СПЕКТРОСКОПИЯ АТМОСФЕРНЫХ ГАЗОВ

УДК 539.196

И.М. Сизова

ЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ ОЗОНА. III. ОСНОВНОЙ УФ-СПЕКТР – ДАЛЬНИЙ УФ

Первые две части обзора, включающие общие сведения об электронных спектрах и уровнях и подробную информацию об энергетической области от границы диссоциации до ближнего УФ (полосы Геггинса), опубликованы в журнале <Оптика атмосферы и океана> за 1993 г. (N 5 и N 8) и далее в тексте цитируются как (Ч.I) и (Ч.II). Для удобства восприятия и преемственности частей обзора список литературы этой части вначале повторяет списки из (Ч.I, II), а затем дополнен новыми ссылками.

1.УФ-спектр поглощения в полосе Гартли 4,1-5,7 эВ (область V)

Римские цифры здесь соответствуют нумерации областей, на которые разбит приведенный на рис. 2 в (Ч.І) общий спектр поглощения озона от диссоционного предела 1,05 эВ до ионизационного континуума 30 эВ.

Полоса Гартли (220–310 нм), открытая в 1881 году [2], – важнейшая полоса поглощения озона. Величина сечения здесь достигает абсолютного максимума: 1,1·10⁻¹⁷ см² при λ = 255,3 нм. При λ < 300 нм O₃ является основным атмосферным поглотителем биологически вредного УФ-излучения Солнца, ослабляя в максимуме излучение в ~10⁶⁶ раз. Кроме того, диссоциация O₃ в полосе Гартли – главный природный источник химически активного возбужденного кислорода O(¹D). Поэтому с тех пор как прояснилась роль озона в атмосфере, большая часть работ посвящена исследованию именно полосы Гартли в четырех основных направлениях:

- теоретический расчет сечения поглощения;

- измерение сечения, его зависимости от температуры и состояния O₃;
- определение квантовых выходов возможных каналов диссоциации;

– определение энергетических состояний продуктов диссоциации.

Подробный обзор по двум последним пунктам будет опубликован отдельно. Здесь в выводах даны лишь основные результаты.

1.1. Измерение сечения поглощения

Перечень работ по измерению сечения поглощения в полосе Гартли приведен в табл. 1 в (Ч. II), сечение при комнатной температуре показано на рис. 1, а его зависимость от температуры – на рис. 2. Как видно из таблицы, температурная зависимость поглощения измерялась в [92,93] (245–313 нм; 180–290 К), [107] (248,5 и 297,5 нм; 300–900 К), [109] (208–310 нм; 195–333 К), [111] (220–300 нм; 295–373 К), [114] (210–310 нм; 300–1050 К), [95–117] (200–310 нм; 200–300 К), [125] (185–310 нм; 226–298 К), [124] (253,65 нм; 195–351 К) и [116] (линии ртути; 195, 228 и 295 К). Из рис. 2 и из работ по УФ-поглощению неравновесно колебательновозбужденного озона [102, 103, 114, 139] видно, что при $\lambda \simeq 272-275$ нм меняется знак изменения сечения с ростом температуры.

При $\lambda < 270$ нм зависимость спектра от температуры невелика (~1% при изменении *T* от 300 до 200 К), в более длинноволновом крыле полосы эффект выражен сильнее. В [117] показано, что зависимость от температуры для $\lambda = 270-350$ нм удовлетворительно аппроксимируется параболой, а в [125] приведены параметры подгонки под параболическую зависимость $\sigma(\lambda, T)$ от *T* в диапазоне 275–350 нм, усредненные по небольшим интервалам $\Delta\lambda \simeq 5$ нм.

Рис. 1. Спектр поглощения озона в полосе Гартли при комнатной температуре: ----- 300°К, 1953 г. [87, 91]; ---- 291°К, 1952/53 г. [92, 93]; ×-292-295 К, 1961 г. [94]; +-298 К, 1962 г. [107]; •-~ 300°К, 1964 г. [108]; ○-300°К, 1982 г. [114]; •-297,5°К, 1986/87 г. [122, 124]; ------ 298°К, 1986 г. [125]; •-295°К, 1988 г. [116]

И.М. Сизова

б) Зависимости от длины волны для разных температур из [114]: 300 К (_______ – теория, • – эксперимент); 500 К (______ теория, Δ – эксперимент); 720°К (.... – теория, ∇ – эксперимент); 900°К (______ теория, ■ – эксперимент)

1.2. Идентификация электронного перехода

Расчеты *ab initio* показали [22, 41, 71, 72], что полоса Гартли соответствует дипольноразрешенному переходу из основного электронного состояния X^1A_1 в состояние 1^1B_2 симметрии C_{2D} (или $3^1A'$ симметрии C_s , т.к. минимум энергии 1^1B_2 достигается при неодинаковых длинах боковых связей [22, 41, 60, 140]) с силой осциллятора $f \approx 0,1$ [см. табл. 3 в (Ч.І)].

Состояние $1^{1}B_{2}$ является слабо (или не) связанным состоянием, а предиссоциация O_{3} обусловлена взаимодействием по крайней мере трех, не считая $X^{1}A_{1}$, пересекающихся поверхностей – $1^{1}B_{2}$, $2^{1}A_{1}$ и R, которые вдоль координаты диссоциации v_{3} (в геометрии C_{s}) все являются поверхностями $^{1}A'$ и, следовательно, взаимодействуют; причем $1^{1}B_{2}$ и $2^{1}A_{1}$ коррелируют с возбужденными продуктами $O^{*} + O_{2}^{*}$, а отталкивательная поверхность R - с продуктами в основных состояниях $O + O_{2}$ [83] – см. рис. 3, воспроизведенный из [130] (здесь и далее использованы обозначения электронных состояний O и O_{2} : $O \equiv O(^{3}P)$, $O^{*} \equiv O(^{1}D)$, $O^{**} \equiv O(^{1}S)$, $O_{2} \equiv O_{2}(X^{3}\Sigma_{g}^{-})$, $O_{2}^{*} \equiv O_{2}(a^{1}\Delta_{g})$, $O_{2}^{**} \equiv O_{2}(b^{1}\Sigma_{g}^{*})$). Поэтому фотораспад O_{3} в полосе Гартли происходит по разным каналам.

Из-за малости энергии связи $1^{1}B_{2}$ и вследствие пересечения с *R* вблизи границы диссоциации (вблизи возможного небольшого потенциального барьера $1^{1}B_{2}$ [83]) распад озона в полосе Гартли происходит за время порядка одного колебания (несколько фемтосекунд [140], ~3,6 пс [48], ~130 фс [132]). При этом вероятность релаксации молекулы в основное состояние очень мала (не более 10^{-6} [140], однако на коротких временах, учитывая вероятное существование квазисвязанных колебательных состояний $1^{1}B_{2}$, наблюдение ее возможно. Такие измерения были проведены в [140], где не только наблюдалась с разрешением 0,035 нм люминесценция O₃ при резонансном рамановском рассеянии на O₃ 4-й гармоники YAG: Nd³⁺-лазера ($\lambda = 266$ нм), но и впервые были зарегистрированы положения и идентифицированы высоковозбужденные колебательные уровни основного состояния – до 6–7 квантов типа (*n* 0 2*m*), верхние из которых находятся лишь на 500 см⁻¹ ниже предела диссоциации. Из эксперимента [140] следует, что возбуждение в $1^{1}B_{2}$ не приводит к заметному изменению угла связи O₃, т.к. в спектре люминесценции отсутствуют полосы с v_2 [это видно и из расчетов – см. табл. 2 в (Ч.І)], и что в области вертикального возбуждения 1^1B_2 имеет отталкивательный по координате диссоциации v_3 характер, в противоположность расчетам [83].

Рис. 3. Сечение в симметрии C_s потенциальных поверхностей озона 2^1A_1 , 1^1B_2 и R ($^1A'$ состояния в C_s), связанных с поглощением и диссоциацией в полосах Геггинса и Гартли. Длина второй боковой связи молекулы и угол связи фиксированы. $a_0 = 5,29 \cdot 10^{-9}$ см, ($R_1 = 2,5 a; \Delta = 110^\circ$)

Хотя эксперимент [140] и свидетельствует об отсутствии связанной части $1^{1}B_{2}$, окончательный вывод можно будет сделать лишь после наблюдения люминесценции при сканировании частоты возбуждения. Но и само существование люминесценции уже говорит о разумности последовательного рассмотрения процессов поглощения излучения между двумя невозмущенными поверхностями и распада молекул в результате движения по пересекающимся поверхностям (рис. 3). В подтверждение этого в [80] на примере анализа полосы 1,9 мкм ИКфлуоресценции при лазерном УФ-фотолизе O₃ было показано, что часть возбужденных в $1^{1}B_{2}$ молекул в полосе Гартли не диссоциирует и не переходит назад в колебательное состояние $X^{1}A_{1}$, а, сталкиваясь с O₂ или Xe, стабилизируется в один из нижних неидентифицированных триплетов (синглет-триплетные реакции вида $O_{3}({}^{1}B_{2}) + O_{2}({}^{3}\Sigma_{g}^{-})/Xe \rightarrow O_{3}({}^{3}\beta) + O_{2}({}^{1}\Delta_{g}, {}^{1}\Sigma_{g}^{+})/Xe)$ с последующим распадом в результате столкновения или флуоресценции. Доля таких молекул в смеси 1000 Торр O₂ + малая добавка O₃ весьма приближенно оценивается авторами величиной ~ $3 \cdot 10^{-4}$ и может зависеть от многих факторов.

