АТМОСФЕРА КАК КАНАЛ РАСПРОСТРАНЕНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ

УДК: 535.2 + 533.6

А.Н. Кучеров

САМОВОЗДЕЙСТВИЕ ОПТИЧЕСКОГО ПУЧКА В ТЕПЛОПРОВОДНОМ ВЯЗКОМ ГАЗЕ В УСЛОВИЯХ ГРАВИТАЦИОННОЙ КОНВЕКЦИИ

Проведено теоретическое численное исследование эффекта теплового самовоздействия распространяющегося горизонтально оптического пучка в условиях самонаведенной конвекции с учетом теплопроводности и вязкости газа. Выполнено сопоставление с аналогичным экспериментальным исследованием.

Процесс распространения излучения в покоящейся среде (или на участках относительного покоя – в <застойных зонах>) через интервал времени порядка $t_{\kappa} = (\rho_0 h_0 a/q_0 g)^{1/3}$ приводит к возникновению естественной гравитационной конвекции с характерной скоростью $V_{\kappa} = (q_0 ag/\rho_0 h_0)^{1/3} = a/t_{\kappa}$ [1,2]. Здесь ρ_0 , h_0 – плотность и энтальпия невозмущенной среды; a – характерный поперечный размер пучка; g – ускорение свободного падения; $q_0 = \alpha I_0$ – характерная мощность, поглощаемая единицей объема; α – коэффициент поглощения; I_0 – характерная интенсивность излучения.

При относительно малых возмущениях гидродинамических параметров гравитационная конвекция описывается нелинейной системой уравнений Буссинеска, на основе которых в [3, 4] предложена классификация режимов теплового самовоздействия в газах и жидкостях. В газовых средах и в некоторых широко распространенных жидкостях (например, в воде) число Прандтля $\Pr = \mu_0 C_{p0}/k_0$ (где $\mu_0 -$ коэффициент динамической вязкости, $k_0 -$ коэффициент теплопроводности, C_{p0} – удельная теплоемкость среды) является величиной порядка единицы и эффекты вязкости и теплопроводности проявляются в одних и тех же условиях.

Отнесем плотность газа $\rho \ \kappa \ \rho_0$, давление $p - \kappa$ начальному значению p_0 , температуру $T - \kappa$ соответствующему значению в невозмущенной среде T_0 , теплоемкость – $\kappa \ C_{p0}$, коэффициент теплопроводности $\kappa \ k_0$, коэффициент динамической вязкости – $\kappa \ \mu_0$, поперечные координаты x, $y - \kappa$ радиусу пучка a, время $t - \kappa \ t_{\kappa}$, компоненты скорости U, $V - \kappa \ V_{\kappa}$. Ось z направим по ходу пучка, ось y – против вектора напряженности гравитационного поля $\mathbf{g} = -\mathbf{e}_y g$ (где \mathbf{e}_y – единичный вектор в направлении оси y). Раскладывая гидродинамические величины в ряд по малому параметру $\varepsilon = q_0 a/(\rho_0 h_0 V_{\kappa}) = (q_0/\rho_0 h_0)^{2/3} (a/g)^{1/3}$, получим следующую систему обезразмеренных уравнений для главных членов возмущенных величин:

$$\rho = 1 + \varepsilon \rho_1 + \dots; T = 1 + \varepsilon T_1 + \dots;$$

 $p = 1 + \text{Eu} (-y/\text{Fr} + (\epsilon/\text{Fr}) p_1 + ...); \text{Eu/Fr} \ll 1;$

div
$$\mathbf{V} = \mathbf{0}$$
;

$$\frac{d\mathbf{V}}{dt} = -\nabla p_1 + \mathbf{e}_y \rho_1 + \frac{1}{\text{Re}} \Delta \mathbf{V} \; ; \; \frac{d}{dt} = \frac{\partial}{\partial t} + (\mathbf{V}, \nabla) \; ; \tag{1.2}$$

$$\frac{d\rho_1}{dt} = -I(x, y, z, t) + \frac{1}{\text{Pe}}\Delta\rho_1; \qquad (1.3)$$

$$T_1 = -\rho_1 .$$
 (1.4)

