния $|n, v_3 = 0\rangle$ и $|n + \Delta n, v_3 = 1\rangle$ ($v_1 = 0$)

n	μ̃ε	μx, y	μ _{ν. x}	$\widetilde{\mu_z}$	μ., υ	μ _{ν, x}
		$\Delta n = 0$			$\Delta n = -1$	
0	6.9E-02	^{4]} 6.5E04	1.7E-03			
0	7.0E-02	-2.1E-06	8.4E-04			
1	6.5E-02		8.5E-04	2.3E-02		-5.6E-0
2	6.0E-02	-5.3E-06	8.7E-04	3.1E-02	-1.1E-05	
3	5.5E-02	8.3E06	9.0E-04	3.6E-02	-1.5E-05	-1.2E-0
4				3.8E-02	-1.9E-05	-1.5E-0

Таблица 4

Параметры модельных представлений функций $\mu_x^{\sigma}(\rho)$ ($\sigma = e, 1$) и μ_z^3 (в D) молекулы H₂O

	μ°x	μ1,		μ³₂
<i>a</i> 1		0,3350	b 1	-1,3437
a_2	4,3364	1,0082	b_2	3,6678
<i>a</i> ₃	-2,0080	-0,8401	b_3	2,28005
$a_{\pm 2}$	0,3525	0,1828	b_1	2,200
a-2	0,3532	0,1079	b_2	5,3047
p	-1,4491	-0,0719	b_3	3,3767

Заключение

Необходимо сделать несколько замечаний по поводу выбора знаков у параметров $\tilde{\mu}_{j}^{\text{эксп}}$. Обратные задачи решались с выбором различных знаков для параметров $\tilde{\mu}_{j}^{\text{эксп}}$ для полос $3v_2$ и $4v_2$. Расчет (а) из табл. 1 соответствует выбору знака (–) для параметров $\tilde{\mu}_{j}^{\text{эксп}}$ полосы $4v_2$. Расчет (b) – выбору

знака (-) для параметров $\tilde{\mu}_i^{\scriptscriptstyle \mathfrak{RCH}}$ полос $3v_2$ и $4v_2$, при этом использовались функции (20) и (20 б). Знаки (-) для $\tilde{\mu}_{i}^{\text{ксп}}$ полосы 4v₂ являются предпочтительными при использовании модельных представлений (20), (20 б), т. к. эти функции с параметрами, полученными из обработки экспериментальных данных полос v_2 , $2v_2$, $3v_2$ и основного состояния, дают в прямом расчете знаки (–) $\tilde{\mu}_1^{\text{выч}}$ полосы $4v_2$.

Наиболее адекватно экспериментальные данные (без изменения знаков для $\tilde{\mu}_{i}^{ccn}$) описывает функция типа (20 а), в которой степень 2 нужно заменить на степень 4. Однако в точности восстановления экспериментальных данных она уступает функциям (20) и (20 б). Отметим еще раз, что предложенные функции (20) являются модельными функциями, а полученные для них параметры a и b из табл. 4 являются оптимальными в смысле (19), т.е. они наилучшим способом описывают имеющийся набор экспериментальных данных $\tilde{\mu}_{i}^{\scriptscriptstyle skcn}$. Тем не менее эти функции позволяют рассчитать параметры $\tilde{\mu}_{i}^{\scriptscriptstyle skcn}$ (табл. 1-3) ряда полос, для которых экспериментальная информация по интенсивностям отсутствует.

- 1. Clough S.A., Beers Y., Klein G.R., Rothman L.S. //J. Chem. Phys. 1973. V.59. P. 2254 - 2259.
- 2. Kuze H., Amano T., Shimizu T. //J. Chem. Phys. 1981. V. 75 P. 4869-4872.
- 3. Camy-Peyret C., Flaud J.-M. //Mol. Phys. 1976. V. 32. P. 523-536, 4. Flaud J.-M., Camy-Peyret C. //J. Mol. Spectr. 1975. V. 55. P. 278-310.
- 5. Flaud J.-M., Camy-Peyret C., Maillard J.-P., Geulachvili G. //J. Mol. Spectr. 1977. V. 65. P. 219-228.
- 6. Flaud J.-M., Camy-Peyret C., Mandin J.Y., Guelachvili G. //Mol. Phys. 1977. V. 34. P. 413-426.

- 7. Camy-Peyret C., Flaud J.-M., Maillard J.-P. //J. Phys. Lett. 1980. V. 41. P. L-23-L-26. 8. Hougen J.T., Bunker P.R., Johns J.W.G. //J. Mol. Spect. 1970. V. 34 P. 136-172. 9. Camy-Peyret C., Flaud J.-M. //Mol. Spectr. Modern Research (K. Narahary Rao, Ed.), Academic Press. Orlando, FL. 1985 V. III. P. 69-140.
- 10. Ноу А. R., Bunker P. R. //J. Mol. Spectr. 1974. V. 52. P. 439-456. 11. Стариков В. И., Тютерев Вл. Г. //Опт. и спектроск. 1981. Т. 51. С. 268-277. 12. Kivelson D., Wilson E. B. //J. Chem. Phys. 1952. V. 20. P. 1575-1580.
- 13. Starikov V.I.. Machancheev B.N., Tyuterev VI.G. //J. Phys. Lettr. 1984. V. 45. P. L-11-L-15.
- 14. Starikov V.I., Tyuterev VI.G.//J. Mol. Spectr. 1982. V. 95. P. 288-296. 15. Cooley J.W.//Math. Comp. 1961. V. 15. P. 363-374.
- 16. Hoy A.R., Mills I.M., Strey G. //Mol. Phys. 1972. V. 24. P. 1265-1290.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 3 декабря 1991 г.

V.I. Starikov, S.N. Mikhailenko. Effective Dipole Moment Operator for Nonrigid H₂X Type Molecules. Application to H₂O.

A theory of the transformed dipole moment operator for nonrigid H₂X type molecules has been worked out by using the method of contact transformation. The treatment takes into account the large amplitude bending motion, which is described by coordinate ρ . Obtained formulas for the transformed dipole moment operator for bending vibration quantum bands and for combination bands have been used for the determination functions $\mu_{\tau}^{*}(\rho), \mu_{\tau}^{1}(\rho), \mu_{\tau}^{2}(\rho)$ from the expansion of molecular fixed components $\mu(p, q)$ ($\alpha = x, y, z$) of the electric dipole moment of H₂O molecule over q normal coordinates. Some different model forms for these functions have been used.