Структура верхней поверхности связанно-несвязанного электронного перехода во франко-кондоновской (Φ –K) области может исследоваться и другим общепринятым методом – методом анализа температурной зависимости моментов распределения вероятности перехода. Для полосы Гартли такой анализ был проделан в [141] Ивановым и соавторами. Сопоставляя вычисленную из экспериментальных сечений O₃ температурную зависимость моментов с расчетами с помощью гармонической модели 1¹B₂, взятой из [142–143], авторы [141] не только обнаружили в полосе заметное вибронное взаимодействие, нарушающее кондоновское приближение, т.е. постоянство электронного момента перехода в пределах Φ –K-области, но и показали неадекватность гармонического приближения для описания верхнего состояния. Никаким варьированием параметров гармонической модели не удалось заметно уменьшить расхождение теории и эксперимента. Это существенный момент, т.к. большинство расчетов полосы Гартли выполнено в гармоническом кондоновском приближении.

Интересный подход к пониманию процесса поглощения в полосе Гартли представлен Таннором в [144]. Как будет показано ниже, основной контур полосы можно описать с помо-

580

щью довольно грубых моделей. Но попытки удовлетворительно воспроизвести ее тонкую структуру требуют учета полного комплекса свойств молекул: симметрии, трехмерности и т.д. Имея это в виду, автор [144] рассмотрел переход с точки зрения присущих ${}^{16}O_3$ глобальных свойств симметрии. Очевидно, любая потенциальная поверхность основного изотопа O_3 должна обладать симметрией трехкратной перестановки идентичных атомов. В основном состоянии эти изомеры, конечно, могут взаимодействовать путем туннелирования, но по оценкам время взаимодействия в основном колебательном состоянии астрономически велико – 10^{90} с, что и позволяет считать изомеры независимыми. Однако ситуация может измениться в других энергетических областях, например, при колебательном или электронном возбуждении. Последнее, по мнению Таннора, как раз и наблюдается в полосе Гартли.

Электронно-возбужденная молекула O₃ относится к так называемым <свободно колеблющимся> молекулам (<floppy>), ей свойственны движения с большой, далеко за пределами гармоничности, амплитудой. Такие молекулы необходимо рассматривать не в рамках точечных групп симметрии, а в рамках перестановочно-инверсионных (ПИ) групп, изоморфных точечным.

Исследуя с этой точки зрения полосу Гартли, Таннор показал, что нижнее и верхнее состояния перехода (X^1A_1 и 1^1B_2) являются в представлении ПИ-группы, изоморфной точечной группе D_{3h} , 1 *E*' состояниями и имеет место коническое пересечение их поверхностей в равносторонней геометрии молекулы. Как известно, в таких молекулах при пересечении возникает сильный эффект отталкивания типа Яна–Теллера 2-го порядка. Тогда полосу Гартли можно рассматривать как переход с нижней на верхнюю ветвь системы Яна–Теллера, а переходы такого рода дипольно разрешены для перепендикулярно поляризованного света и обычно весьма интенсивны.

Реализация описанного подхода к полосам Гартли требует учета перестановочной симметрии потенциальных поверхностей (Таннор и другие исследователи планируют сделать это для $1^{1}B_{2}$) и обусловливает ряд ограничений по симметрии колебательно-вращательных состояний O₃, касающихся, в частности, природы пичков в полосе и аномального распределения по четным и нечетным J в образующихся при распаде молекулах O₂^{*}. Что касается последнего вопроса, то следствия симметрии перехода $X^{1}A_{1} \rightarrow 1^{1}B_{2}$ находятся в противоречии с экспериментами Валентини [129, 130], что свидетельствует в пользу модели аномалии J, данной им самим [130] и основанной не на процессе возбуждения, а на процессе распада по пересекающимся с $1^{1}B_{2}$ во франко-кондоновской области поверхностям. Соображения же о природе пичков являются интересной гипотезой, нуждающейся в дальнейшей проверке.

1.3 Расчет сечения

Для описания поглощения в полосе Гартли между двумя невозмущенными поверхностями использовались теоретические ab initio и полуэмпирические подгоночные поверхности верхнего состояния [15, 104, 109, 137, 142, 143, 145, 146] и, в основном, гармоническое приближение нижнего.

Поглощение в большинстве работ считалось классическим или квазиклассическим в приближении Φ –К (постоянства дипольного момента перехода). Адлер-Голден [142] учел также вклад вращения в форме пропорционального *T* частотного сдвига спектра $\Delta v = -0,055 T$ (приближение одинакового центробежного коэффициента у обеих поверхностей и обобщенного одиночного вращательного состояния). В [59] проведены расчеты энергии, волновых функций и спектра с использованием поверхностей *ab initio*, с учетом вращения и колебания O₃, ангармонизма, связи вращения с колебанием и в предположении постоянства дипольного момента перехода. Проводились и прямые двумерные (угол фиксирован) [147, 148], и трехмерные [137, 149–151] квантово-механические расчеты сечения на основе формализма Хеллера [152].

В результате были получены сечения поглощения озона $k_j(v)$ из различных колебательных состояний (*j*) нижней поверхности [15, 83, 104, 109, 139 142, 143, 145, 146]. На рис. 4 представлены результаты, полученные по методу [109, 145, 146], согласно которому $k_{000}(v)$ соответствует сглаженному экспериментальному спектру при $T = 195^{\circ}$ K, $k_{010,001}(v) = k_{000}(v - v_{010,001})$, а $k_{100}(v)$ определяется либо вычитанием из экспериментального спектра при T = 333 K компонент k_{000} , k_{010} и k_{001} [109], либо квантово-механическим расчетом с использованием верхней

поверхности, полученной из предположения $k_{000} = k(T = 195^{\circ}\text{K})$ [145]. В [109] использована аналитическая формула, аппроксимирующая k_{000} кусочной функцией из полиномов и экспонент. Использованы также: метод волновых пакетов [83] с применением расчетных потенциальных поверхностей *ab initio*; метод Вигнера [15] с использованием двух типов поверхностей – *ab initio* из [83] (штриховая линия) и подгоночных (сплошная); метод квантовомеханического расчета [142] с 3-мя моделями параметров верхнего состояния – *ab initio* из [83] и подгоночных.

Абсолютные значения сечений приведенных спектров близки по величине [142]. А сдвиги максимумов k_{010} и k_{001} относительно k_{000} равны: $\Delta v_{010} \simeq 700$ [109, 145, 146], 200 [15] и 170 см⁻¹ [142]; $\Delta v_{001} \simeq 1042$ [109, 145, 146], 970 [15] и 2084 см⁻¹ [142].

Как видно из рис. 4, спектры из (000), (010) и (001) близки по структуре, отличаясь лишь сдвигом по λ и шириной, а спектр из (100) резко отличен – имеет бимодальную структуру. Это относится и к колебательным состояниям с большим числом квантов: наибольшее изменение в спектр вносят состояния с возбужденной первой модой v_1 .

Рис. 4. Расчет сечения поглощения в полосе Гартли на переходе $X^1 A_1 \rightarrow 1^1 B_2$. Нормированные сечения из разных колебательных уровней $X^1 A_1$ (слева):-[109];-[145, 146];-[83];-[15], ...--[142]. Полные сечения для T = 300 и 500°К (справа): ...--[153], ...--[141], ...--[142]. Для наглядности кривые полных сечений для T = 500°К сдвинуты вверх по оси ординат на 4.10¹⁸ см². Экспериментальные данные для сравнения (• – 300°К, $\Delta = 500$ °К) взяты из [114]

И.М. Сизова

Из рис. 4 также можно сделать вывод, что использованные методы расчета, обеспечивая удовлетворительное согласие с полными сечениями, учитывая их разброс и предлагая схожие формы спектров индивидуальных колебательных уровней, дают заметные различия в их ширине и сдвиге по частоте. Это говорит о некритичности общего вида спектров к методу расчета, а более точные модели требуют более детальных экспериментов.

