УДК 551. 521. 3:535. 36

С.В. Афонин, В.В. Белов, И.Ю. Макушкина

МОДЕЛИРОВАНИЕ РАССЕЯННОГО АЭРОЗОЛЕМ ВОСХОДЯЩЕГО ТЕПЛОВОГО ИЗЛУЧЕНИЯ С УЧЕТОМ ТЕМПЕРАТУРНЫХ НЕОДНОРОДНОСТЕЙ НА ПОВЕРХНОСТИ. Ч. 1. ФУНКЦИЯ РАЗМЫТИЯ ТОЧКИ

Рассмотрены результаты моделирования функции размытия точки (ФРТ) в ИК-диапазоне спектра для различных оптико-геометрических условий наблюдения. Исследованы зависимости ФРТ от расстояния до точки наблюдения, азимутального и зенитного углов наблюдения, содержания аэрозоля в приземном слое и стратосфере.

1. Введение

Ранее в [1-3] нами исследованы некоторые закономерности формирования рассеянного аэрозолем восходящего теплового излучения в спектральных диапазонах $3 \div 5$ и $8 \div 13$ мкм, получены оценки влияния однократного и многократного рассеяния, а также бокового подсвета на интенсивность рассеянного излучения и установлена зависимость интенсивности от оптических параметров аэрозоля и метеопараметров атмосферы.

Анализ характеристик бокового подсвета (обусловленного процессом рассеяния в направлении приемного устройства теплового излучения участков земной поверхности, не попадающих в поле зрения прибора) позволил сделать вывод о возможности заметного влияния (более $0,5 \div 1^{\circ}$) поверхностных температурных неоднородностей на точность атмосферной коррекции результатов спутниковых измерений температуры подстилающей поверхности в условиях замутненной атмосферы. Этот результат стал причиной продолжения исследований, направленных на установление закономерностей, связывающих параметры температурных неоднородностей на поверхности и интенсивности рассеянного аэрозолем теплового излучения.

Данная статья посвящена изложению результатов расчета функции размытия точки (ФРТ), являющейся наиболее удобным инструментом для проведения исследований по этой проблеме на основе имитационного моделирования. К сожалению, необходимый для таких исследований объем данных об ФРТ в ИК-диапазоне спектра, как нам известно, в литературе отсутствует.

В статье подробно представлены результаты расчетов, которые описывают пространственно-угловую структуру ФРТ для различных оптико-геометрических ситуаций.

2. Основные характеристики моделирования

Результатами моделирования являлись следующие характеристики. Интенсивность J_{λ} и радиационная температура T_{λ} собственного излучения системы «атмосфера-подстилающая поверхность» (А-ПП):

$$J_{\lambda} = J_{\lambda}^{0} + J_{\lambda}^{MS}; \quad T_{\lambda} = B_{\lambda}^{-1} [J_{\lambda}],$$
$$J_{\lambda}^{0} = J_{ATM}^{0} + J_{SURF}^{0}; \quad J_{\lambda}^{MS} = J_{ATM}^{MS} + J_{SURF}^{MS},$$
$$J_{SURF}^{0} = B_{\lambda} [T_{S}(x_{0}, y_{0})] \exp (-\tau(\theta)),$$
$$J_{SURF}^{MS} = \int_{S} \int_{S} h_{\lambda}(x, y, \theta, \tau_{SC}) B_{\lambda} [T_{S}(x, y)] dx dy,$$

где J_{ATM}^{0} , J_{SURF}^{0} , J_{ATM}^{MS} , J_{SURF}^{MS} – соответствующие вклады атмосферы и подстилающей поверхности в интенсивность нерассеянного и рассеянного излучений; (x_0 , y_0) – координаты точки зондирования; θ – зенитный угол наблюдения; τ – оптическая толщина ослабления атмосферы; τ_{SC} – оптическая

толщина аэрозольного рассеяния; B_{λ} – функция Планка; B_{λ}^{-1} – обратная функция Планка; T_S – температура подстилающей поверхности; $h_{\lambda}(x, y, \theta, \tau_{sc})$ – функция размытия точки; S – эффективная пространственная область формирования бокового подсвета [2].

Функция размытия точки была рассчитана с помощью метода локальной оценки на сопряженных траекториях [4]. Для удобства вычисление этой функции проводилось в координатах (r, φ), где r – расстояние по поверхности Земли от точки зондирования до произвольной точки (x, y); φ – азимутальный угол. При расчете $J_{\text{атм}}^{\text{MS}}$ как и в [1–3], использовался алгоритм прямого моделирования на сопряженных траекториях. Погрешность определения радиационной температуры при этом составила менее 0,05°.

