А.М. Бойченко, А.В. Карелин, С.И. Яковленко

КИНЕТИЧЕСКАЯ МОДЕЛЬ XeF-ЛАЗЕРА

Построена нестационарная кинетическая модель XeF ($B \rightarrow X$)-лазера в смеси Ne – Xe – NF₃, накачиваемой жестким ионизатором. Модель позволяет описывать генерационные характеристики в зависимости от температуры среды на различных длинах волн ($\lambda = 351$ и 353 нм). Исследовано поведение этих характеристик вблизи порога накачки.

1. Введение

Среди плазменных лазеров [1–3] наиболее мощными в УФ- и ВУФ-диапазонах являются эксиплексные инертно-галоидные лазеры. Среди них особенно выделяются лазеры на эксиплексных молекулах KrF ($\lambda = 249$ нм), ArF ($\lambda = 193$ нм), XeCl ($\lambda = 308$ нм), XeF ($\lambda = 351$, 353 нм) [4–7]. Рабочим переходом в этих молекулах является переход $B \rightarrow X$, причем нижний терм X является разлетным или слабосвязанным.

Наибольшим кпд (10%) обладают KrF-лазер и, по-видимому, ArF-лазер [8–11]; кпд XeFлазера не очень высок (≈3%), но этот лазер интересен тем, что имеет самый низкий порог накачки среди имеющихся эксиплексных лазеров. В связи с этим обсуждается возможность ядерной накачки такого лазера [12]. На наш взгляд, до постановки экспериментов с ядерной накачкой необходимо проведение компьютерного моделирования. Желательны также модельные эксперименты с электронными пучками микросекундной длительности.

Особенности лазера на XeF связаны с тем, что в нем имеет место генерация не только на переходе $B \rightarrow X$, но и на переходе $C \rightarrow A$. Кроме того, состояние X имеет в молекуле XeF довольно глубокую яму. Этим обусловлены сравнительно невысокий кпд и существенная температурная зависимость генерационных характеристик. Отметим, что в существующих на настоящий момент моделях XeF ($B \rightarrow X$)-лазера [13–23], как правило, не учтена или недостаточно учтена температурная зависимость скоростей различных кинетических реакций.

В большинстве работ рассматривается лишь один эффективный переход, а не генерация на $\lambda = 351$ и 353 нм по отдельности. Кроме того, сопоставление моделей производилось с крайне ограниченным числом экспериментов, в число которых входило, как правило, не более одного генерационного.

В настоящей статье построена подробная нестационарная кинетическая модель, позволяющая адекватно описывать зависимости основных характеристик (энергии, кпд, момента перестраивания генерации с длины волны 353 на длину волны 351 нм и др.) от температуры среды, и рассмотрено поведение XeF-лазера вблизи порога.

2. Кинетическая модель

Более подробное рассмотрение каналов релаксации и кинетической модели содержится в [42]. Здесь кратко перечислим основные особенности модели.

2. 1. Общие характеристики модели

При построении кинетической модели мы опирались на свой опыт моделирования активных сред эксиплексных лазеров на молекулах KrF [4], XeCl [4, 24, 25], ArF [10, 11] и других лазеров [4].

В модель входят уравнения баланса для 38 типов частиц плазмы: Ne, Xe, NF₃, Ne⁺, Ne⁺₂, Ne⁺₃, Ne^{*}, Ne^{*}, Ne^{*}₂(^{1,3} Σ_{u}^{+}), Xe⁺, Xe⁺₂, Xe^{*}, Xe^{*}₂, Xe^{*}₂, NeXe⁺₂, NeXe⁺, NeXe^{*}, NF₃, NF₂, NF, N, N⁺, N₂, N⁺₂, XeF(B), XeF(C), XeF(X), Xe₂F, F, F⁻, F⁺, F^{*}, F₂, F⁺₂, NeF, F^{*}₂, e.

Уравнения баланса числа частиц учитывают около 260 плазмохимических реакций. Кроме того, в модель входят уравнения для электронной T_e и ионной T температур, а также уравнения для интенсивности лазерного излучения на двух длинах волн. В общей сложности рассматриваются 40 уравнений в обычных производных и одно уравнение связи для электронов, отражающее условие квазинейтральности плазмы. Ранее при исследовании зависимости свойств активных сред лазеров мы основное внимание уделяли зависимости скоростей реакций от электронной температуры T_e , поскольку от газовой температуры T генерационные характеристики, как правило, зависели слабо. При рассмотрении же XeF-лазера мы постарались учесть влияние газовой температуры наиболее полно. Для этого в данной модели, в отличие от прежних, кроме двух возбужденных эксиплексных состояний B и C молекулы XeF рассматривалась двухволновая генерация на переходе $B \rightarrow X$ между различными колебательными состояниями.