Наблюдаемый УФ-спектр О₃ представляется суммой спектров различных колебательных уровней X^1A_1 с весами, равными заселенностям. Среди рассчитанных таким образом спектров некоторые представлены аналитическими выражениями, удобно аппроксимирующими полосу Гартли без пичков в широком диапазоне температур [114, 132, 142, 153]. Часть их тоже приведена на рис. 4. Здесь использованы формулы *T*, *K*; v, см⁻¹)

$$\sigma(\mathbf{v}, T) = \sum_{ijk} \sigma_{ijk}(\mathbf{v}) Z_{ijk} / \sum_{ijk} Z_{ijk} \quad [153], \tag{1}$$

где $Z_{ijk} = \exp(-h\omega_{ijk}/kT)$ – больцмановский фактор; ω_{ijk} – частота колебания (*ijk*), см⁻¹, а σ_{ijk} вычисляется по формуле

$$\sigma_{ijk} = [C/(3200 + \beta\omega_{ijk})]\exp[-((39200 - v - \omega_{ijk})/(3200 + \beta\omega_{ijk}))^2]$$

с параметрами $C = 3,53 \cdot 10^{-14}$ см; 39200 и 3200 – центр полосы и ее ширина, см⁻¹; $\beta = 0,8$ – подгоночный параметр по результатам [87, 91,92, 107]. Формула (1) получена простым приближением спектра гауссовскими функциями и предполагается для температур $T = 200 \div 1000^{\circ}$ К.

$$\sigma(\mathbf{v}, T) = \sigma_a(\mathbf{v}, T) + \sigma_b(\mathbf{v}, T) \quad [114], \tag{2}$$

где $\sigma_a = \sigma_{a0}^m [\tanh(\theta_{ae}/2T)]^{1/2} \exp[-\tanh(\theta_{ae}/2T)((v - v_{a0})/\Delta v_{a0})^2]; \sigma_b = \sigma_{b0}^m \times \exp[-(T/\theta_{be}) - ((v - v_{b0})/\Delta v_{b0})].$ Эмпирическая формула (2) получена на основе приближения Шульца–Вьеланда [154], разработанного для двухатомных молекул. Из экспериментальных данных [114] найдены 8 подгоночных параметров (2): $\sigma_{a0}^m = 1,187 \cdot 10^{-17} \text{ cm}^2; v_{a0} = 38800 \text{ cm}^{-1}; \Delta v_{a0} = 2900 \text{ cm}^{-1}; \theta_{ae} = 900^{\circ}\text{K}; \sigma_{b0}^m = 6,21 \cdot 10^{-18} \text{ cm}^2; v_{b0} = 43000 \text{ cm}^{-1}; \Delta v_{b0} = 3300 \text{ cm}^{-1}; \theta_{be} = 660^{\circ}\text{K}.$ Формула (2) с указанными параметрами выведена для 220 нм $\leq \lambda \leq 320$ нм и 300°K $\leq T \leq 900^{\circ}\text{K}.$

$$\sigma(\nu, T) = (C\nu / f(n)) (\sigma/\omega_1)^{2n} \exp\left[-(\sigma/\omega_1)^2\right] [142],$$
(3)

где
$$\langle v \rangle = \langle v_{000} \rangle + \sum_{j=1}^{3} 0.5 \omega_j (R_j - 1) (Z_j / (1 - Z_j)); \quad Z_j = \exp(-h\omega_j/kT); \quad f(n) = n! \simeq \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \frac{1}{12n}\right)$$

при $n = (v - \langle v \rangle + \sigma^2/\omega_1 + 0.055T)/\omega_1 \gg 1;$

$$\sigma^{2} = \sum_{j=1}^{3} \omega_{j}^{2} \left[(R_{j} \delta_{j})^{2} \left(\frac{1}{2} + \frac{Z_{j}}{1 - Z_{j}} \right) + \frac{1}{8} (R_{j} - 1)^{2} \left(1 + 2 Z_{j} / (1 - Z_{j})^{2} \right) \right];$$

 $\langle v_{000} \rangle = 39750 \text{ см}^{-1}; C = 1,83 \cdot 10^{-21} \text{ см}^3; \omega_1, \omega_2$ и $\omega_3 = 1103; 701$ и 1042 см $^{-1}$ – основные колебательные частоты озона; $R_1, R_2, R_3 = 1,21; 0,509; -3,0$ и $\delta_1, \delta_2, \delta_3 = 2,32; 3,50; 0$ – параметры верхней поверхности.

Формула (3), как и (2), получена из приближения Шульца–Вьеланда для модели двухатомной молекулы с частотой ω_1 и пуассоновскими функциями вместо гауссовских в (2). Первый (<v>) и второй (σ^2) моменты спектра получены из правила сумм, вытекающего из приближения Ф–К. Слагаемым 0,055*T* учтен вклад вращательных степеней свободы O₃. Формула (3) верна для $\lambda \leq 280$ нм. В [142] рассмотрены три модели параметров *R* и δ .

С помощью столь же простых моделей получены и более сложного вида аналитические формулы сечения, например, интегральное выражение [132] из одномерной модели с подгоночными параметрами или спектр в [143], представленный как весовая сумма спектров из разных колебательных состояний, каждый из которых является интегралом перекрытия, выраженным в виде сумм гипергеометрических функций $_2F_1$ от комплексных аргументов. В этой модели использованы гармонические поверхности и учтен эффект Душинского, связывающий

движения сгиба и растяжения. В численных расчетах эти формулы не менее удобны, чем приведенные выше.

Описанные модели дают спектры, хорошо аппроксимирующие усредненный по пичковой структуре вблизи экстремума тепловой спектр полосы Гартли и его температурную зависимость [83, 109, 114, 142, 143], хорошо согласующиеся с экспериментами по анализу спектра O_3 , образованного в рекомбинации [145, 146], и двойному ИК–УФ-резонансу [102–104, 139, 142, 155], и могут быть использованы во многих прикладных задачах УФ и ИК–УФ-фотохимии [104, 139], хотя, как уже говорилось, и гармоническая модель 1^1B_2 и Ф–К-приближение неадекватны для полосы Гартли [141].

Но все эти расчеты аппроксимируют полосу Гартли без небольших, но четко выраженных пичков вблизи экстремума, наблюдаемых в экспериментальном спектре. Эти пички авторы расчетов относили либо к неучтенному вкладу связанной части $1^{1}B_{2}$ [22], либо к вкладу высоких колебательных уровней $X^{1}A_{1}$ [109, 145, 146], либо к вкладу возмущений, обусловленных взаимодействием с другими верхними состояниями, например с $2^{1}A_{1}$, определяющим резко выраженную колебательную структуру в более длинноволновых полосах Геггинса. Хотя еще в 1976 году Паком на простой модели было показано [156], что колебательная (пичковая) структура диффузного УФ-спектра молекул типа XY_{2} может наблюдаться даже при прямом возбуждении в простое диссоциативное состояние и в большинстве случаев для объяснения наложенной на континуум диффузной колебательной структуры нет необходимости привлекать модель связанности верхнего состояния или пересечения связанного состояния с диссоциативным. Некие пички, полученные в неэмпирических расчетах [59] и приписанные авторами вкладу колебаний $1^{1}B_{2}$, лишь в общем отражают наличие пичковой структуры, хотя основной контур при этом хорошо согласуется с экспериментальным, в том числе и с температурной зависимостью.

В последние годы сделаны прямые попытки теоретически воспроизвести пички в полосе Гартли [59, 137, 148–151, 157]. Эти расчеты, хотя и дали пока что лишь качественное согласие с экспериментами, выявили 2 важных момента. Во-первых, воспроизведение пичков, повидимому, может быть достигнуто лишь в трехмерной модели; замораживание сгибового движения либо не дает пичков даже при учете больших негармонических амплитуд асимметричного и симметричного растяжений (квантово-механические расчеты в [147], квазиклассические в [148]), либо требует дополнительных предположений о природе квазипериодических орбит (квантово-механические расчеты в [148]). И во-вторых, количественное описание пичков сильно зависит от модели верхней поверхности ¹В₂. Взятая авторами [149, 150, 157] поверхность Шеппарда-Валкера [15] обладает рядом недостатков, видимо, существенных для расчета пичков (например, имеет минимум симметрии C_{21p} а не C_s , как предсказывают расчеты ab initio, и подогнана в стандартной форме Сорби-Мюрела к поверхности ab initio из [83], которая довольно плохо согласуется с экспериментальными энергетическими параметрами глубиной ямы, высотой барьера и т.д.), а применение квадратичной модели $1^{1}B_{2}$ [151] не дает количественного согласия даже при учете ангармонизма до 4-го порядка теории возмущения. Единственные пока расчеты с лучшей, чем [83], поверхностью ab initio, также подогнанной под аналитический вид Сорби-Мюрела [137], дали лучшее воспроизводство и общего контура полосы Гартли, и пичков (а также и полос Геггинса [137, 138] - см. (Ч. II)).

В [132, 158] Джонсон и Кинсей показали, анализируя в соответствии с формализмом Хеллера [152] не фотодиссоционный спектр О₃, а полученную из него диполь-дипольную автокорреляционную функцию $\langle \phi_0 | \phi_0(t) \rangle$, через которую спектр выражается с помощью Фурье-образа,

$$\sigma(\omega) \sim \omega \int_{-\infty}^{+\infty} \langle \phi_0 | \phi_j(t) \rangle e^{i\omega t} dt,$$
(4)

что пички в полосе Гартли обусловлены наличием нескольких последовательных пиков временной зависимости $\langle \phi_0 | \phi_j \rangle$ (19; 41; 68; 99 и 128 фс, затем плато до ~250 фс – см. рис. 5, воспроизведенный из [132]), возникающих вследствие нестабильной квазипериодичности траекторий движения по поверхности 1^1B_2 в области Ф–К первые 200 фс после поглощения света. Здесь $|\phi_0\rangle = \hat{\mu} | \Psi_0\rangle$ – состояние, определяемое воздействием оператора дипольного момента $\hat{\mu}$

перехода $X^1A_1 \rightarrow 1^1B_2$ на основное колебательное состояние $|\Psi_0\rangle$ нижней поверхности, а $|\phi_j\rangle = \exp[-i\hat{H}(^1B_2)t/\hbar] |\phi_0\rangle$ – его эволюция во времени под воздействием гамильтониана верхнего состояния. Общий широкий контур полосы обусловлен, согласно соответствию частотно-временных Фурье-образов в (4), быстрым ($\leq 6 \phi c$) распадом перекрытия волновых пакетов состояний в результате первичного движения возбужденной молекулы из области Φ –К вдоль направления симметричного растяжения.