Самовоздействие оптического пучка

1519

(1.1)

Здесь Eu = $\rho_0 V_{\kappa}^2/p_0$ – число Эйлера; Fr = V_{κ}^2/ag – число Фруда; Re = $\rho_0 a V_{\kappa}/\mu_0$ – число Рейнольдса; Pe = $\rho_0 a V_{\kappa}/k_0 C_{p0}$ = Pr Re – число Пекле. В приближении параксиальных пучков, для которых $a/L \ll 1$ (L – характерная длина трассы) координата z входит в систему (1) в виде параметра, т.к. изменениями гидродинамических величин вдоль оси z в масштабе поперечного размера a можно пренебречь. В случае Pe, Re < 1 преобладают теплопроводность и вязкость, а гравитационная конвекция практически не проявляется. При значениях чисел Pe, Re \gg 1 вязкостью и теплопроводностью газа можно пренебречь. Такой случай сильной гравитационной конвекции рассматривался в [5]. При Pe, Re ~ 1 имеем теплопроводный режим гравитационной конвекции или теплопроводно-конвективный режим. В настоящей статье получено решение, включающее два последних случая (Re, Pe > 1). Ввиду отсутствия возмущений в начальный момент времени должны быть выполнены следующие условия:

$$\rho_1 \Big|_{t=0} = 0 ; p_1 \Big|_{t=0} = 0 ; \mathbf{V} \Big|_{t=0} = 0 ; T_1 \Big|_{t=0} = 0 .$$
(2)

Введем функцию завихренности $\Omega = \text{rot} \mathbf{V}$ и функцию тока ψ : $U = \partial \psi / \partial y$; $V = -\partial \psi / \partial x$. Система уравнений (1) запишется в следующем стандартном виде, удобном для интегрирования [6, 7]:

$$\frac{\partial A}{\partial t} + \frac{\partial B}{\partial x} + \frac{\partial C}{\partial y} = H ; \qquad (3)$$

$$\omega = -\Delta \psi ; \tag{4}$$

$$A = \begin{pmatrix} \omega \\ \rho_1 \end{pmatrix}; B = \begin{pmatrix} \omega \frac{\partial \psi}{\partial y} & -\frac{1}{\operatorname{Re}} \frac{\partial \psi}{\partial x} \\ \rho_1 \frac{\partial \psi}{\partial y} & -\frac{1}{\operatorname{Pe}} \frac{\partial \rho_1}{\partial x} \end{pmatrix};$$

$$C = \begin{pmatrix} -\omega \frac{\partial \psi}{\partial x} & -\frac{1}{\operatorname{Re}} \frac{\partial \omega}{\partial y} \\ -\rho_1 \frac{\partial \psi}{\partial x} & -\frac{1}{\operatorname{Pe}} \frac{\partial \rho_1}{\partial y} \end{pmatrix}; H = \begin{pmatrix} -\frac{\partial \rho_1}{\partial x} \\ -I \end{pmatrix}.$$
(5)

На границе расчетной области в случае твердой поверхности необходимо, чтобы были выполнены условия непротекания и прилипания:

$$\frac{\partial \Psi}{\partial x}\Big|_{y=\pm L_{y/2}} = \left.\frac{\partial \Psi}{\partial y}\right|_{x=\pm L_{x/2}} = 0; \qquad (6)$$

$$\frac{\partial \Psi}{\partial x}\Big|_{x=\pm L_{\chi^2}} = \left.\frac{\partial \Psi}{\partial y}\right|_{y=\pm L_{\chi^2}} = 0.$$
⁽⁷⁾

В открытом пространстве, полагая, что размеры расчетной области L_x , L_y достаточно велики по сравнению с *a*, потребуем выполнения <мягких> краевых условий для функции тока ψ :

$$\frac{\partial \Psi}{\partial y}\Big|_{y=\pm L_{y/2}} = \left.\frac{\partial \Psi}{\partial x}\right|_{x=\pm L_{x/2}} = 0.$$
(8)

В начальный момент времени должны быть выполнены следующие условия:

$$\rho_1 \Big|_{t=0} = 0 \; ; \; \omega \Big|_{t=0} = 0 \; ; \; \psi \Big|_{t=0} = 0 \; . \tag{9}$$