В [1-5] рассматривались активные среды, накачиваемые жестким ионизатором, т. е. быстрыми заряженными частицами или коротковолновыми фотонами. При этом функцию распределения плазменных электронов в различных плазмохимических реакциях можно считать максвелловской, а воздействие жесткого ионизатора в уравнениях баланса числа частиц и в уравнениях теплового баланса характеризовать частотой ионизации v_i (c⁻¹) и энергией E_p , затрачиваемой на образование пары электрон – ион. Эти величины удобны тем, что мало меняются в широком диапазоне плотностей и температур среды и зависят лишь от ее исходного химического состава. Вычисления проводились с помощью комплекса программ «ПЛАЗЕР» [4].

2.2. О каналах релаксации

Основная энергия накачки идет на ионизацию и возбуждение атомов неона. Наработка ионов Xe⁺ происходит в основном в реакциях Пеннинга возбужденных атомов неона с ксеноном.

Образовавшиеся электроны в столкновениях друг с другом формируют максвелловское распределение с электронной температурой, существенно превышающей газовую. Охлаждение электронов происходит за счет упругих и неупругих столкновений с нейтральными частицами.

Электроны плазмы в реакции диссоциативного прилипания с NF₃ и его производными нарабатывают отрицательные ионы фтора F⁻. Эксиплексные молекулы XeF^{*} образуются в основном за счет трехчастичной рекомбинации F⁻ с ионами Xe⁺. Небольшой вклад дают гарпунные реакции NF₃ с Xe^{*} и Xe^{**}. Паразитными путями являются захват Ne⁺, Ne⁺₂ ионов F⁻ с образованием молекул NeF^{*}, а также реакции Пеннинга атомов Ne^{*} с молекулами NF₃. Состояния *B* и *C* перемешиваются в основном за счет столкновений с атомами неона и с электронами.

2.3. Температурные зависимости скоростей корреляции

Отметим, что температурная зависимость скоростей реакций учитывалась в работах [19, 21], однако там скорости бинарных реакций полагались пропорциональными $T^{1/2}$, а тройных – пропорциональными T^{-n} , где $n \approx 1,5$ ÷3,5, что представляется не вполне точным.

Скорости реакций конверсии заряженных частиц в соответствии с моделью Томсона полагались пропорциональными $T^{-3/4}$, а скорости реакций ассоциации нейтральных частиц ~ $T^{-1/3}$.

Зависимость от *T* скоростей бинарных реакций тяжелых частиц не учитывалась. При $T_g \approx T_e \approx 1$ эВ скорости диссоциативной рекомбинации ведут себя как T^{-n} , где $n \approx 1 - 2$ [26], при $T_g \ll T_e -$ как T_e^{-a} , при $a \approx 0.5$ ($T \approx 300$ K) [7]. Поэтому для температур $T_g \approx 300 \div 800$ K, $T_e \approx 1.5$ эВ, которые мы объчно и рассматриваем, скорости диссоциативной рекомбинации принимались в виде $k \sim T_e^{-a} T_g^{-1}$, где $a \approx 0.5$ и зависит от сорта молекулярного иона.

Скорости реакций тройной ион-ионной рекомбинации определялись в соответствии с теорией Фланнери [7, 27, 28].

Принималось, что колебательная релаксация происходит достаточно быстро и, соответственно, распределение колебательных степеней свободы состояний B, C и X молекулы XeF является больцмановским.

В кинетической модели мы оперировали полной заселенностью состояния XeF(X), скорость его диссоциации определялась выражением $k_{\text{дис}} = 5 \cdot 10^{-10} T^{-0.27} e^{-0.184/T} (1 - e^{-0.0279/T})$, а скорость ассоциации – $k_{\text{ac}} = 0.5 \cdot 10^{-33} T^{-1.77} e^{-0.039/T} (1 - e^{-0.0279/T})$.

2.4. Излучение

Излучение каждой лазерной компоненты рассматривалось на основе кинетических уравнений для заселенностей N_a , N_b рабочих уровней – нижнего *a* и верхнего *b*:

$$dN_a/dt = -(K_a + \sigma_{ba}^{pn} I/h\omega) N_a + (K_{ab} + \sigma_{ab}^{pn} I/h\omega) N_b + D_a; \qquad (1a)$$

$$dN_b/dt = -(K_{ba} + \sigma_{ba}^{ph} I/h\omega) N_a - (K_b + \sigma_{ab}^{ph} I/h\omega) N_b + D_b.$$
(1b)

Здесь σ_{ba}^{ph} , σ_{ab}^{ph} – сечение фотопереходов $a \rightarrow b$ и $b \rightarrow a$; $h\omega$ – энергия кванта усиливаемого излучения.