Рис. 5. Автокорреляционная функция в полосе Гартли, полученная в [132] из экспериментального спектра [115]. Рисунок воспроизведен из [132]. Из графика вычтен начальный пик, соответствующий общему контуру полосы. А, В, С, и D – обозначенные авторами [132] основные рекуррентные пики

Квазиклассические расчеты показали, что рекуррентность пичкового движения по 1^1B_2 обусловлена несколькими квазиколебаниями короткой О–О связи при разрывном движении длинной. Квантовые [137, 149, 150] ([149] в координатах Якоби, [150] в гиперсферических координатах Пака, более подходящих для молекул типа A_3 и существенно сокращающих расчеты) и классические [157] трехмерные расчеты автокорреляционной функции и ее классического аналога дали хорошее качественное согласие с функцией Джонсона–Кинсея, вычисленной из экспериментального спектра [115, 125], а рассчитанные с их помощью по формуле (4) спектры – хорошее согласие с исходным спектром [115, 125].

Аналогичный результат получен и в двумерных квантовых расчетах с замороженной сгибовой модой [148]. Однако здесь возникла необходимость учета квазипериодических орбит над барьерами изомеризации и диссоциации верхней поверхности (см. ниже). Поскольку такие орбиты весьма чувствительны к качеству поверхности, а для расчетов бралась невысокого качества поверхность Шеппарда–Валкера, то расчет [148] следует считать оценочным, тем более что классический двумерный расчет [148] не дал пичков, а причина их отсутствия в квантовых расчетах [147] осталась невыясненной.

Дальнейший прогресс в объяснении природы пичков требует улучшения качества расчетов по предложенной в [137, 148–150, 157] схеме, в частности более адекватных моделей потенциальных поверхностей, учета взаимодействия с другими поверхностями, непостоянства дипольного момента перехода и т.д. Часть этих усовершенствований уже успешно проделана. Расчеты автокорреляционной функции и полосы Гартли в [137] сделаны с более реалистичной поверхностью $1^{1}B_{2}$, чем поверхность из [15] в [149, 150, 157]. Рассчитанная и аппроксимированная также в [137], она ближе по параметрам к эксперименту, чем введенная в [15], и дает бо́льшую крутизну контура в области Ф–К, минимум в симметрии C_{s} и т.д. В результате и общий контур полосы, и пички в [137] заметно лучше совпадают с экспериментом, чем в [149, 150, 157]. По оценкам [137], неучтенное ими влияние непостоянства дипольного момента и вращения на спектр мало́, а вот учет пересечения $1^{1}B_{2}$ с другими поверхностями может быть существенен. Интересные дополнительные соображения по поводу пичков высказаны Таннором [144]. Одним из сложных моментов в объяснении рекуррентного движения молекулы в состоянии 1^1B_2 является вопрос о плотности траекторий, временные характеристики которых соответствуют пикам $\langle \phi_0 | \phi_j \rangle$: могут ли они обеспечить имеющуюся выраженность пичковой структуры. Таннор высказал предположение, что помимо рекуррентного движения в строгом смысле слова (с квазивозвратом к исходному состоянию) вклад в пички могут давать переходы из одной из трех локально-симметричных областей поверхности (обусловленных перестановочной симметрией вследствие идентичности атомов O₃) в другую изомерную область.

Плотность таких траекторий для возбужденных состояний типа ${}^{1}B_{2}$ может быть заметно выше плотности строго рекуррентных траекторий [148]. Проверка этой гипотезы требует симметризованного рассмотрения движений, описанных в [132, 137, 149, 150, 157, 158], которое планируется автором [144] и отчасти уже продемонстрировано в двумерных расчетах [148]. Большой интерес представляло бы сравнение спектров полосы Гартли для изотопов озона, которые могут быть трех типов: три варианта с той же перестановочной симметрией, что и ${}^{16}O_{3}$, более низкая симметрия, например у ${}^{16}O_{2}{}^{18}$ О, и полное ее отсутствие у ${}^{16}O{}^{17}O{}^{18}$ О. Пока подобных экспериментов нет.

Аналогичные замечания относятся и к расчетам резонансного рамановского спектра (РРС) в полосе Гартли для сопоставления с экспериментом [140]. Расчеты РРС проделаны в [143, 147, 151]: в [143] – трехмерные аналитические в виде суммы интегралов перекрытия для квадратичных форм поверхностей в приближении Ф–К, в [147, 151] – численные через Фурье-образы автокорреляционных функций аналогично расчетам спектра поглощения (в [151] – трехмерный расчет на гармонических поверхностях с учетом ангармонизма до 4-го порядка теории возмущения, а в [147] – двумерный с замороженным сгибовым колебанием, но на более реалистичной поверхности Шеппарда–Валкера [15] и с учетом произвольно больших амплитуд колебаний).

Все расчеты дали хорошее согласие с контуром РРС и несколько хуже – с интенсивностью спектра, что указывают на важную роль всех трех мод колебаний, ангармонизма, формы поверхности 1^1B_2 и учета больших амплитуд колебаний за пределами теории возмущения. Особо следует отметить (как и в сечении поглощения) важную роль сгибового колебания v_2 , которое не проявляется непосредственно в спектре.

1.4. Выводы

Таким образом, самая мощная полоса поглощения озона – полоса Гартли (220–310 нм; $\sigma_{max} \simeq 1,1 \cdot 10^{-17}$ см² при $\lambda = 255,3$ нм) соответствует дипольно-разрешенному переходу ($f \simeq 0,1$) между электронными состояниями X¹A₁ и 1¹B₂. Спектр поглощения (сглаженный по слабым пичкам вблизи максимума) и его температурная зависимость хорошо описываются [15, 83, 104, 109, 114, 132, 139, 142, 145, 146, 153] в рамках простых моделей перехода между этими двумя состояниями (гармоническая поверхность – нижнего, отталкивательная – верхнего) с учетом принципа Φ -К, хотя имеются данные о неадекватности реальности как приближения Ф-К, так и гармонического представления верхней поверхности [141]. Имеются и более строгие расчеты сглаженного спектра [59, 143]. Он представляется суммой континуальных спектров с разных колебательных уровней X^1A_1 ; причем для нижних уровней мод v_2 и v_3 (000, 010, 001 и др.) эти спектры близки по форме, отличаясь лишь сдвигом и шириной, а для v₁ (100, 200 и т.д.) спектр резко отличен, имеет бимодальный и более сложный характер. Тонкая структура спектра пички, которые обусловлены нестабильной квазипериодичностью движения по поверхности $1^{1}B_{2}$ [132, 137, 148, 157, 158] и качественно хорошо описываются через последовательность пиков временной зависимости диполь-дипольной автокорреляционной функции или ее классического аналога, являющихся Фурье-образом спектра. Количественное описание пичков требует трехмерной модели (несмотря на отсутствие в РРС сгибовых колебаний), учета перестановочной симметрии О₃ и очень чувствительно к качеству используемых потенциальных поверхностей.

Время распада (предиссоциация) $1^{1}B_{2}$ оценивается временем порядка 1 пс (несколько фемтосекунд – 3,6 пс [48, 80, 132, 140]). При этом удалось наблюдать слабый спектр люминесценции (PPC) непродиссоциированных молекул в $1^{1}B_{2}$ [140], состоящий из обертонов $X^{1}A_{1}$ вида ($k \ 0 \ 2 m$) вплоть до ~0,06 эВ ниже предела диссоциации, а также, по-видимому, столкновительный переход из $1^{1}B_{2}$ в одно из нижних триплетных состояний [80]. РР-спектр удовлетворительно воспризведен в двумерных [147] и трехмерных [151] квантово-механических расчетах методом Фурье преобразования соответствующей автокорреляционной функции и в трехмерных [143] аналитических расчетах интегралов перекрытия в рамках гармонической модели Φ -K.

Распад О₃ в полосе Гартли обусловлен взаимодействием (пересечением) 4-х электронных поверхностей – нижней X^1A_1 и верхних 1^1B_2 , 2^1A_1 и отталкивательной *R*; причем X^1A_1 и *R* распадаются на O + O₂, а 1^1B_2 и 2^1A_1 – на O* + O^{*}₂. Взаимодействие этих поверхностей определяет наличие 2-х каналов диссоциации O₃ с квантовым выходом возбужденного канала φ^* в виде плавной ступеньки ~0,8–0,9 (в обзоре [63] рекомендовано 0,92) при λ < 300 нм со спадом до нуля вблизи порога (~308–310 нм) или, возможно, с <хвостом> вплоть до $\lambda \simeq 325$ нм, зависящим от температуры и колебательного возбуждения O₃. Другие каналы распада практически не наблюдались [113, 159–163].

Экспериментальные исследования ϕ^* и состояний продуктов распада (имеющих характерное неравновесное колебательно-вращательное распределение [97, 107, 129, 130, 164, 165]) указывают на сложный механизм распада, который нельзя описать адекватно, не учитывая пересечения поверхностей [15, 104, 130, 166], их симметрию и, соответственно, изотопическую зависимость ϕ^* ((1 – ϕ^*) для ¹⁶O¹⁸O в два раза больше, чем для ¹⁶O₂ [130]), которая может быть связана с не объясненным еще аномальным изотопическим обогащением O₃ в лабораторных экспериментах и в атмосфере [167].