Распространение пучка излучения в приближении параксиальной оптики описывается обезразмеренным уравнением для комплексной функции электромагнитного поля *u* с краевыми условиями:

1520

.

$$-2iF(\partial u/\partial z) + \Delta_1 u + (2F^2N\rho_1 - iN_{\alpha}F)u = 0;$$
⁽¹⁰⁾

$$u \big|_{z=0} = u_0(x, y); \ u \big|_{x, y \to \pm \infty} = 0.$$
⁽¹¹⁾

Функция поля *и* связана с интенсивностью излучения выражением $I = uu^*$, число Френеля равно $F = 2\pi a^2/(\lambda L)$, где λ – длина волны излучения; параметр поглощения $N_{\alpha} = \alpha L$; параметр теплового самовоздействия $N = (L/z_r)^2$, где $z_r = a/\sqrt{\epsilon(n_0 - 1)/n_0}$ – характерная длина теплового самовоздействия. Начальная функция u_0 равна для коллимированного гауссова пучка $u_0(x, y) = \exp[-(x^2 + y^2)/2]$; для кольцевого пучка $u_0(x, y) = \sqrt{[\exp(-r^2) - \exp(-A^2 r^2)]/(1 - 1/A^2)}$; $r = \sqrt{x^2 + y^2}$, где $A = a/a_1$, a_1 – внутренний радиус кольца.

Один из первых алгоритмов построения численного решения системы уравнений (3)–(5), (10) предложен в [7]. Численное решение этой задачи в приближении тонкой линзы [8] сравнивалось с выполненным ранее фундаментальным экспериментальным исследованием эффекта теплового самовоздействия в условиях гравитационной конвекции [9]. В [10] получено нестационарное решение уравнений гравитационной конвекции применительно к пучку в кювете. Стационарное (установившееся) тепловое самовоздействие в условиях гравитационной конвекции применительно к пучку в кювете. Стационарное (установившееся) тепловое самовоздействие в условиях гравитационной конвекции рассматривалось в [11]. Уравнения гидродинамики решались методом установления, уравнения параксиальной оптики – с помощью трехслойной консервативной конечно-разностной схемы второго порядка аппроксимации. В [12] численно исследовался неустановившийся режим теплового самовоздействия. Уравнения Буссинеска решались с помощью явной двухшаговой конечно-разностной схемы Лакса–Вендроффа.

В настоящей статье построение решения уравнений (10) осуществлялось с помощью разложения в дискретные ряды Фурье с применением быстрого Фурье-преобразования [13]. К уравнениям (3), (5) применялась конечно-разностная схема Мак-Кормака [14] второго порядка аппроксимации:

$$\widetilde{A}_{ij} = A_{ij}^n - \frac{\Delta t}{\Delta x} \left(B_{i+1,j}^n - B_{ij}^n \right) - \frac{\Delta t}{\Delta y} \left(C_{i,j+1}^n - C_{ij}^n \right) + \Delta t H_{ij}^n;$$
(12)

$$A_{ij}^{n+1} = \frac{1}{2} \left(A_{ij}^n + \widetilde{A}_{ij} - \frac{\Delta t}{\Delta x} \left(\widetilde{B}_{ij} - \widetilde{B}_{i-1, j} \right) - \frac{\Delta t}{\Delta y} \left(\widetilde{C}_{ij} - \widetilde{C}_{i,j-1} \right) + \Delta t \, \widetilde{H}_{ij} \right). \tag{13}$$

Специфика задачи теплового самовоздействия состоит в том, что необходимо знать достаточно точно поля возмущений плотности в области, занятой излучением, а область возмущения гидродинамических величин значительно превышает размеры зоны тепловыделения. Простой прием задания <мягких> краевых условий типа (8) на предельно близком расстоянии от пучка позволяет существенно снизить затраты машинных ресурсов в задачах теплового самовоздействия в открытом пространстве либо при достаточно удаленных от пучка стенках. Анализ показывает, что в широком диапазоне параметров подобия N, F, Pe и др. можно с погрешностью менее одного процента перенести краевые условия на расстояние 3–4-х поперечных размеров зоны тепловыделения. Аналогичный прием перенесения краевых условий для возмущения давления (скорости и плотности газа) использовался в [15] для построения решения в случае самовоздействия импульсно-периодического излучения в однородном высокоскоростном потоке газа.