Использовалась 0-мерная модель для усредненной по объему интенсивности лазерного излучения:

$$dI/dt = (c \kappa - \gamma) I + c Q, \qquad (2)$$

где c – скорость света; $\gamma = (c/2L) \ln(1/R_1R_2)$ – обратное время жизни фотона в резонаторе;

$$\kappa = \sigma_{ba}^{ph} \left(N_b - g_b N_a / g_a \right) - \sum \sigma_{X(m)}^{ph} \left[X(m) \right]$$

– коэффициент усиления излучения, $\sigma_{X(m)}^{ph}$ – сечение поглощения излучения частицами X(m).

Уравнение (2) включается в систему уравнений наравне с другими уравнениями баланса числа частиц. Уравнения (1) рассматривались для интенсивности излучения I_1 , соответствующей электронно-колебательным переходам B, $v \to X$, v': ($v = 0 \to v' = 2$; $1 \to 4$) на $\lambda \approx 351$, и для интенсивности I_2 на $\lambda \approx 353$ нм ($0 \to 3$). В излучение на $\lambda \approx 353$ нм может, в принципе, давать вклад переход $1 \to 6$, но мы его не учитывали. Так как в модели использовались общие заселенности XeF(B)- и XeF(X)-состояний, то при определении коэффициентов усиления κ^+ на указанных длинах волн эти заселенности домножались на больцмановский множитель того колебательного уровня, с которого происходило усиление или поглощение.

Для коэффициентов усиления использовались выражения:

$$\kappa_{1,2} = \kappa_{1,2} - \kappa_{1,2};$$

$$\kappa_{1}^{+} = \sigma_{1}^{ph} \left\{ \left[\text{Xe F}(B)_{\nu=0} \right] - \left[\text{Xe F}(X)_{\nu=2} \right] + \left[\text{Xe F}(B)_{\nu=1} \right] - \left[\text{Xe F}(X)_{\nu=4} \right] \right\} = \sigma_{1}^{ph} \left\{ \left[\text{Xe F}(B) \right] \left[g_{B}(\nu=0) + g_{B}(\nu=1) \right] - \left[\text{Xe F}(X) \right] \left[g_{X}(\nu=2) + g_{X}(\nu=4) \right] \right\};$$

$$\kappa_{2}^{+} = \sigma_{2}^{ph} \left\{ \left[\text{Xe F}(B)_{\nu=0} \right] - \left[\text{Xe F}(X)_{\nu=3} \right] \right\} = \sigma_{2}^{ph} \left\{ \left[\text{Xe F}(B) \right] g_{B}(\nu=0) - \left[\text{Xe F}(X) \right] g_{X}(\nu=3) \right\};$$

$$\kappa_{1,2}^{-} = \sum_{m} \kappa_{1,2,m}^{-} \left[X(m) \right],$$

где суммирование ведется по всем поглощающим излучение компонентам, кроме молекулы XeF(X), которая уже учтена в $\kappa_{1,2}^+$; $\sigma_{1,2,m}^-$ сечения поглощения излучения этими компонентами. В основном сечения поглощения полагались не зависящими от температуры. Приводимые в [17] зависимости сечений поглощения Ne₂, Ne₂, NeXe⁺, Xe₂, F₂ от температуры находятся в пределах значений, получаемых в расчетах и измеренных различными экспериментальными группами, поэтому мы также использовали их. Значения ω_e^A и энергии колебательных уровней $E^A(v)$ для больцмановских множителей

$$g_A(v) = \frac{\exp(-(E^A(v) - E^A(0))/T)}{1/[1 - \exp(-\overline{h} \omega_e^A/T)]}$$

Кинетическая модель XeF-лазера

1559

A = B, X брались из [29, 30]. Сечения вынужденного излучения $\sigma_{1,2}^{ph}$ могут несколько отличаться друг от друга [21], однако мы полагали их равными $\sigma_{1,2} = 4,57 \cdot 10^{-16}$ см² в соответствии с [31], исходя из времени жизни *B*-состояния – 14 нс.

3. Сопоставление с экспериментами

Первое сообщение о запуске $XeF(B \rightarrow X)$ -лазера появилось в [32]. Улучшение характеристик лазера при замене F₂-содержащих смесей на NF₃-содержащие обнаружено в [33], а улучшение при замене буферного газа аргона на неон – в [34, 35]. Зависимость кпд от температуры выявлена в [36].