Колебательно-вращательное распределение O_2^* в полосе Гартли оказалось очень близко к распределению O_2 , полученному аналогичными методами в видимой полосе Шаппюи [98–100] (см. (Ч.ІІ)) и объясненному в рамках тех же моделей <колебательного адиабатического перехода> [130] и <модифицированного импульсного вращения> [128, 165], а также к вращательному распределению O_2 в полосе Гартли [165]. Более строгие модели ϕ^* в настоящее время не разработаны, хотя предложены эмпирические аналитические формулы для $\phi^*(\lambda, T)$ [168] и удовлетворительные качественные объяснения экспериментальных данных.

Зависимость спектра полосы Гартли от давления в экспериментах не наблюдалась, поскольку общее давление газа не превышало 1 атм.

2. Область поглощения до границы ионизации 5,7-12,75 эВ (область VI)

2.1. Измерение спектра поглощения

Спектр поглощения O₃ для длин волн короче 220 нм измерялся всего в нескольких работах [21, 88, 105, 106, 125, 169] в основном в 50-х годах. Эти данные, представленные на рис. 2 в (Ч. I) и рис. 6, хорошо согласуются между собой; согласие наблюдается как между значениями сечения сороколетней давности [88, 106], так и между ними и спектром электронных потерь под малыми углами в [21] (1974 г.). Позднее измерения проводились лишь для отдельных λ [169] и в длинноволновом крыле области $\lambda \ge 185$ нм [125]. Температурная зависимость исследовалась лишь в диапазоне 226–298 К для $\lambda \ge 185$ нм [125], где изменения не превысили 1%.

2.2. Идентификация спектра

Спектр до первого ионизационного потенциала (ИП) – 100-220 эВ – представляет собой ряд четких широких экстремумов в областях ~ 7,2 (172,5), ~8,5 (145), ~9,3 (133), ~10,2 (122) и 11,3 эВ (110 нм). Наиболее ярко выраженная структура между 9 (138 нм) и 13 эВ (95 нм) (см. рис. 6) интерпретируется [21] как *ns* и *np* ридберговские серии с пиками на 9,24; 10,20; 11,12 и 11,48 эВ, сходящиеся к 1-му ИП 12,75 эВ (97,24 нм). На эти пики накладываются более узкие и частые небольшие пички, которые могут относиться к ридберговским состояниям, сходящимся к более высоким ИП [21].

Выше 1-го ИП форма спектра меняется и наблюдается фактически ионизационный континуум с широким максимумом вблизи 16,5 эВ (75 нм). На нем еще выделяются отдельные резкие пики [106], а выше 19 эВ ($\lambda < 65$ нм) континуум является практически бесструктурным [21].

В настоящее время почти нет экспериментальных данных по спектру и его зависимости от температуры и давления в дальнем УФ. Теоретические работы также немногочисленны, рассчи-

танные в них энергии возбуждения хорошо согласуются с основными особенностями экспериментального спектра. Попытку идентифицировать спектр в [88] нельзя считать успешной, т.к. она основана на неверных данных по форме молекулы О3 и структуре электронных уровней.

Рис. 6. Спектр поглощения озона в вакуумном УФ при комнатной температуре: - 1953 г. [88, 105]; • – 1958 г. [106]; + – 1986 г. [169]; – – – – – – – – – – – – 1986 г. [125]. Сечение в [106] нормировано по сечению в линии L_{α} (121,6 нм) из [88,105]. В верхней части графика в логарифмическом масштабе показана тонкая структура спектра вблизи 1-го ИП [88]. Стрелками указаны первые ИП О3

2.3. Анализ продуктов распада

Подробно анализ продуктов фотолиза О, во всей УФ-области будет дан в отдельном обзоре. Здесь кратко приведены результаты.

Хотя при $\lambda < 200$ нм появляется разрешенный по спину канал распада с образованием О^{**}, в экспериментах образование О** не наблюдалось [163, 172]. Из экспериментов на трех длинах волн: 222 (KrCl-лазер), 193 (ArF-лазер) [51] и 157,6 нм (F₂-лазер) [173], следует, что с уменьшением λ в УФ падает выход образования О* + О₂*, появляется канал О* + О₂** (порог – 260 нм) и возрастает выход O+O₂; причем в последнем растет доля реакций с образованием O₂ с большой внутренней энергией, достаточной для бесстолкновительного распада молекулы на атомы (т.е. идет процесс двухступенчатого распада О₃ на три атома О). Но, разумеется, для получения полной картины в вакуумном УФ нужны дальнейшие эксперименты для более чем трех длин волн.

3. Ионизационные потенциалы (ИП) озона: hv > 12,75 эВ (область VII)

3.1. Измерение ИП

Инизационные потенциалы озона неоднократно измерялись [23, 24, 54, 174-180] и рассчитывались ([7, 8, 30, 170, 171, 181–183] и ссылки в них). Экспериментальные данные приведены в таблице и стрелками на рис. 6. 588

Авторы, год, ссылки	N ИП	1	2	3	4	5	6	7	8	9	10
1	2	3	4	5	6	7	8	9	10	11	12
	возбужденная орбита по теоре- ме Коопмана (метод ХФ)	1 <i>a</i> ₂	6 a ₁	4 b ₂							
Radwan, Turner	возбужденная орбита	не идентифицировалась									
1966[174]	симметрия состояния	не идентифицировалась									
	энергия, эВ	12,3±0,1	12,52±0,05	13,52±0,05	16,4 –17,4	19,24±0,10					
	возбужденная орбита	6 a ₁	1 a ₂	4 b ₂							
Frost, Lee, McDowell	симметрия состояния	$1^2 A_1$	$1^2 A_2$	$1^2 B_2$	$1^2 B_1; 2^2 B_2$						
1974 [24]	энергия, эВ	12,75±0,01 (адиабатическая 12,53±0,01)	13,03±0,02	13,57±0,01	20,3 ± 0,1						
	возбужденная орбита	6 a ₁	1 a ₂ ;	; 4 b ₂							
Brundle	симметрия состояния	$1^2 A_1$	$1^2 A_2; 1^2 B_2$		$1^2 B_1; 2^2 B_2$						
1974[23]	энергия, эВ	12,75 (12,56)	13,02 13,57		16,0 – 18,5 (три линии; цен		; центр 17,7)	18,7-21,5 (центр 20,1)			
Dyke, Golob,	возбужденная орбита	6 a ₁	4 b ₂	1 a ₂							
Jonathan, Morris, Okuda	симметрия состояния	$1^2 A_1$	$1^2 B_2$	$1^2 A_2$							
1974 [175]	энергия, эВ	12,75 (12,44± 0,01)	13,02	13,57	16,54	17,45	~ 20 широкая полоса	~ 24,5			
Weiss,	возбужденная орбита										
Berkowitz, Appelman	симметрия состояния										
1977 [54]	энергия, эВ	Адиабатическая 12,519±0,004									
Moseley, Ozenne, Cosby	возбужденная орбита										
1981 [176]	симметрия состояния										
	энергия, эВ	Адиабатическая 12,52±0,04	13,03	13,52	15,57	16,54	17,45	19,99			
Katsumata, Shiromaru, Kimura 1984 [177]	возбужденная орбита	6 a ₁	4 b ₂	1 a ₂							
	симметрия состояния	$1^2 A_1$	$1^2 B_2$	$1^2 A_2$	$2^2 B_2[170, 171];$	$2^2 B_1[170, 171];$	${}^{3^2}A_1, 4^2B_2[170, 171];$	$5^2 B_1, 5-7^2 A_1,$			
					$2^2 B_1 [183]$	$3^2 A_1$ [183]	$3^2 B_1, 3^2 B_2$ [183]	$5-7^2B_2$ [170, 171]			1
	энергия, эВ	12,73 (12,43)	13,00	13,54	15,6	16,5 (16,09)	17,6 (17,1)	19,4-20,8 (центр 20,00)	22,7	24,1	26,8

3.2. Идентификация ИП

По теореме Коопмана [184] (на основе одноконфигурационного метода Хартри-Фока) три нижних ИП должны соответствовать отрыву электронов соответственно с орбит 1 a_{2} , 6 a_{1} и 4 b₂. Однако, как известно [185], озонные электронные уровни плохо описываются одночастичной хартри-фоковской теорией. Это относится и к ИП.

Почти все исследования идентифицируют 1-й ИП как уход электрона с орбиты 6 а₁. Относительно 2-го и 3-го ИП имеются разногласия. Эти потенциалы соответствуют переходам с $1 a_2$ и $4 b_2$, последовательность же их как в экспериментах, так и в расчетах различна. Б§льшая часть расчетов [7, 8, 170, 171, 182] в согласии с экспериментами [175, 177] дает 2-й ИП с орбиты 4 b_2 (двойное нарушение теоремы Коопмана), однако в некоторых расчетах [30, 170, 181] и в эксперименте [24] 4 b₂ относится к 3-му, а 1 a₂ – ко 2-му ИП. Сводка данных по первым десяти ИП О₃ дана в таблице, где описаны эксперименты начиная с 60-х годов. Ранее измерялся лишь 1-й ИП: 1954 г. [178] – 12,8; 1956 г. [179] – 12,8±0,05; 1957 г. [180] – 11,7 эВ.