Перейдем к изложению результатов. Рассмотрим кольцевой пучок, A = 3. На рис. 1 приведены изохоры (слева, $\rho_1 = 0,1;0,5;0,9\rho_{1min}$) и линии равных значений вертикальной компоненты скорости (справа, $V = 0,9;0,5;0,1 V_{min};0;0,1;0,5;0,9 V_{max}$) для замкнутого объема (рис. 1, *a*) и для открытого пространства (рис. 1, δ) в моменты времени, когда поля гидродинамических величин близки к установившимся либо к квазиустановившимся. Размеры расчетной области в физических переменных составляют L_x , $L_y = 6,4 a$. В случае открытого пространства установлено, что дальнейшее увеличение размеров (например, в два раза) не приводит к заметному изменению возмущений гидродинамических величин. Числа Пекле и Рейнольдса велики и составляют Pe = 42, Re = 56.

Рис. 1. Изохоры (слева) и изотахи для вертикальной компоненты скорости гравитационной конвекции (справа) распространяющегося горизонтально кольцевого пучка (A = 3); a - в замкнутом объеме $L_x = 6, 4 a = L_y, t = 5 t_k$; $\delta - в$ открытом пространстве $t = 4 t_k$; Pe = 42, Re = 56

Выбранное начальное распределение интенсивности обладает большими градиентами по поперечным координатам. Вследствие этого возмущения плотности даже при больших, но различных числах Пекле и Рейнольдса могут существенно отличаться. На рис. 2 построены зависимости возмущений плотности от времени в центре пучка $\rho_1(0, 0, t)$. Пик возмущений достигается сначала в открытом пространстве (кривая 1) при $t = 2,2 t_{s}$, затем в более широкой трубе (2) при $t = 2,4 t_{s}$ и, наконец, в узкой трубе (3) при $t = 2,8 t_{s}$.

Рис. 2. Изменения возмущений плотности в центре кольцевого пучка (A = 3) в зависимости от времени: 1 - в открытом пространстве, Pe = 42, Re = 56; 2 - в горизонтальной трубе, $L_x = 6,4 a = L_y$, Pe = 42, Re = 56; 3 - в более узкой трубе, $L_x = 4 a = L_y$, Pe = 42, Re = 56; 4 - в менее теплопроводном и вязком газе, $L_x = 6,4 a = L_y$, Pe = 244, Re = 343

Увеличение чисел Пекле и Рейнольдса почти на порядок (ср. кривые 2 и 4) приводит к слабому росту максимума возмущений функции ρ_1 и момента его достижения $t = 2,6 t_{\rm s}$, но до этого момента пренебрежение вязкостью и теплопроводностью для варианта 2 дает ошибку ~100% в определении возмущений плотности, как показывает сравнение кривых 2 и 4. Такого же порядка погрешность возникает и для градиентов возмущения плотности, которые определяют локальные углы отклонения излучения и, следовательно, картину перераспределения интенсивности по ходу пучка. При числах Pe = 113 и 244 отличия в значениях функции ρ_1 составляют ~10%, т.е. погрешность неучета вязкости и теплопроводности будет существенно меньше.

Кучеров А.Н.

В таблице приведены зависимости от времени и от координаты вдоль луча пика интенсивности $I_m = \max_{x,y} (I(x, y, z, t))$, среднего радиуса $r_c = \int \int (x^2 + (y - \Delta y)^2) I dx dy/W$ и смещения центра тяжести распределения интенсивности $\Delta y = \int \int y I dx dy/W$, где $W = \int \int I dx dy$ – полная

мощность пучка) с учетом и без учета вязкости и теплопроводности при следующих значениях параметров подобия: F = 10; N = 1; $N_A = 0,1$; Pe = 10; Re = 13,2. Первоначальное распределение интенсивности в пучке – кольцевое, A = 3. Сравнение результатов показывает, что неучет теплопроводности приводит к погрешности в вычислении локальных характеристик до 138% $(t/t_{\rm g} = 2; z/z_{\rm T} = 0,4)$. Погрешность в вычислении относительного смещения $\Delta y/a$ достигает 84% $(t/t_{\rm g} = 2; z/z_{\rm T} = 0,6)$. На величине среднего радиуса пучка неучет теплопроводности и вязкости и вязкости сказывается слабее, погрешность достигает только 5,6% $(t/t_{\rm g} = 7; z/z_{\rm T} = 1)$.

