М.М. Макогон, Н.В. Неделькин, В.И. Сердюков, В.М. Тарасов

ЛАЗЕРЫ НА ГРАНАТЕ С МОДУЛЯЦИЕЙ ДОБРОТНОСТИ КРИСТАЛЛАМИ LiF:F₂

Приводятся сравнительные данные использования профилированных и непрофилированных модуляторов добротности в Nd:YAG-лазерах. Демонстрируется возможность применения кристаллов LiF для управления работой лазеров различного типа.

При разработке лазеров с модулированной добротностью большое внимание уделяется энергетическим и пространственным характеристикам излучения. Пассивные модуляторы добротности обладают набором ценных качеств, однако формирование пространственных характеристик излучения происходит в большей мере случайно, из шумов, причем наиболее существенное значение для затравки генерации имеет дифракция пучка на ограниченных апертурах. В этом случае обеспечить одномодовую генерацию мощного импульса без селектирующих элементов затруднительно.

В [1–3] было показано, что для получения одномодовой генерации с применением активных затворов необходимо медленное или ступенчатое включение добротности. Для получения одномодовой генерации без использования диафрагм предложено [3] использовать стоячие волны деформации модулятора, обеспечивающие в нем за счет пьезооптического эффекта гауссовский характер изменения пропускания по поперечному сечению модулятора. Естественно, что сложность этого варианта не способствовала широкому распространению данного подхода.

Нами [4] был предложен пассивный вариант модулятора добротности с постепенным открыванием резонатора в поперечном относительно его оси направлении. Такая цель достигалась «профилированием» затвора, т.е. изготовлением модулятора добротности с плавным увеличением пропускания от края к оси. Профилированные затворы подобны «аподизирующим» «мягким» диафрагмам [5, 6] и, в принципе, могут использоваться и в таком качестве.

Однако отсутствие в то время удобной технологии изготовления профилированных затворов с заданными характеристиками не привело к их широкому распространению.

С появлением оптических элементов с центрами окраски стало возможным технологически достаточно просто изготавливать затворы с заданными параметрами. Уже в [7] сообщалось о создании профилированных затворов на F_2 :LiF-центрах окраски и о существенном уменьшении расходимости излучения лазера на гранате при сохранении энергетических характеристик. Один из вариантов технологии производства таких затворов приведен в [9]. Дальнейшее развитие подобные исследования получили во многих работах, отметим, в частности, [8].

Однако до настоящего времени в литературе отсутствуют сообщения о применении профилированных затворов для получения мощной одночастотной генерации. В настоящей статье приводятся сравнительные данные об использовании профилированных и непрофилированных модуляторов в Nd:YAG-лазере и демонстрируются возможности применения кристалла LiF для управления работой лазеров разного типа. Использовались пассивные затворы производства фирмы «Лазерприм» (г. Томск).

Лазеры с профилированными затворами

Экспериментальные исследования выполнялись с помощью лазера, схема резонатора которого показана на рис. 1. Активный элемент из YAG:Nd имел длину 80 мм, частота следования импульсов равнялась 12,5 Гц. В качестве выходного зеркала использовалась оптическая стопа для обеспечения одночастотного режима генерации. Модуляторные кристаллы имели сечение 6×6 мм и длину 30 мм, профиль пропускания в слабом поле показан на рис. 2, *a*, глубина модуляции пропускания для разных экземпляров кристаллов варьировалась от 5 до 10%.

Рис. 1. Схема резонатора лазера на YAG:Nd с профилированным затвором: *I* – стопроцентное зеркало; *2* одуляторные кристаллы; *3* – активный элемент; *4* – стопа

Рис. 2. Профиль пропускания затвора (а) и поле излучения в ближней зоне (б)

Пороговое напряжение накачки для свободной генерации лазера составляло 470 В, при установке необлученных (прозрачных) кристаллов – 590В (емкость разрядного контура 75 мкФ). В первой серии экспериментов один из двух кристаллов LiF в резонаторе лазера заменялся на профилированный. Характеристика кристаллов и параметры генерации приведены в табл. 1. Как правило, одночастотный режим генерации достигается легко, однако для некоторых кристаллов требуется чрезвычайно тонкая юстировка резонатора.