Более высокие ИП озона исследовались лишь в нескольких работах (теоретически в [8, 170, 171, 182, 183], экспериментально в [23, 24, 175, 177]), и их идентификация и местоположение остаются неопределенными. Для них характерен так называемый эффект <встряски> (shake-up), когда отрыв одного электрона сопровождается возбуждением другого [170], что экспериментально проявляется в сателлитных полосах спектра ионизации и дополнительно затрудняет идентификацию ИП. По-видимому, у О3 имеется ИП в области 15,5 эВ [170, 171, 177], 1-3 потенциала в области 16-18 эВ [21, 23, 170, 171, 174-177], а также один или несколько потенциалов в районе 20-21 эВ [23, 24, 170, 171, 174-177, 182]. Далее до 28 эВ ИП не наблюдались [21, 23] или наблюдались очень слабые [177] и не рассчитывались. Выше 28 эВ согласно расчетам [182] должны быть слабые ионизационные переходы, сливающиеся в ионизационный континуум и не дающие выраженной структуры спектра в районе десятков электронвольт. В [182] рассчитывались также ИП с внутренних оболочек в области 550 эВ.

В [54] вплоть до 60 нм (21 эВ) исследовались выходы продуктов ионизации. Основным продуктом во всей области выше 1-го ИП является ион О3,. Выше 13,082 эВ появляется слабый выход ионов O_2^+ (порог реакции $O_3 + hv \rightarrow O_2^+ + O + e$ соответствует 13,125±0,004 эВ). Выход О₂⁺ усиливается при *h*∨ ≥ 13,432 эВ, что близко адиабатической энергии 3-го ИП и, вероятно, указывает на предиссоционный механизм образования О⁺. Атомарный ион О⁺ появляется при $hv \ge 15,21\pm0,01$ эВ (на 0,57 эВ выше порога реакции $O_3 + hv \rightarrow O^+ + O_2 + e$), и его квантовый выход плавно растет с уменьшением λ. Энергия 15,21 эВ близка 4-му ИП О₃, и, вероятно, начало образования О⁺ связано с полосой этого потенциала так же, как дальнейшие изгибы роста выхода О+ могут быть связаны с 5-м и 6-м ИП. При 60 нм согласно [54] относительные квантовые выходы O₃⁺, O₂⁺ и O⁺ равны 1,00:0,36:0,05.

В [176] для первого иона озона О⁺ были измерены энергии двух нижних колебательных состояний моды v₁.

1. Schönbein Ch.F., Lettre de M., Schönbein a M. Arago. // Compt. Rendus. 1840. V. 10. N 17. P. 706.

2. Hartley W.N.// J. Chem. Soc. 1881. V. 39. P. 57.

4. Huggins W., Mrs. Huggins. // Proc. Roy. Soc. Ser. A. 1890. V. 48. P. 216.

5. Salahub D.R., Lamson S.H., Messmer R.P. // Chem. Phys. Lett. 1982. V. 85. N 4. P. 430. 6. Saunders V.R., von Lenthe J.H.// Mol. Phys. 1983. V. 48. N 5. P. 923.

7. Hay P.J., Dunning T.H., Jr, Goddard W.A. III. // J. Chem. Phys. 1975. V. 62. N 10. P. 3912. 8. Thunemann K.-H., Peyerimhoff S.D., Buenker R.J.// J. Mol. Spectr. 1978. V. 70. N 3. P. 432. 9. Laidig W.D., Schaefer H.F.III. // J. Chem. Phys. 1981. V. 74. N 6. P. 3411.

10. Moscardo F., Andarias R., San-Fabian E. // Int. J. of Quant. Chem. 1988. V. 34. N 4. P. 375.

11. Harcourt R.D., Skrezenek F.L., Wilson R.M., Flegg R.H. // J. of Chem. Soc. Far. Trans. II. 1986. V. 82. N 4. P. 495.

12. Peterson K.A., Mayrhofer R.C., Sibert E.L.III, Woods R.C. // J. Chem. Phys. 1991. V. 94. N 1. P. 414.

13. Ermakov K.V., Butaev B.S., Spiridonov V.R.// J. of Mol. Struct. 1990. V. 240. P. 295.

14. Wright J.S., Shih S.-K., Buenker R.J. // Chem. Phys. Lett. 1980. V. 75. N 3. P. 513. 15. Sheppard M.G., Walker R.B. // J. Chem. Phys. 1983. V. 78. N 12. P. 7191.

^{3.} C h a p p u i s J .// Compt. Rendus. 1882. V. 94. N 15. P. 858.

16. Carters S., Mills I.M., Murrell J.N., Varandas A.J.C.//Mol. Phys. 1982. V. 45. N 5. P. 1053.

17. Standard J. M., Kellman M. E.// J. Chem. Phys. 1991. V. 94. N 7. P. 4714.

18. Walsh A.D. // J. Chem. Soc. 1953. V. 3. N 8. P. 2266.

19. Mulliken R.S. // Can. J. Chem. 1958. V. 36. N 1. P. 10.

20. Peyerimhoff S.D., Buenker R.J. // J. Chem. Phys. 1967. V. 47. N 6. P. 1953.

21. Gelotta R.J., Mielczarek S.R., Kuyatt C.E.//Chem. Phys. Lett. 1974. V. 24. N 3. P. 428. 22. Hay P.J., Dunning T.H., Jr.//J. Chem. Phys. 1977. V. 67. N 5. P. 2290.

23. Brundle C. R. // Chem. Phys. Lett. 1974. V. 26. N 1. P. 25.

24. Frost D.C., Lee S.T., McDowell C.A.//Chem. Phys. Lett. 1974. V. 24. N 2. P. 149. 25. Trajmar S., Rice J.K., Kuppermann A.//Adv. Chem. Phys. 1970. V. 18. P. 15.

26. I n o k u t i M. // Rev. Mod. Phys. 1971. V. 43. N 3. P. 297.

27. Grimbert D., Devaquet A. // Mol. Phys. 1974. V. 27. N 4. P. 831.

28. Shih S., Buenker R.J., Peyerimhoff S.D.//Chem. Phys. Lett. 1974. V. 28. N 4. P. 463. 29. Harding L.B., Goddard W.A.III. //J. Chem. Phys. 1977. V. 67. N 5. P. 2377.

30. Dewar M.J.S., Olivella S., Rzepa H.S.// Chem. Phys. Lett. 1977. V. 47. N 1. P. 80.

31. Lucchese R.R., Schaefer H.F. // J. Chem. Phys. 1977. V. 67. N 2. P. 848.

32. Karlström G., Engström S., Jonssön B.// Chem. Phys. Lett. 1978. V. 57. N 3. P. 390. 33. Burton P. G. // Int. J. Quant. Chem. 1977. Symp. N 11. P. 207.

34. Burton P.G. // J. Chem. Phys. 1979. V. 71. N 2. P. 961.

35. Wilson C. W., Jr, Hopper D. G. // J. Chem. Phys. 1981. V. 74. N 1. P. 595. 36. Jones R. O. // Phys. Rev. Lett. 1984. V. 52. N 22. P. 2002.

37. Jones R. O. // J. Chem. Phys. 1985. V. 82. N 1. P. 325.

38. Morin M., Foti A.E., Salahub D.R. // Can. J. Chem. 1985. V. 63. N 7. P. 1982.
39. Laidlaw W.G., Trisic M. // Can. J. Chem. 1985. V. 63. N 7. P. 2044.

40. L e e T. J. // Chem. Phys. Lett. 1990. V. 169. N 6. P. 529.

41. Banichevich A., Peyerimhoff S.D., Green F.//Chem. Phys. Lett. 1990. V. 173. N 1. P. 1.

42. Xantheas S.S., Atchity G.J., Elbert S.T., Ruedenberg K. // J. Chem. Phys. 1991. V.94. N 12, Pt. 1, P. 8054.

43. Riley J.F., Cahill R.W. // J. Chem. Phys. 1970. V. 52. P. 3297.

44. Von Rosenberg C.W., Jr., Trainfor D.W. // J. Chem. Phys. 1974. V. 61. N 6. P. 2442; 1975. V. 63. N 12. P. 5348.

45. Brand J.C.D., Cross K.J., Hoy A.R. // Can. J. Phys. 1978. V. 56. P. 327.

46. K a t a y a m a D. H. // J. Chem. Phys. 1979. V. 71. N 2. P. 815.

47. Hiller J.F., Vestal M.L. // J. Chem. Phys. 1982. V. 77. N 3. P. 1248.

48. Sinha A., Imre D., Goble J.H., Jr., Kinsey J.L.// J. Chem. Phys. 1986. V. 84. N 11. P. 6108.

49. Anderson S. M., Morton J., Mauersberger K. // J. Chem. Phys. 1990. V. 93. N 6. P. 3826. 50. Anderson S. M., Maeder J., Mauersberger K. // J. Chem. Phys. 1991. V. 94. N 10. P. 6351. 51. Turnipseed A. A., Vaghjiani G. L., Gierczak T. etal. // J. Chem. Phys. 1991. V. 95. N 5. P. 3244.

52. Stull D.R., Prophet H. et al. NSRDS-NBS 37, Office of Standard Reference Data, National Bureau of

Standards, Washington, DC, Contract No. F04611-67-C-0009 (1971).