Рис. 1. Зависимость кпд генерации на $\lambda = 353$ нм от парциального давления: $a - NF_3$, [Xe] = $2 \cdot 10^{17}$ см⁻³ (5,7 Торр); $\delta - Xe$, [NF₃] = $4 \cdot 10^{16}$ см⁻³ (1,1 Торр). Δ – эксперимент [41]; — – расчет. Частота ионизации v = 92 с⁻¹ (W = 44 кВт/см³), прямоугольный импульс накачки с длительностью $\tau = 4,25$ мкс, [Ne] = $8,07 \cdot 10^{19}$ см⁻³, $\gamma = 3 \cdot 10^7$ с⁻¹ – теоретически оптимальный для данной мощности накачки ($R \approx 80\%$)

Рис. 2. Сравнение зависимостей кпд XeF-лазера от коэффициента отражения R, [Ne] = 8,07·10¹⁹ см⁻³, [Xe] = 4·10¹⁷ см⁻³, [NF₃]=10¹⁷ см⁻³, $v = 276 c^{-1}$ ($W = 132 kBT/cm^{3}$), импульс накачки прямоугольный, $\tau = 1,15$ мкс, T=300 К. × – эксперимент [39]; — – расчет

Рис. 3. Зависимости коэффициентов поглощения в смеси Ne/Xe на $\lambda = 351$ нм при p = 4 атм от концентрации Xe [37] (*a*): \times – эксперимент, T = 300 K; – эксперимент, T = 423 K; l – расчет, T = 300 K (0,026 эВ); 2– расчет, T = 423 K (0,0364 зВ). Расчетные коэффициенты поглощения приводились для моментов времени, в которых они принимали максимальные по модулю значения ($t \approx 1,3$ мкс), $\nu = 223$ c⁻¹, $\tau_{1/2} = 1,2 \cdot 10^{-6}$ с. Зависимости коэффициентов усиления на $\lambda = 351$ нм для смеси Ne: 0,2 Xe: 0,06 NF₃ [37] (*b*): – эксперимент; — – расчет, и поглощения для смеси Ne/0,06 NF₃ на $\lambda = 351$ нм: кружки – эксперимент; сплошная линия – расчет, от температуры (^oC) при p = 4 атм ([Ne] = 1,08 \cdot 10^{20} см⁻³), $\nu = 223$ c⁻¹, $\tau_{1/2} = 1,2 \cdot 10^{-6}$ с. Расчетные коэффициенты усиления и поглощения приводились для моментов времени, в которых они принимали максимальное по модулю значение ($t \approx 1,3$ мкс)

Бойченко А.М., Карелин А.В., Яковленко С.И.

Сравнение некоторых расчетных характеристик с экспериментальными приведено на рис. 1–3 и в табл. 1–3. Более подробное сравнение содержится в [42].

Таблица 1

Сравнение экспериментального [41] и расчетного к
пд (λ = 353 нм) при различных мощностях накачки

Мощность накачки,	. Экспер	имент [41]	Теория. Данная работа		
кВт/см ³	Коэффициент отра- Внутренняя эффектив- Коэффициент о		Коэффициент отра-	Внутренняя эффек-	
	жения (оптимальный),	ность лазера,	жения (оптимальный),	тивность лазера,	
	%	%	%	%	
36	80	1,5	87,5	1,75	
44	90	1,7	82	1,91	
60	90	2	76,5	2,09	

В расчетах (табл. 1) использовались $[Ne] = 8,07 \cdot 10^{19} \text{ см}^{-3}$, $[Xe] = 2 \cdot 10^{17} \text{ см}^{-3}$ (5,7 Topp), $[NF_3] = 4 \cdot 10^{16} \text{ см}^{-3}$ (1,1 Topp), соответствующие экспериментальным. Мощностям накачек W = 36, 44 и 60 кВт/см³ соответствуют частоты ионизации v = 75, 92 и 138 с⁻¹, коэффициентам отражения R = 87,5, 82 и 76,5% – $\gamma = 2 \cdot 10^7, 3 \cdot 10^7$ и $4 \cdot 10^7$ с⁻¹. Использовался прямоугольный импульс накачки с длительностью $\tau = 4,25$ мкс.

Таблица 2

Сравнение процентного соотношения излучения энергии на различных длинах волн с экспериментом [40] при давлении 3 амага

Длина волны,	T = 300 K		<i>T</i> = 425 K		<i>T</i> = 464 K	<i>T</i> = 476 K
HM	Теория	[40]	Теория	[40]	Teo	рия
353	98,7	77	88	53	60	18
351	1,3	7	12	45	40	82

В расчетах (табл. 2) использовался прямоугольный импульс накачки с длительностью $\tau = 550$ нс. Расчеты проведены для значений [Xe] = $8 \cdot 10^{17}$ см⁻³, [NF₃] = 10^{17} см⁻³, соответствующих теоретически оптимальным концентрациям для T = 300 К, v = 586 с⁻¹. Везде использовалось $\gamma = 1,6 \cdot 10^8$ с⁻¹ ($R \approx 35\%$). Данное R было оптимальным в расчетах и в эксперименте. Частота ионизации v = 628 с⁻¹ соответствует мощности накачки W = 300 кВт/см³.