Диапазон расстояний *r* для проведения моделирования по методу локальной оценки выбирался из соображений оптимизации объема сложных вычислений, устойчивости алгоритма при малых значениях *r* и на основе результатов расчета радиусов бокового подсвета [2, 3]. Вследствие этого диапазон значений *r* составил 0,01 ÷ 10 км в случае приземного аэрозоля и 0,1 ÷ 100 км – в случае поствулканического. Для вычисления ФРТ при *r* < r_{min} использовались результаты прямого моделирования J_{λ}^{MS} .

Наряду с $h_{\lambda}(r, \varphi, \theta, \tau_{sc})$ рассчитывалась функция $h_{\lambda}^{*}(\varphi, \theta, \tau_{sc})$ («интегральная» ФРТ)

$$h_{\lambda}^{*}(\phi, \theta, \tau_{\rm SC}) = \int_{0}^{R_{\rm max}} h_{\lambda}(r, \phi, \theta, \tau_{\rm SC}) r dr,$$

где R_{max} – радиус бокового подсвета для заданной точности моделирования радиационной температуры.

3. Оптико-геометрические условия моделирования

В [1–3] был рассмотрен широкий спектр вариаций оптико-метеорологических параметров атмосферы. Представленные в этих работах результаты позволяют при исследовании зависимости ФРТ от оптико-геометрических параметров (r, φ , θ , τ_{sc}) использовать одну метеомодель атмосферы (лето средних широт), для которой наличие значительных поверхностных температурных неоднородностей является достаточно частым явлением. Выбор аэрозольных моделей осуществлялся из соображений проведения исследований в максимальном диапазоне изменчивости значений τ_{sc} .

Моделирование проводилось для следующих оптико-геометрических условий наблюдения:

спектральные диапазоны 3,55÷3,95 мкм (λ =3,75 мкм) и 10,3÷11,3 мкм (λ = 10,8 мкм); углы наблюдения θ = 0, 30, 45 и 55°;

высота наблюдения 800 км;

атмосфера безоблачная молекулярно-аэрозольная, сферическисимметричная, вертикально-неоднородная;

```
метеомодель атмосферы ..... лето средних широт;
```

аэрозольные модели морской (maritime) тип аэрозоля в приземном слое атмосферы 0–2 км (дальность видимости $S_M = 2 \div 50$ км) и фоновое содержание аэрозоля в тропосфере. Для поствулканической ситуации использовалась модель fresh volcanic extinction с умеренным (moderate), высоким (high) и экстремальным (extreme) содержанием аэрозоля в стратосфере при отсутствии аэрозоля в приземном слое.

Вертикальные профили метеорологических параметров атмосферы, коэффициенты молекулярного и аэрозольного ослабления (рассеяния), альбедо однократного рассеяния, индикатрисы аэрозольного рассеяния были получены на основе данных, используемых в программном комплексе LOWTRAN-7 [5]. На рис. 1 представлены данные, характеризующие выбранные нами для расчетов оптико-метеорологические модели атмосферы.

4. Результаты моделирования

Проанализируем свойства функции размытия точки $h_{\lambda}(r, \varphi, \theta, \tau_{sc})$ в зависимости от расстояния *r*, азимутального угла φ , зенитного угла наблюдения θ и оптической толщины аэрозольного рассеяния τ_{sc} . Расчетные данные представлены на рис. 2–4. Для большей наглядно-Моделирование рассеянного аэрозолем восходящего теплового излучения 1403

сти результаты расчетов ФРТ в случае приземного аэрозоля приведены на рис. 2 только для r < 1 км – пространственной области, которая вносит доминирующий вклад в интенсивность бокового подсвета [2].

Рис. 1. Вертикальные профили температуры и влажности для лета средних широт. Вертикальные профили альбедо однократного рассеяния при различной дальности видимости (2 ÷ 50 км) в приземном слое, при фоновом и поствулканическом (штриховая кривая) содержании аэрозоля в стратосфере. Угловой ход индикатрисы рассеяния: сплошные кривые – приземный аэрозоль, штриховые кривые – стратосферный

4.1. Приземный аэрозоль (рис. 2, 4)

В рассмотренном для этого случая диапазоне расстояний $r \simeq 0,01 \div 10$ км функция h(r) монотонно и быстро убывает с ростом r (рис. 2). Величина $\partial h(r)/\partial r$ зависит от значений τ_{SCT} , θ и φ . В частности, $|\partial h(r)/\partial r|$ уменьшается с увеличением θ .

1404 С.В. Афонин, В.В. Белов, И.Ю. Макушкина

Зависимость ФРТ от азимутального угла $h(\phi)$ для случая приземного аэрозоля (рис. 2) имеет следующие характерные особенности при r < 1 км:

наличие минимума при значениях азимута $\phi=\phi_{min}\simeq 60\text{--}75^\circ\text{;}$

наличие слабого максимума при значениях $\phi \simeq 10{-}20^{\circ};$

незначительное изменение функции в диапазоне $\phi = 0^{\circ} - \phi_{min}$;

значительное (в несколько раз) увеличение $h(\phi)$ при росте значений $\phi > \phi_{\min}$; рост $|\partial h(\phi)/\partial \phi|$ с увеличением θ .