53. Gole J.L., Zare R.N.// J. Chem. Phys. 1972. N 57. P. 5331.

54. Weiss M.J., Berkowitz J., Appelman E.H. // J. Chem. Phys. 1977. V. 66. N 5. P. 2049. 55. Krishna R., Jordan K.D. // Chem. Phys. 1987. V. 115. N 3. P. 423.

56. H u g h e s R . H . // J. Chem. Phys. 1956. V. 24. N 1. P. 131.

57. Tanaka T., Morino Y. // J. Mol. Spectr. 1970. V. 33. N 3. P. 538.

58. X an the as \hat{S} . S., Elbert S.T., \hat{R} uedenberg K. // J. Chem. Phys. 1990. V. 93. N 10. P. 7519.

59. Lohr L.L., Helman A.J. // J. Chem. Phys. 1987. V. 86. N 10. P. 5329.

60. Devaquet A., Ryan J. // Chem. Phys. Lett. 1973. V. 22. N 2. P. 269.

61. Фриш С.Э. Оптические спектры атомов. М.: Изд-во физ.-мат. лит-ры, 1963. Гл. VII.

62. Kurylo M.J., Braun W., Kaldor A.// Chem. Phys. Lett. 1974. N 27. P. 249.

63. Steinfeld J.I., Adler-Golden S.M., Gallagher J.W. // J. Phys. Chem. Ref. Data. 1987. V. 16. N 4. P 911

64. Flannery C., Klaassen J.J., Gojer M. et al. // J. Quant. Spectr. Rad. Trans. 1991. V. 46. N 2. P. 73.

65. Spenser M.N., Chackerian C., Jr. // J. Mol. Spectr. 1991. V. 146. N 1. P. 135.

66. Vaida V., Donaldson D.J., Strickler S.J. et al.//J. Phys. Chem. 1989. V. 93. N 2. P. 506. 67. Sedlacek A.J., Wight C.A./J. Phys. Chem. 1989. V. 93. N 2. P. 509.

68. Swanson N., Celotta R.J.//Phys. Rev. Lett. 1975. V. 35. N 12. P. 783.

69. Celotta R.J., Swanson N., Kurepa M. Xth IPEAC Conference, July 1977.

70. W u 1 f O. P. // Proc. Nat. Acad. Sci. 1930. V. 16. N 7. P. 507.

71. Hay P.J., Goddard W.A.III. // Chem. Phys. Lett. 1972. V. 14. N 1. P. 46.

72. Hay P.J., Dunning T.H., Jr., Goddard W.A.III.// Chem. Phys. Lett. 1973. V. 23. N 4. P. 457.

73. Герцберг Г. Колебательные и вращательные спектры многоатомных молекул/Пер. с англ. М.: Изд-во иностр. лит-ры, 1949. С. 520-521.

74. L e f eb v r e L . // C.R. Acad. Sci. (Paris). 1935. V. 200. N 21. P. 1743.

75. Messmer R.P., Salahub D.R.// J. Chem. Phys. 1976. V. 65. N 2. P. 779.

76. McGrath W.D., Thompson A., Trocha-Grimshaw J.//Plan. Space Sci. V. 34. N 11. P. 1147.

77. Novick S.E., Engelking P.C., Jones P.L. et al.// J. Chem. Phys. 1979. V. 70. N 6. P. 2652. 78. Hiller J.F., Vestal M.L. // J. Chem. Phys. 1981. V. 74. N 1. P. 6096.

79. Kuis S., Simonaitis R., Heicklen J. // J. Geoph. Res. 1975. V. 80. P. 28.

80. Shi J., Barker J.R. // J. Phys. Chem. 1990. V. 94. N 22. P. 8390.

Электронная спектроскопия азона

81. Wright J.S. // Can. J. Chem. 1973. V. 51. N 1. P. 139.

82. Laidlaw W.G., Trisic M. // Chem. Phys. 1979. V. 36. P. 323.

- 83. Hay P.J., Pack R.T., Walker R.B., Heller E.J. // J. Phys. Chem. 1982. V. 86. N 6. P. 862.
 84. Varandas A.J.C., Pais A.A.C.C. // Mol. Phys. 1988. V. 65. N 4. P. 846.
- 85. Griggs M. // J. Chem. Phys. 1968. V. 49. N 2. P. 857.
- 86. Lichtenstein M., Gallagher J.J., Clough S.A. // J. Mol. Spectr. 1971. V. 40. P. 10.
- 87. Inn E.C.Y., Tanaka Y. // J. Opt. Soc. Am. 1953. V. 43. N 10. P. 870.
- 88. Tanaka Y., Inn E.C.Y., Watanabe K. // J. Chem. Phys. 1953. V. 21. N 10. P. 1651.
 89. Curtiss L.A., Langhoff S.R., Carney G.D. // J. Chem. Phys. 1979. V. 71. N 12. P. 5016.
 90. Lui C.-W., Darling B.T.// J. Mol. Spectr. 1966. V. 21. N 2. P. 146.

91. In n E.C.Y., Tanaka Y. Ozone absorption coefficients in visible and ultraviolet region./ Ozone Chemistry and Technology. Wash., 1959. P. 263-268.

92. V i g r o u x E . // Compt. Rend. Acad. Sci. (Paris). 1952. V. 234. N 24. P. 2351; N 25. P. 2439; N 26. P. 2529; N 27. P. 2529. 93. Vigroux E. // Annal. Phys. 1953. N 8. P. 709.

94. Hearn A. G. // Proc. Phys. Soc., Ser. A. 1961. V. 78. N 504. P. 932.

95. Bass A. M., Paur R. J. // J. Photoch. 1981. V. 17. N 1/2. P. 141.

96. Amoruso A., Cacciani M., di Sarra A., Fiocco G. // J. Geoph. Res. 1990. V. 95. N D12. P. 20565.

97. Fairchild C.E., Stone E.J., Lawrence G.M. // J. Chem. Phys. 1978. V. 69. N 8. P. 3632.

98. Valentini J.J., Moore D.S., Bomse D.S.//Chem. Phys. Lett. 1981. V. 83. N 2. P. 217.

99. Moore D.S., Bomse D.S., Valentini J.J.// J. Chem. Phys. 1983. V. 79. N 4. P. 1745. 100. Levene H.B., Nieh J.-C., Valentini J.J.// J. Chem. Phys. 1987. V. 87. N 5. P. 2583.

101. McGrath W.D., Maguire J.M., Thompson A., Trocha-Grimshaw J. // Chem. Phys. Lett. 1983. V. 102. N 1. P. 59.

 $102.\ M\ c\ D\ a\ d\ e\ \ I\ .\ C\ .\ ,\ \ M\ c\ G\ r\ a\ t\ h\ \ W\ .\ D\ .\ //\ Chem.\ Phys.\ Lett.\ 1980.\ V.\ 72.\ N\ 3.\ P.\ 432.$

103. M c D a d e I.C., M c G r a t h W.D. // Chem. Phys. Lett. 1980. V. 73. N 3. P. 413.

104. Adler-Golden S.M., Schweitzer E.L., Steinfeld J.I. // J. Chem. Phys. 1982. V. 76. N 5. P. 2201.

105. Watanabe K. // Adv. in Geophys. 1956. N 5. P. 153.

106. O g a w a M., C o o k G.R. // J. Chem. Phys. 1958. V. 28. N 1. P. 173.

107. Jones W. M., Davidson N. // J. Am. Chem. Soc. 1962. V. 84. N 15. P. 2868.

108. D e M o r e W.B., R a p e r O.F. // J. Phys. Chem. 1964. V. 68. N 2. P. 412.

109. Simons J.W., Paur R.J., Webster H.A.III.//J. Chem. Phys. 1973. V. 59. N 3. P. 1203. 110. Moortgat G.K., Warneck P. //Z. Naturforsch. 1975. N 30a. P. 835.

111. Hanvey J.A., McGrath W.D. // Chem. Phys. Lett. 1975. V. 36. N 5. P. 564.

112. Arnold I., Comes F.J., Moortgat G.K.//Chem. Phys. 1977. V. 24. P. 211. 113. Fairchild P.W., Lee E.K.C.//Chem. Phys. Lett. 1978. V. 60. N 1. P. 36.

114. Astholz D.D., Croce A.E., Troe J. // J. Phys. Chem. 1982. V. 86. N 5. P. 696.

115. Freeman D.E., Yoshino K., Esmond L.T., Parkinson W.H. // Plan. Space Sci. 1984. V. 32. N 2. P. 239.

116. Yoshino K., Freeman D.E., Esmond L.T., Parkinson W.H. // Plan. Space Sci. 1988. V. 36. N 4. P. 395.

117. Bass A. M., Paur R. J. // In Proceedings of the Quadrennial Intern. Ozone Symposium /ed. by J. London (NCAR, Boulder, CO, 1981). V. 1.P. 140-145; in Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symposium. (Greece, 3-7 Sept. 1984)/ed. by C.S.Zerefos and A. Ghazi (D. Reidel, Dordrecht, Holland, 1985). P. 606-616.

118. Daumont D., Brion J., Malicet J. // Plan. Space Sci. 1983. V. 31. P. 1229.

119. Malicet J., Brion J., Daumont D. // In Atmospheric Ozone, Proceedings of the Quadrennial Ozone Symp. (Halkidiki, Greece, 3–7 Sept. 1984), ed. by C.S. Zerefos and A. Ghazi (D. Reidel, Dordrecht, Holland, 1985). P. 617–621.