Таблица З

Зависимости суммарного (λ = 351, 353 нм) кпд генерации от процентного состава и начальной температуры среды при общем давлении 3 амага

		<i>T</i> = 300 K		<i>T</i> = 350 K		T = 400 K		<i>T</i> = 450 K	
Ν	Ne/Xe/NF3	Эксперимент	Данная	Эксперимент	Данная	Эксперимент	Данная	Эксперимент	Данная
		[38]	работа	[38]	работа	[38]	работа	[38]	работа
	99,35/	0,90		1,20		1,8		2,0	
A	0,50/		1,05		1,63		1,92		2,19
	0,15	$\pm 0,18$		±0,15		±0,2		±0,2	
	BAL/	1,25		1,35		1,6		1,6	
В	6Torr/		1,25		1,51		1,67		1,85
	2Torr	±0,15		±0,15		±0,2		±0,2	
	99,425/	1,35		1,45		2,3		2,5	
С	0,5/		1,36		1,9		2,17		2,43
	0,075	±0,15		±0,15		±0,2		±0,2	
	99,675	1,25		1,35		1,7		1,7	
D	/0,25		1,3		1,55		1,69		1,86
	/0,075	±0,15		±0,15		±0,2		±0,2	

Для табл. З частота ионизации $v = 188 \text{ c}^{-1}$ ($W = 90 \text{ кBt/cm}^3$), $\gamma = 1,04 \cdot 10^8 \text{ c}^{-1}$ (R = 50%). В экспериментальной работе [38], с которой производится сравнение, длительность накачки не указана. В расчетах использовалось $\tau_{1/2} = 1,2$ мкс.

Кинетическая модель ХеГ-лазера

4. Поведение ХеГ-лазера вблизи порога

Наиболее оптимальный режим работы эксиплексных лазеров соответствует мощностям накачки порядка нескольких МВт/см³ и давлениям в несколько атмосфер. Такие мощности накачки в основном реализуют с помощью электронных пучков или объемного разряда. Практический интерес имела бы возможность использовать эксиплексные активные среды в условиях ядерной накачки, когда энергия продуктов ядерных реакций непосредственно вкладывается в активную среду лазера без промежуточных преобразований [2, 43, 44]. При этом, как уже отмечалось, имеет смысл рассмотреть смесь Ne – Xe – NF₃ как наиболее низкопороговую из активных сред на галогенидах инертных газов [12, 22, 45].

Отметим, что поведение XeF-лазера вблизи порога рассматривалось в [22], однако в ней не учтена связанность нижнего рабочего состояния, кинетика активной среды не зависит от температуры и учтен лишь один эффективный лазерный переход, к тому же проведенное сравнение с экспериментами малоинформативно.

Как отмечалось ранее, излучение происходит на нескольких линиях, наиболее сильными из которых являются $\lambda = 351$ и 353 нм, причем как общая излученная энергия, так и энергия, соответствующая каждой из λ , зависит уже от температуры газовой смеси.

При описании лазера с ядерной накачкой модель должна описывать указанные особенности. Дело в том, что хотя при ядерной накачке мощность энерговклада небольшая, однако длительность ввода энергии может быть значительной (≅1 мс), так что температура среды может также значительно меняться за время действия накачки. Перечисленные особенности наиболее полно учтены нами в приведенной кинетической модели.

Ниже представлены зависимости различных характеристик от частоты ионизации. Частота ионизации связана с мощностью *W*, вкладываемой в газ, через соотношение

$$W = v E_{\text{map}} N$$
,

где v – частота ионизации; *E*_{пар} – энергия пары буферного газа; *N* – его концентрация.

В случае фольговой накачки энерговыделение в газе можно связать с плотностью потока нейтронов соотношением

$$W = E_g \Phi_T \sigma_f N_5 \varepsilon V_{\phi \Box} / V_{\Gamma}$$
,

где E_g - энергия осколков деления; $\Phi_{\rm T}$ - плотность потока нейтронов; σ_f - сечение деления ²³⁵U; N_5 - концентрация ядер ²³⁵U; ε - эффективность передачи энергии деления в газ (см. например [46]); V_{ϕ} , $V_{\rm r}$ - объемы, занимаемые фольгой и газом соответственно. Таким образом, частота ионизации связана с плотностью потока нейтронов следующим соотношением:

$$\mathbf{v} = (E_g \, \Phi_\Gamma \, \sigma_f N_5 \, \varepsilon \, V_{\phi}) / (E_{\text{map}} N \, V_{\Gamma}) \,. \tag{3}$$

Конкретное числовое соотношение зависит от следующих параметров: спектра нейтронов, состава и давления среды, диаметра канала, состава и толщины уранового покрытия, т. е. в значительной степени определяется конструктивными особенностями источника накачки. Поэтому в дальнейшем будем описывать припороговые характеристики Ne – Xe – NF₃-лазера в зависимости от универсального параметра v, переход от которого к реальным нейтронно-физическим параметрам конкретных ядерно-энергетических установок с помощью выражения (3) не представляет трудностей.