Рис. 2. Функция размытия $h(r, \varphi)$ в случае приземного аэрозоля ($S_{\rm M} = 5$ км) для азимутов $\varphi = 0$, 60, 120, 180° и зенитных углов наблюдения $\theta = 30$, 45, 55°. На встроенных рисунках – зависимость $h(r, \varphi)$ от дальности видимости для r = 0,01 и 1 км, $\varphi = 0$ и 180°. Кривые с точками – $\varphi = 0$ °, штриховые кривые – $\theta = 0$ °

Моделирование рассеянного аэрозолем восходящего теплового излучения

Кроме того, следует отметить еще одну особенность поведения $h(\phi)$ при r > 1 км: с ростом r положение минимума смещается в область значений $\phi_{\min} \simeq 90 \div 120^{\circ}$. При этом величина смещения растет с увеличением оптической толщины и уменьшением зенитного угла наблюдения.

Рис. 3. Функция размытия $h(r, \varphi)$ в случае высокого (high) содержания поствулканического стратосферного аэрозоля для азимутов $\varphi = 0$, 60, 120, 180° и зенитных углов наблюдения $\theta = 30$, 45, 55°. На встроенных рисунках – функция $h(r, \varphi)$ при экстремальном (1), высоком (2) и умеренном (3) содержании поствулканического аэрозоля в стратосфере для $\varphi = 0$ и 180°. Кривые с точками – $\varphi = 0°$, штриховые кривые – $\theta = 0°$

Наглядное представление об этих особенностях позволяют получить приведенные на рис. 4 данные об азимутальной зависимости нормированной на единицу «интегральной» ФРТ *h**(ф). Сравнивая данные рис. 4 и представленную на рис. 1 зависимость индикатрисы от угла 1406 С.В. Афонин, В.В. Белов, И.Ю. Макушкина рассеяния $P(\phi^*)$, можно отметить сходство их поведения для смежных углов ϕ и 180° – ϕ^* , а также хорошее совпадение углового хода и значений функций $h^*(\phi)$ для условий высокой и низкой прозрачности атмосферы.

Зависимость ФРТ от зенитного угла наблюдения $h(\theta)$ имеет две характерные особенности: $\partial h(\theta)/\partial \theta < 0$ в диапазоне $r < r_1$ и $\partial h(\theta)/\partial \theta > 0$ в диапазоне $r > r_2$. Значения r_1 и r_2 меняются при различных оптико-геометрических условиях наблюдения. При этом наиболее ярко проявляется зависимость r_1 и r_2 от азимутального угла. Она характеризуется максимальными значениями пар r_1 и r_2 при $\phi \simeq \phi_{min}$ и их минимальными значениями при $\phi = 180^\circ$. В целом значение r_1 не превышает 1–5 км (для различных значений ϕ и τ_{sc}), а значение r_2 лежит в диапазоне больше $0, 2 \div 1$ км.

Зависимость ФРТ от дальности видимости $S_{\rm M}$ имеет следующие характерные особенности: с увеличением $S_{\rm M}$ функция $h(S_{\rm M})$ монотонно убывает;

с ростом зенитного угла наблюдения при низких значениях $S_{\rm M} < 5$ км для $\lambda = 3,75$ мкм усиливается тенденция к нарушению монотонности функции $h(S_{\rm M})$.

Эти особенности поведения зависимости $h(S_M)$ наглядно иллюстрируются встроенными графиками рис. 2. Сходные по виду зависимости были получены нами в [2] для функции F(r). Там же предложено объяснение подобного поведения этой функции при низких значениях S_M .

Рис. 4. Функция $h^*(\phi)$ для случаев приземного и стратосферного аэрозоля при различных зенитных углах наблюдения $\theta = 30, 45, 55^{\circ}$. Приземный аэрозоль $S_M = 5$ и 23 км (сплошная и штриховая кривые соответственно). Стратосферный аэрозоль: экстремальное (extreme) и умеренное (moderate) содержание (сплошная и штриховая кривые соответственно)

4.2. Поствулканический аэрозоль (рис. 3, 4)

В рассмотренном для этого случая диапазоне расстояний $r \simeq 0,1 \div 100$ км при $\phi < 100 \div 120^{\circ}$ зависимость h(r) описывается монотонно убывающей с ростом r функцией (рис. 3).