Таким образом, даже при больших значениях чисел Пекле и Рейнольдса, равных $\sim 10^1$, пренебрежение вязкостью и теплопроводностью может привести к значительной ошибке при определении возмущенных характеристик пучка, в частности в значениях пика интенсивности вдоль трассы.

t/t _K	$(z/z_{\rm T} = 1)$	1	2	3	5	7
I_m/I_0	$Pe = \infty$	0,588	0,615	1,08	0,589	0,610
	Pe = 10	0,714	0,573	0,605	0,630	0,603
r_c/a	00	1,26	1,42	1,33	1,265	1,32
c	10	1,24	1,36	1,32	1,22	1,25
$\Delta y/a$	×	-0,0095	- 0,119	- 0,273	-0,107	- 0,149
	10	-0,0065	-0,071	-0,203	-0,140	-0,119
z/z _T	$(t/t_{\rm K}=2)$	0,2	0,4	0,6	0,8	1
$\frac{z/z_{\rm T}}{I_w/I_0}$	$(t/t_{\rm K}=2)$	0,2 0,843	0,4 1,50	0,6 1,33	0,8 1,04	1 0,615
$\frac{z/z_{\rm T}}{I_m/I_0}$	$\frac{(t/t_{\rm K}=2)}{\underset{10}{\infty}}$	0,2 0,843 0,722	0,4 1,50 0,631	0,6 1,33 0,733	0,8 1,04 0,691	1 0,615 0,573
$\frac{\frac{z/z_{\rm T}}{I_m/I_0}}{r_c/a}$	$(t/t_{\rm K}=2)$ ∞ 10 ∞	0,2 0,843 0,722 1,07	0,4 1,50 0,631 1,11	0,6 1,33 0,733 1,19	0,8 1,04 0,691 1,29	1 0,615 0,573 1,42
$\frac{\frac{z/z_{\rm T}}{I_m/I_0}}{r_{\rm c}/a}$	$(t/t_{\rm K} = 2)$ ∞ 10 ∞ 10	0,2 0,843 0,722 1,07 1,07	0,4 1,50 0,631 1,11 1,11	0,6 1,33 0,733 1,19 1,17	0,8 1,04 0,691 1,29 1,25	1 0,615 0,573 1,42 1,36
$\frac{\frac{z/z_{\rm T}}{I_m/I_0}}{\frac{r_{\rm c}/a}{\Delta y/a}}$	$(t/t_{\kappa} = 2)$ ∞ 10 ∞ 10 ∞	0,2 0,843 0,722 1,07 1,07 - 0,006	0,4 1,50 0,631 1,11 1,11 - 0,217	0,6 1,33 0,733 1,19 1,17 - 0,0461	0,8 1,04 0,691 1,29 1,25 - 0,0792	$ \begin{array}{r} 1 \\ 0,615 \\ 0,573 \\ 1,42 \\ 1,36 \\ -0,119 \end{array} $

Влияние учета теплопроводности (Pe = 10) и вязкости (Re = 13,2) для кольцевого пучка (A = 3) на пик интенсивности I_m/I_0 , средний радиус пучка r_c/a и смещение центра тяжести $\Delta y/a$

Для относительно гладких куполообразных распределений, например гауссова, погрешность неучета вязкости и теплопроводности при Pe, Re > 10^1 будет существенно меньше. В лабораторных экспериментальных исследованиях распространения и самовоздействия лазерных пучков при малых поперечных размерах пучка ~ 10^{-3} м и сравнительно невысоких мощностях ~10 Вт числа Пекле и Рейнольдса принимают значения порядка единицы, при этом необходимо учитывать также и диссипативные процессы в газе.