Для эффективной работы смесь Ne – Xe – NF₃ требует высокого давления буферного газа, однако это не всегда совместимо с возможностями ядерной накачки. Реально толщина используемого канала d не может превосходить нескольких сантиметров. Так, для d = 2 см из условия наиболее эффективного ввода энергии можно получить, что давление смеси не должно превышать 1 атм [46, 47].

Расчеты проводились для длительностей накачки на полувысоте $\tau_{1/2} = 1$; 0,4; 0,2 и 0,1 мс, характерных для имеющихся или проектируемых установок. Как и ожидалось, оптимальные концентрации Хе и NF₃ растут с увеличением мощности накачки. Оптимизация проводилась по полной излучаемой энергии. Везде далее оптимумы по общей (λ = 351 и 353 нм) энергии и

Бойченко А.М., Карелин А.В., Яковленко С.И.

1562

кпд практически не отличаются. Для $\tau_{1/2} \le 0,1$ мс меняется тип зависимости оптимальных концентраций Xe и NF₃ от частоты ионизации – они становятся практически прямыми. Оптимальное значение γ падает с уменьшением частоты ионизации, что также естественно и соответствует увеличению коэффициента отражения зеркала. Отметим, однако, что для обычных резонаторов (l < 1 м) оптимальные *r*, соответствующие частотам ионизации, лежащим непосредственно вблизи порога, незначительно отличаются от единицы и трудно реализуемы практически.

Рис. 4. Зависимости полной (на $\lambda_1 = 351$ нм и $\lambda_2 = 353$ нм) излученной энергии (*a*); суммарного (на λ_1 и λ_2) кпд (*б*); кпд на различных λ (*s*) в оптимальном режиме генерации от частоты ионизации. Смесь Ne – NF₃, *p*=1 атм; для *a*, *б* – длительность накачки на полувысоте $\tau_{1/2}$, кривая 1 - 1 мс, 2 - 0,4 мс, 3 - 0,2 мс, 4 - 0,1 мс. Для *s*: кривая $1 - \tau_{1/2} = 0$,2 мс, $\lambda = \lambda_1 + \lambda_2$; $2 - \tau_{1/2} = 0$,2 мс, $\lambda = \lambda_1$; $3 - \tau_{1/2} = 0$,1 мс, $\lambda = \lambda_1 + \lambda_2$; $4 - \tau_{1/2} = 0$,1 мс, $\lambda = \lambda_1$

Для длительностей накачек $\tau_{1/2} > 100$ мкс в пределах исследуемых частот ионизации полная излученная энергия при оптимальных условиях растет с увеличением мощности энерговклада (рис. 4), в то время как полный кпд имеет оптимум по v в диапазоне 10–30 с⁻¹ (рис. 4, δ). Оптимальное значение v увеличивается с уменьшением длительности накачки $\tau_{1/2}$. При повышении температуры газовой смеси происходит перестройка спектра генерации, приводящая

Кинетическая модель XeF-лазера

к относительному росту вклада в излучение линии $\lambda = 351$ нм по сравнению с $\lambda = 353$ нм (см. п. 3). Те же закономерности видим и здесь. Для $\tau_{1/2} = 1$ и 0,4 мс общий кпд практически совпадает с клд на $\lambda = 351$ нм, для меньших $\tau_{1/2}$ происходит плавная перестройка излучения с $\lambda = 353$ на $\lambda = 351$ нм при увеличении мощности накачки (рис. 4, *в*).

5. Заключение

Построена подробная нестационарная кинетическая модель Ne – Xe – NF₃-лазера (переход $B \rightarrow X$, $\lambda = 351$ и 353 нм). Отличительной чертой XeF-лазера среди прочих инертно-галоидных лазеров является то, что на его работу существенное влияние оказывает газовая температура. Излучение соответствует связанно-связанным переходам, в силу чего вместо одной полосы явно прослеживаются две линии излучения $\lambda_1 = 351$ и $\lambda_2 = 353$ нм. Однако для рассматриваемой смеси эти два важных обстоятельства учтены лишь в работах [16 - 19]. При этом возможность увеличения энергии и кпд лазера с ростом температуры показана лишь в [16, 17]. В работах [18, 19] отмечается факт построения кинетической модели, учитывающий эти два обстоятельства. В качестве примера в [19] без сравнения с экспериментом приведены лишь зависимости κ^- и $\kappa = \kappa^+ - \kappa^-$ от времени и только опосредованно от температуры, т.к. она изменялась в зависимости от времени.