Моделирование рассеянного аэрозолем восходящего теплового излучения

1407

Однако с увеличением ϕ при $\theta > 0^\circ$ у функции h(r) появляется четко выраженный максимум, положение которого (r_{max}) и высота (h_{max}) зависят от ϕ , θ и τ_{SC} . В частности, рост этих параметров приводит к увеличению r_{max} , достигающих для $\phi = 180^\circ$, $\theta = 55^\circ$ значений порядка $15 \div 30$ км. Эти особенности функции h(r) наиболее наглядно иллюстрируются встроенными графиками рис. 3.

Азимутальная зависимость ФРТ имеет следующие особенности: $\partial h(\varphi)/\partial \varphi > 0$ при расстояниях $r < r^*$; величина $|\partial h(\varphi)/\partial \varphi|$ растет с увеличением θ . Значения r^* лежат в диапазоне 5 ÷ 10 км для $\lambda = 3,75$ мкм и 30 ÷ 70 км для $\lambda = 10,8$ мкм.

На рис. 4 представлены данные об азимутальной зависимости «интегральной» ФРТ для этого типа аэрозоля. Сравнивая вид функции $h^*(\varphi)$ и угловой ход индикатрисы рассеяния, можно заметить, как и раньше, сходство их поведения. Можно отметить также идентичность угловой зависимости и хорошее совпадение значений $h^*(\varphi)$ для различных τ_{sc} .

Зависимость функции размытия точки от зенитного угла наблюдения, как и в случае приземного аэрозоля, имеет те же характерные особенности: $\partial h(\theta)/\partial \theta < 0$ в диапазоне $r < r_1$ и $\partial h(\theta)/\partial \theta > 0$ в диапазоне $r > r_2$. Однако в отличие от случая приземного аэрозоля величина r_2 монотонно убывает с ростом азимутального угла. Диапазоны значений r_1 составили 5 ÷ 20 км ($\lambda = 3,75$ мкм) и 5 ÷ 60 км ($\lambda = 10,8$ мкм), а значения r_2 превышают 15 ÷ 30 км.

Зависимость ФРТ от оптической толщины иллюстрируется встроенными графиками рис. 3, которые наглядно демонстрируют увеличение значений ФРТ с ростом τ_{sc} для всего диапазона изменения θ и ϕ .

5. Заключение

Обобщая закономерности поведения ФРТ в зависимости от оптико-геометрических параметров r, φ , θ , τ_{sc} , следует отметить ее неоднозначный, сложный для построения удобных аппроксимаций характер. Тем не менее на основании свойств функции $h^*(\varphi)$ и данных о степени влияния вариаций оптико-метеорологических параметров на характеристики бокового подсвета [1–3] можно сделать следующий важный практический вывод. Для достаточно широкого диапазона изменчивости метеопараметров атмосферы и оптических параметров аэрозольного рассеяния допускается при заданных значениях φ и θ использовать в целях атмосферной коррекции «универсальный» набор данных при различных условиях замутненности атмосферы.

Для оценки справедливости этого вывода в дальнейшем планируется провести на основе имитационного моделирования дополнительные исследования. Однако нами уже получены предварительные данные для простейшего случая существования линии раздела области бокового подсвета на два участка с разными температурами T_1 и T_2 . В этом случае даже при градиенте температур порядка 20° использование ФРТ, относящейся к условиям максимальной замутненности атмосферы, приводит при ее использовании для меньших значений τ_{SC} к максимальной погрешности расчета T_{λ} не более 0,5° (приземный аэрозоль, $\varphi = 180^\circ$, $\theta = 55^\circ$, $\lambda = 3,75$ мкм). Данный результат хорошо согласуется с нашим выводом.

- 1. Афонин С. В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 797-809.
- 2. Афонин С. В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 810-817.
- 3. Афонин С. В., Белов В.В., Макушкина И.Ю. // Оптика атмосферы и океана. 1994. Т. 7. N 6. С. 818-827.

4. Белов В.В., Макушкина И.Ю. // Теория и приложения статистического моделирования. Новосибирск: ВЦ СО АН СССР, 1988. С. 153–164.

5. K n e i z y s F . X . et al. Users Guide to LOWTRAN 7. AFGL-TR-88-0177. ERP, N 1010. AFGL. Hansom AFB. MA 01731.

Институт оптики атмосферы СО РАН, Томск

Поступила в редакцию 30 декабря 1994 г.

S.V. Afonin, V.V. Belov, I.Ju. Makushkina. Simulation of Upgoing Thermal Radiation Scattered by Aerosol Allowing for Temperature Inhomogeneities on a Surface. I. Point Spread Function.

Results of simulation of point spread function (PSF) within IR spectral range are examined in the paper for different optical-geometric conditions of observation. The PSF is treated as a function of the distance from the observation point, asimuth and zenith angles, and aerosol content in near-ground atmosphere and in stratosphere.

С.В. Афонин, В.В. Белов, И.Ю. Макушкина