Рассмотрим самовоздействие гауссова пучка в условиях, соответствующих эксперименту [9]. Эксперименты проводились в газовой кювете, изготовленной в виде металлической трубы с прозрачными для излучения CO₂-лазера ($\lambda = 10,6$ мкм) торцевыми окнами из NaCl. Длина трубы L = 1,5 м, радиус пучка a = 0,003 м, радиус трубы $R = 2,85 \cdot 10^{-2}$ м. Ввиду того что поперечный размер трубы почти на порядок больше поперечного размера пучка, расчеты проводились по алгоритму для открытого пространства. Коэффициент поглощения α варьировался с помощью добавления в азот (рабочий газ в кювете) малых количеств пропан-бутановой смеси, плотность ρ_0 и показатель преломления n_0 – за счет изменения давления p_0 от 1 до 10 атм. Мощность пучка была равна 7–9 Вт. Таким образом, условия эксперимента позволяли варьировать независимо параметр поглощения N_{α} и параметр теплового самовоздействия N. Число Френеля равнялось 3,56.

На рис. 3 приведены экспериментальные (справа) и расчетные теоретические изофоты (слева). Построены линии равной интенсивности I=0,2; e⁻¹; 0,5 I_m в пределе установившегося самовоздействия. Вариант изофот (рис. 3, *a*) соответствует значениям коэффициента поглощения $\alpha = 0,13 \text{ м}^{-1}$, мощности $W_0 = 1,2 \text{ Вт}$, давлению $p_0 = 1$ атм. Характерное время конвекции составляет $t_{\kappa} = 0,270 \text{ с}, V_{\kappa} = 0,0111 \text{ м/с}, N_{\alpha} = 0,195, N=0,316, Pe=1,61, Re=2,15, масштаб возмущения плотно-Самовоздействие оптического пучка$

сти є = 0,0421. Принято, что в азоте в стандартных условиях невозмущенный показатель преломления равен $n_0 = 1 + 3 \cdot 10^{-4}$. Для варианта изофот на рис. 3, б в эксперименте $\alpha = 0,22 \text{ m}^{-1}$, $W_0 = 2,2 \text{ BT}$, $p_0 = 2 \text{ атм.}$ Этим условиям соответствуют значения $t_{\kappa} = 0,24 \text{ c}$; $V_{\kappa} = 0,0125 \text{ м/c}$; $N_{\alpha} = 0,330$; N = 0,794; Pe=3,61; Re=4,83; $\varepsilon = 0,0529$. Варианту изофот на рис. 3, *в* соответствуют значения $\alpha = 0,66 \text{ m}^{-1}$; $W_0 = 4,4 \text{ BT}$; $p_0 = 5 \text{ атм}$; $t_{\kappa} = 0,174 \text{ c}$; $V_{\kappa} = 0,0172 \text{ м/c}$; $N_{\alpha} = 0,99$; N = 3,79; Pe=12,5; Re=16,7; $\varepsilon = 0,101$. Число Прандтля для азота равно 0,72.

Рис. 3. Сравнение теоретических (слева) и экспериментальных (справа) изофот установившегося теплового самовоздействия гауссова пучка: a - N = 0,316, $N_{\alpha} = 0,195$, Pe = 1,61 ($\alpha = 0,31 \text{ m}^{-1}$, $W_0 = 1,2 \text{ Br}$); $\delta - N = 0,794$; $N_{\alpha} = 0,330$; Pe = 3,61 ($\alpha = 0,22 \text{ m}^{-1}$, $W_0 = 2,2 \text{ Br}$); $\epsilon - N = 3,79$, $N_{\alpha} = 0,99$, Pe = 12,5 ($\alpha = 0,66 \text{ m}^{-1}$, $W_0 = 4,4 \text{ Br}$)

Последний вариант изофот (рис. 3, e) следует отнести к режиму развитой (или чистой) гравитационной конвекции (Pe, Re \gg 1), вариант 3, δ – к теплопроводно-конвективному режиму, вариант 3, a близок к чисто теплопроводному режиму, в котором теплоотвод за счет конвекции пренебрежимо мал. Заметим, что из структуры аналитических решений уравнения теплопроводности следует, что соотношение конвективного и теплопроводного механизмов теплоотвода характеризует параметр Pe/4, который для варианта 3, a меньше единицы. Контуры равной интенсивности, полученные в численных расчетах, подобны экспериментальным по крайней мере для вариантов 3, δ , e. Некоторые количественные отличия наблюдаются в величине смещения пика интенсивности и в более вытянутых вверх (в эксперименте) крыльях полумесяца.