Представленная в данной статье модель правильно описывает помимо грубых параметров, таких как оптимальные значения коэффициентов отражения зеркал резонатора, оптимальные значения относительных концентраций реагентов, также более тонкие зависимости:

1) энергии, кпд, коэффициентов усиления и поглощения от температуры,

2) мощности излучения от времени и от состава смеси,

3) моментов перестраивания излучения с λ_1 на λ_2 и наоборот от изменения температуры.

Проведено теоретическое исследование характеристик $XeF(B \rightarrow X)$ лазера в смеси Ne – Xe $-NF_3$ при давлении p = 1 атм с ядерной накачкой и длительностью импульса накачки на полувысоте $\tau_{1/2} = 0, 1 - 1$ мс в припороговой области генерации. Выявлено наличие оптимума кпд в интервале частот ионизации $v = 10 - 30 \text{ c}^{-1}$. Несмотря на зависимость частоты ионизации, соответствующей оптимальному кпд, от длительности импульса накачки, пороговое значение частоты ионизации не зависит от нее и составляет $2,5 - 3 \text{ c}^{-1}$ (400 – 500 Вт/см³). Однако для таких частот ионизации коэффициент отражения зеркал резонатора должен быть практически равен единице, что фактически очень трудно осуществимо экспериментально. Представленные результаты справедливы и для накачки электронными пучками, если их параметры (длительность накачки, частота ионизации) соответствуют приведенным.

1. Гудзенко Л.И., Шелепин Л.А., Яковленко С.И. //УФН. 1974. Т. 114. С. 457.

2. Гудзенко Л.И., Яковленко С.И. Плазменные лазеры. М.: Атомиздат, 1978. 256 с.

- 3. Я ковленко С.И. // Физика плазмы. Т. 3. Итоги науки и техники ВИНИТИ АН СССР. М., 1982.
- 4. Плазменные лазеры видимого и ближнего УФ-диапазонов. М.: Наука, 1989. 142 с. (Труды ИОФАН. Т. 21. / Под ред. С.И. Яковленко).
- 5. Y a k o v l e n k o S. I. Plasma Lasers. / Laser Phys. 1991. V. 1. No 6. P. 565–589.
- 6. Эксимерные лазеры / Подред. Ч. Роудза. М.: Мир, 1981. 00 с.
- 7. Газовые лазеры / Под ред. И. Мак-Даниэля, У. Нигэна. М.: Мир, 1986. 552 с.
- 8. M a n d 1 A. // Ĵ. Appl. Phys. 1986. V. 59. P. 1435.
- 9. Lee Y. M., Kumagai H., Ashidate S., Obara M. // Appl. Phys. Lett. 1988. V. 52. P. 1294.
- 10. Бойченко А.М., Держиев В.И., Жидков А.Г., Яковленко С.И. //Квант. электр. 1992. T. 19. C. 486.

11. Boichenko A.M., Dershiev V.I., Yakovlenko S.I. Laser Phys. 1992. V. 2. P. 210.

- 12. Hays G.N., McArthur D.A., Neal D.R., Rice J. // Appl. Phys. Lett. 1986. V. 49. P. 363.
- 13. Finn T.G., Palumbo L.J., Champagne L.F. // Appl. Phys. Lett. 1978. V. 33. P. 148.
- 14. Johnson T.J., Palumbo L.J., Hunter A.M. // IEEE J.Quant Electr. 1979. V. 15. P. 289.

15. Мкртчян М.М., Платоненко В.Т. // Квант. электр. 1979. Т. 6. Р. 1639.

17. Blauer J.A., Yang T.T., Turner C.E., Jr., Copeland D.A. // AIAA J. 1985. V. 23. P. 741.

- Moratz T.J., Saunders T.D., Kushner M.J. // J. Appl. Phys. 1988. V. 64. P. 3799.
 Moratz T.J., Saunders T.D., Kushner M.J. // Appl. Phys. Lett. 1989. V. 54. P. 102.
 Nishida N., Takashima T., Tittel F.K., Kannari F., Obara M. // J. Appl. Phys. 1990. V. 67. P. 3932.

Бойченко А.М., Карелин А.В., Яковленко С.И.