120. Brion J., Daumont D., Malicet J. // J. de Phys. Lett. (Paris). 1984. V. 45. N 2. P. L 57.

121. Brion J., Daumont D., Malicet J., Marche P. // J. De Phys. Lett. (Paris). 1985. V. 46. N 3. P. L105. 122. Mauersberger K., Barnes J., Hanson D., Morton J. // Geophy s. Res. Lett. 1986. V. 13. N7. P. 671.

123. Mauersberger K., Hanson D., Barnes J., Morton J. // J. Geophys. Res. 1987. V. 92. ND7. P. 8480. 124. Barnes J., Mauersberger K. // J. Geophys. Res. 1987. V. 92. N D12. P. 14861. 125. Molina L.T., Molina M.J. // J. Geophys. Res. 1986. V. 91. N D13. P. 14501.

126. Cacciani M., di Sarra A., Fiocco G., Amoruso A. // J. Geophys. Res. 1989. V. 94. N D6. P. 8485.

127. Ткаченко С.Н., Журавлев В.Е., Попович М.П. и др.// ЖФХ. 1980. Т. 54. N 9. С. 2289.

128. Levene H.B., Valentini J.J. // J. Chem. Phys. 1987. V. 87. N 5. P. 2594. 129. Valentini J.J. // Chem. Phys. Lett. 1983. V. 96. N 4. P. 395.

130. Valentini J.J., Gerrity D.P., Phillips D.L. et al.//J. Chem. Phys. 1987. V. 86. N 12. P. 6745. 131. Jakowlewa A., Kondratjev V.// Phys. Z. der Sowiet. 1932. V. 1. N 4. P. 471; 1936. V. 9. N 1. P. 106. 132. Johnson B.R., Kinsey J.L.// J. Chem. Phys. 1989. V. 91. N 12. P. 7638.

133. Chalonge D., Lefebvre L. // C.R. Hebd. Seances Acad. Sci. 1933. V. 197. P. 444.

134. K at a y a m a D. H. // J. Chem. Phys. 1986. V. 85. N 11. P. 6809.

135. E b e r h a r d t $\,$ W . H . , $\,$ S h a n d $\,$ W . $\,$ // J. Chem. Phys. 1946. N 14. P. 525.

136. Banichevich A., Peyerimhoff S.D., Beswick J.A., Atabek O. // J. Chem. Phys. 1992. V. 96. N 9. P. 6580.

137. Yamashita K., Morokuma K., Le Quere F., Leforestier C. // Chem. Phys. Lett. 1992. V. 191. N 6. P. 515.

138. Le Quéré F., Leforestier C. // Chem. Phys. Lett. 1992. V. 189. N 6. P. 537.

139. Adler-Golden S.M., Steinfeld J.I.// Chem. Phys. Lett. 1980. V. 76. N 3. P. 479.

140. Imre D.G., Kinsey J.L., Field R.W., Katayama D.H. // J. Phys. Chem. 1982. V. 86. N 14. P. 2564.

141. Иванов В.С., Лавровская Н.П., Совков В.Б.// Оптика и спектроскопия. 1988. Т. 65. N 1. С. 38.

143. Atabek O., Bourgeois M.T., Jacon M. // J. Chem. Phys. 1986. V. 84. N 12. P. 6699. 144. Tannor D.J. // J. Am. Chem. Soc. 1989. V. 111. N 8. P. 2772. 145. Kleindienst T., Bair E.J. // Chem. Phys. Lett. 1977. V. 49. N 2. P. 338. 146. Kleindienst T., Burkholder J.B., Bair E.J. // Chem. Phys. Lett. 1980. V. 70. N 1. P. 117. 147. Chasman D., Tannor D.J., Imre D.G.// J. Chem. Phys. 1988. V. 89. N 11. P. 6667. 148. Farantos S.C.// Chem. Phys. 1992. V. 159. N 3. P. 329. 149. Le Quéré F., Leforestier C.//J. Chem. Phys. 1990. V. 92. N 1. P. 247. 150. Le Quèrè F., Leforestier C. // J. Chem. Phys. 1991. V. 94. N 2. P. 1118. 151. Johnston B.R., Kinsey J.L.// J. Chem. Phys. 1987. V. 87. N 3. P. 1525. 152. Heller E.J. // Acc. Chem. Res. 1981. V. 14. P. 368. 153. Baiamonte V.D., Snelling D.R., Bair E.J. // J. Chem. Phys. 1966. V. 44. N 2. P. 673. 154. Sulzer P., Wieland K. // Helv. Phys. Acta. 1952. N 25. P. 653. 155. Zittel P.F., Little D.D. // J. Chem. Phys. 1980. V. 72. N 11. P. 5900. 156. Pack T. // J. Chem. Phys. 1976. V. 65. N 11. P. 4765. 157. Farantos S.C., Taylor H.S.//J. Chem. Phys. 1991. V. 94. N 7. P. 4887. 158. Johnson B.R., Kinsey J.L.// Phys. Rev. Lett. 1989. V. 62. N 14. P. 1607. 159. Jones I.T.N., Wayne R.P. // Proc. Roy. Soc. Lond. 1070. A319. P. 273; 1971. A321. P. 409. 160. Gauthier M., Snelling D.R. // Chem. Phys. Lett. 1970. N 5. P. 93. 161. Gauthier M., Snelling D. R. // J. Chem. Phys. 1971. N 54. P. 4317.
162. Gilpin R., Schiff H.I., Welge K.H. // J. Chem. Phys. 1971. N 55. P. 1087. 163. Lee L.C., Black G., Sharpless R.L., Slange T.G. // J. Chem. Phys. 1980. V. 73. N 1. P. 256. 164. Sparks R.K., Carlson L.R., Shobatake K. et al.//J. Chem. Phys. 1980. V. 72. N 2. P. 1401. 165. Daniels M.J., Wiesenfeld J.R.//J. Chem. Phys. 1993. V. 98. N 1. P. 321. 166. Moortgat G.K., Kudszus E., Warneck P. // J. Chem. Soc. Far. Trans. 2. 1977. N 73. P. 1216. 167. Valentini J.J. // J. Chem. Phys. 1987. V. 86. N 12. P. 6757. 168. Moortgat G.K., Kudszus E.// Geoph. Res. Lett. 1978. V. 5. N 3. P. 191. 169. Manzanares E.R., Suto M., Lee L.C., Coffey D., Jr. // J. Chem. Phys. 1986. V. 85. N 3. P. 5027. 170. Basch H. // J. Am. Chem. Soc. 1975. V. 97. N. 21. P. 6047. 171. Kosugi N., Kuroda H., Iwata S. // Chem. Phys. 1981. V. 58. N 2. P. 267. 172. Ridley B.A., Atkinson R., Welg K.H. //J. Chem. Phys. 1973. V. 58. P. 3878. 173. Taherian M.R., Slanger T.G. // J. Chem. Phys. 1985. V. 83. N 12. P. 6246. 174. Radwan T.N., Turner D.W.//J. Chem. Soc. 1966. A1. P. 85. 175. Dyke J.M., Golob L., Jonathan N. et al.//Chem. Soc. Farad. Trans. 2. 1974. V. 11. P. 1828. 176. Moseley J.T., Ozenne J.-B., Cosby P.C. //J. Chem. Phys. 1981. V. 74. N 1. P. 337. 177. Katsumata S., Shiromaru H., Kimura T. // Bull. Chem. Soc. Jpn. 1984. V. 57. N 7. P. 1784. 178. Omura I. // Bull. Res. Inst. Appl. Electr. 1954. N 6. P. 15. 179. Herron J.T., Schiff H.I. // J. Chem. Phys. 1956. N 24. P. 1266. 180. Watanabe K. // J. Chem. Phys. 1957. N 26. P. 542. 181. Cedeabraum L.S., Domcke W., von Niessen W., Kraemer W.P. // Mol. Phys. 1977. V. 34. N 2. P. 381. 182. Padial N., Csanak G., McKoy B.V., Langhoff P.W.//J. Chem. Phys. 1981. V. 74. N 8. P. 4581. 183. Malquist P.-A., Agren H., Roor B.O.// Chem. Phys. Lett. 1983. V. 98. N 5. P. 444. 184. K o o p m a n s T . // Physica. 1933. V. 1. N 2. P. 104. 185. Chong D.P., Herring F.G., McWelliams D.// J. Electr. Spectr. Rel. Phen. 1975. N 7. P. 445. Физический институт им. П.Н.Лебедева РАН Поступила в редакцию Москва 20 сентября 1993 г.

142. A d1er - G o1d en S. M. // J. Quant. Spectr. Rad. Transf. 1983. V. 30. N 2. P. 175.

I.M. Sizova. Electronic Spectroscopy of Ozone. Part III. The Main UV Spectrum - Far UV Region.

This paper is the third and the last part of the overview of spectroscopic literature on the electronic structure and electronic absorption spectra of the ozone molecule in the spectral range from near IR to the far UV region. The overview is based on the data of theoretical and experimental studies performed till 1992.

This part of the overview presents the data on interaction between the ozone molecule and UV radiation within the main ozone absorption band (Hartley absorption band) including the region of the first ionization potentials.