Рис. 4. Изменения в зависимости от времени пика интенсивности I_m/I_0 (*a*) и его смещения $\Delta y/a$ (*б*): При N = 1,75, $N_{\alpha} = 0,24$, Pe = 5,36 кривая 1 – экспериментальная зависимость, 2 – теоретический расчет; 3 – расчет варианта рис. 3, *в*; 4 – варианта рис. 3, *б*

Кучеров А.Н.

Нестационарное самовоздействие в эксперименте [9] исследовалось для варианта: $\alpha = 0,16 \text{ m}^{-1}$; $W_0 = 9 \text{ Br}$; $p_0 = 2 \text{ атм}$. Этим условиям соответствуют параметры подобия $N_{\alpha} = 0,24$; N = 1,75; Pe = 5,36; Re = 7,17 и следующие характерные газодинамические величины $t_{\kappa} = 0,162 \text{ c}$, $V_{\kappa} = 0,0185 \text{ м/c}$, масштаб возмущения плотности $\varepsilon = 0,0117$.

На рис. 4, *а* построены зависимости от времени пика интенсивности I_m/I_0 и величины его смещения Δy_m (рис. 4, δ) вследствие теплового самовоздействия: 1-экспериментальные кривые, 2-теоретические (расчетные), 3-расчет варианта на рис. 3, ϵ ; 4-расчет варианта на рис. 3, δ . Ход по времени рассматриваемых теоретических (кривая 2) и экспериментальных (1) зависимостей, полученных для одинаковых условий, качественно совпадает. Значения пика интенсивности в точках минимума близки и составляют (I_m/I_0)₁=0,30; (I_m/I_0)₂ = 0,26. Близки также моменты времени, в которые наступает максимальное смещение Δy_m пика: (t_{max})₁ = 0,4, (t_{max})₂=0,35 с. Но величина смещения Δy_m больше в эксперименте более чем в полтора раза, так же как и на рис. 3, ϵ . Время достижения минимального значения пика интенсивности в эксперименте короче более чем в два раза.

Количественные отличия могут быть обусловлены неполным соответствием условий эксперимента и расчета. Сравнение экспериментальных и расчетных изофот на рис. 3 показывает, что в эксперименте гравитационная конвекция и тепловое самовоздействие выражены сильнее, ярче. В расчетах волновой фронт пучка на входе в кювету задавался плоским. В экспериментах, возможно, была слабая подфокусировка, что привело к усилению самовоздействия. Экспериментальное пространственное распределение интенсивности определялось в серии последовательных пусков с перемещением приемника с малой диафрагмой между пусками. При этом в последующих пусках в трубе с азотом были, возможно, ненулевые значения скорости либо градиенты температуры (плотности) газа, которые приводили к более быстрому развитию конвекции и частичному усилению эффекта. Есть еще одна вероятная причина расхождений, влияние которой можно оценить.

Как показано на оптической схеме (рис. 1, [9]), пучок, выходящий из кюветы, проходит некоторое расстояние *l* (с двумя поворотными зеркалами), прежде чем попадает в диафрагму приемника. На выходе из кюветы с азотом возмущена не только интенсивность, но и фаза излучения, вследствие чего пучок приобретает дополнительный угол расходимости [16]:

$$\theta \sim \frac{a}{L} B_1(L) = \frac{a}{L} N \int_0^1 (\exp(-zN_{\alpha}))^{2/3} dz = \frac{3}{2} \frac{a}{L} \frac{N}{N_{\alpha}} (1 - \exp(-2N_{\alpha}/3)) .$$

На участке l до диафрагмы пучок дополнительно расширяется на величину $\Delta r \sim \theta l$.