^{16.} Blauer J.A., Yang T.T., Turner C.E., Jr., Copeland D.A. // Appl. Optics. 1984. V.23. P 4352

^{21.} Abarenov A.V., Persiantsev I.G., Rakhimov A.T., Rebric S.P., Shugai Ju.S., Suetin N.V. // IEEE J. Quant. Electr. 1991. V. 27. P. 1946. 1564

- 22. Mishchenko S.A., Krynetskii B.B., Prokhorov A.M., Sapsai B.P., Stepanov V.V., Zhidkov A.G. // Laser Phys. 1992. V. 2. P. 19.
- 23. Демьянов А.В., Дятко Н.А., Кочетов И.В., Напартович А.П. // Отраслевая конференция «Физика ядерно-возбуждаемой плазмы и проблемы лазеров с ядерной накачкой». Обнинск. 1992. Т.1. C. 252.
- 24. Бойченко А.М., Держиев В.И., Жидков А.Г., Яковленко С.И. // Квант. электр. 1989. T. 16. C. 278.
- 25. Бойченко А.М., Держиев В.И., Жидков А.Г., Яковленко С.И. // Кратк. сообщ. физ. 1990, N 9, C, 9,
- 26. Смирнов Б.М. Ионы и возбужденные атомы в плазме. М.: Атомиздат, 1974. 456 с.
- 27. Flannery M.R., Yang T.P. // Appl. Phys. Lett. 1978. V. 32. P. 327. 28. Flannery M.R., Yang T.P. // Appl. Phys. Lett. 1978. V. 32. P. 356.
- 29. Tellinghuisen J., Tellinghuisen P.C., Tisone G.C., Hoffman J.M., Hays A.K. // J. Chem. Phys. 1978. V. 68. P. 5177.
- 30. Tellinghuisen P.C., Tellinghuisen J., Coxon J.A., Velazco J.E., Setser D.W. // J. Chem. Phys. 1978. V. 68. P. 5187.
- 31. Rokni M., Jacob J.H., Mangano J.A., Brochu R. // Appl. Phys. Lett. 1977. T. 30. P. 458. 32. Brau C.A., Ewing J.J. // Appl. Phys. Lett. 1975. V. 27. P. 435.
- 33. Ault E.R., Bradford R.S., Jr., Bhaumik M.L. // Appl. Phys. Lett. 1975. V. 27. P. 413.
- 34. Hsia J., Mangano J.A., Rokni M., Hawryluk A., Jacob J.H. // Presented at 30th Ann. Gaseous Electron. Conf. 1977.
- 35. Champagne L.F., Harris D.G. // Appl. Phys. Lett. 1977. V. 31. P. 513.
- 36. H sia J., Mangano J.A., Jacob J.H., Rokni M. // Appl. Phys. Lett. 1979. V. 34. P. 208.
- 37. Champagne L.F. // Appl. Phys. Lett. 1979. V. 35. P. 516.
- 38. Burde D.H., Yang T.T., Harris D.G., Pugh L.A., Tillotson J.A., Turner C.E., Jr., Merry G.A. // Appl. Opt. 1987. V. 26. P. 2539.
- 39. Mandl A.E., Hyman H.A. // IEEE J. Quant. Electr. 1986. V. 22. P. 349.
- 40. Litzenberger L., Mandl A. // Appl. Phys. Lett. 1988. V. 52. P. 1557. 41. Mandl A. // Appl. Phys. Lett. 1992. V. 71. P. 1630.
- 42. Boichenko A. M., Karelin A. V., Yakovlenko S. I. // Las. Phys. 1995. V. 5. P. 80.
- 43. Thom R., Schneider R.T. // AIAAJ. 1972. T. 10. P. 400.
- 44. Гудзенко Л.И., Яковленко С.И. // КСФ. 1974. N 2. С. 14.
- 45. Boichenko A.M., Karelin A.V., Sereda O.V., Yakovlenko S.I. // Lasers and Particle Beams. 1993. T. 11. P. 655.
- 46.Карелин А.В., Середа О.В., Харитонов В.В., Чикин К.Р., Наумкин Ф.Ю. // Атомная энергия. 1986. Т. 61. С. 44.
- 47. Бойченко А.М., Карелин А.В., Яковленко С.И. // Квантовая электроника. 1995. Т. 22. C. 547.

Институт общей физики РАН, г. Москва

Поступила в редакцию 15 апреля 1995 г.

A.M. Boichenko, A.V. Karelin, S.I. Yakovlenko Kinetic Model of XeF Laser.

Nonstationary temperature dependent kinetic model of XeF $(B \rightarrow X)$ laser in the Ne – Xe – NF₃ mixture pumped by hard ionizator (electron beam, nuclear pumping etc.) is presented. The model allows one to describe laser characteristics at different wavelengths ($\lambda = 351$ and 353 nm). The characteristics behaviour is investigated near the pumping threshold.