Воспользуемся результатами рис. 3, *в*, согласно которым отличие в теоретически и экспериментально установленных смещениях пика интенсивности составляет $\delta y = 3$ мм. Приравнивая эту разницу к дополнительному расширению Δr , получим расстояние *l*, равное 0,54 м. Тогда для условий эксперимента варианта рис. 4 (1-N=1,75; $N_A=0,24$) находим, что дополнительное смещение Δr и, следовательно, отличие δy в теоретических и экспериментально измеренных смещениях пика должно составить 1,75 мм. Разница в величине смещения Δy_m на кривых *l* и *2* рис. 4 очень близка к этому значению и составляет 2 мм.

Таким образом, выявлено удовлетворительное соответствие теоретически и экспериментально полученных изофот, а также временных зависимостей пика интенсивности и величин его смещений навстречу потоку самонаведенной конвекции.

3. B i s o n n e t t e L. R. // Appl. Optics. 1973. V. 12. №4. P. 719-728.

Самовоздействие оптического пучка

^{1.} A khmanov S.A., Krindach D.P., Migulin A.V., Sukhorukov A.P., Khokhlov R.B. // IEEE J.of Quantum Electron. 1968. V. QE - 4. №10. P. 568–575.

^{2.} S m i t h D. C. // IEEE J. of Quant. Electron. 1969. V. QE - 5. №12. P. 600 – 607.

^{4.} Герасимов Б. П., Гордиенко В. М., Сухоруков А. П. // ЖТФ. 1975. Т 45. №12. С. 2485–2493.

^{5.} Кучеров А.Н., Макашев Н.К., Устинов Е.В. // Известия вузов. Радиофизика. 1992. Т. 35. №2. С. 145–154.

^{6.} L i v i n g s t o n e $\,$ P . M . // Appl. Optics. 1971. V. 10. $N\!\!\!\!\!\! _{2}$ P. 426 – 436.

^{7.} Герасимов Б. П. Один метод расчета задачи конвекции несжимаемой жидкости. Препринт ИПМ, N 13. М. 1975.

- 8. Петрищев В.А., Пискунова Л.В., Таланов В.И., Эрм Р.Э. // Известия вузов. Радиофизика. 1981. T. 24. №2. C. 161–171.
- 9. Петрищев В.А., Шеронова Н.М., Яшин В.Е. // Известия вузов. Радиофизика. 1975. Т. 18. №7. C. 963-974.

10. Герасимов Б. П., Гордиенко В. М., Сухоруков А. П. // ИФЖ. 1979. Т. 36. №2. С. 331–336.

11. Герасимов Б.П., Елизарова Т.Г., Сухоруков А.П. // ЖТФ. 1983. Т. 53. Вып. 9. С. 1696–1705. 12. Черткова И.А., Чесноков С.С. // Оптика атмосферы. 1990. Т. 3. №2. С. 123–129.

13. Fleck J. A., Morris J. R., Feit M. D. // Appl. Physics. 1976. V. 10. №2. P. 129–160.

14. Пейре Р., Тейлор Т. Вычислительные методы в задачах механики жидкости. Л.: Гидрометеоиздат, 1986. 352 c.

15. Воробьев В.В., Коган М.Н., Кучеров А.Н., Устинов Е.В. // Оптика атмосферы. 1989. T. 2. №2. C. 164–172.

16. Кучеров А.Н., Макашев Н.К., Устинов Е.В.//Известия вузов. Радиофизика. 1991. Т. 34. N 5. С. 528– 535; // Известия вузов. Радиофизика. 1993. Т. 36. №2. С. 135–142.

Центральный аэрогидродинамический институт им. проф. Н.Е. Жуковского, г. Москва Поступила в редакцию 22 августа 1993 г.

A.N. Kucherov. Thermal Blooming of Optical Beams in a Heat-Conducting and Viscous Gas under Gravitational Convection.

Theoretical investigation of thermal blooming of a horizontally propagating optical beam with a self-induced gravitational convection is carried out using numerical simulations. The heat conductivity and viscosity of a gas are taken into account. The results are compared with the analogous experimental data.