Таблица 1

N кристалла	Начальное пропускание, %	Контраст	Накачка, І	В Энергия, мДж
16	36	11,9	740	13
19	36	14,6	740	15
20	40	16,7	750	13
28	40	13,6	760	12
32	38	12	730	12
34	34	13,6	770	21
39	38	13,5	750	21
40	30	10,2	760	18
47	34	12,4	760	16
49	36	10	720	16
51	40	12,7	740	23
52	32	15,8	830	15
56	44	11,4	750	12
59	34	12,4	740	26
63	40	12,9	700	15
70	32	16,3	730	20
71	40	13,5	750	15
75	30	11,3	810	17
77	40	11,6	750	15

N кристалла	Начальное пропускание, %	Контраст	Накачка, В	Энергия, мДж	Длительность, нс
57	28	12,4	710	24	25
15	36	8,8	660	15,2	28
50	36	8,6	665	14,4	25
82	36	12,6	665	19,6	28
27	34	13,3	680	18	20
82+27	-	-	980	46,4	20
15+50	-	_	910	72	50
82+57	-	-	950	81	60

М.М. Макогон, Н.В. Неделькин, В.И. Сердюков, В.М. Тарасов

Во второй серии экспериментов устанавливались последовательно один и два модулирующих кристалла, результаты сведены в табл. 2. Установка двух элементов приводит к снижению начального пропускания модулятора в целом и к увеличению выходной энергии. Происходит также изменение длительности и формы импульса генерации – в нем уплощается вершина. Этот эффект связан с растеканием генерации по поперечному сечению кристалла [4], что было прямо зарегистрировано в эксперименте (рис. 2, б).

Общее сопоставление полученных результатов и их сравнение с данными для обычных (непрофилированных) затворов приведено на рис. 3. Видно, что при использовании профилированных модуляторов добротности выходная энергия одночастотной генерации в 3–5 раз больше.

Рис. 3. Энергия одиночного импульса в одночастотном режиме генерации: *a*, *б* – профилированный затвор; *в*, *г* – обычный пассивный затвор; длина затвора 30 (*a*, *в*) и 60 мм (*б*, *г*)

Можно полагать, что аналогичный эффект будет наблюдаться и в других лазерах с пассивными затворами: в рубиновом с затвором на LiF – OH (F_2^+*) [10] и в лазере на александрите с затвором на LiF с термопреобразованными центрами окраски F_3^- [9].

Лазер на КГВ

Активный элемент имел длину 76 мм, частота следования импульсов равнялась 5 Гц. Пороговая энергия накачки при свободной генерации составила 3,4 Дж, при установке модуляторов добротности от 3,9 до 6 Дж (испытано более 40 образцов модуляторов).

Энергия генерации в одной поперечной моде составляет от 10 до 50 мДж в зависимости от начального пропускания и контраста модулятора. При выходе в генерацию нескольких мод энергия увеличивается до 100 мДж в одиночном импульсе.

Лазер ЛТИ-701

Отечественной промышленностью выпускается лазер с высокой частотой следования импульсов типа ЛТИ–701. Добротность резонатора управляется акустооптическим затвором, внутри резонатора установлен нелинейный преобразователь частоты (рис. 4). На рисунке приведены также основные параметры генерации и схематически изображен импульс генерации.

Рис. 4. Схема резонатора (а) и характеристики генерации (б) лазера ЛТИ-701

Лазеры на гранате

В наших экспериментах акустооптический затвор был заменен на кристалл LiF: F_2^- длиной 50 мм, остальные элементы резонатора не изменялись. Видно, что существенно возросла стабильность энергии в импульсе генерации и укоротился импульс излучения. Частота следования импульсов регулируется уровнем накачки. Отметим, что характерные времена процессов в LiF с F_2^- , наблюдающихся при модуляции добротности, позволяют достичь частоты следования импульсов порядка 100 Гц.

Приведенные в настоящем сообщении результаты позволяют считать, что профилированные затворы являются весьма перспективными для получения мощной одночастотной генерации, а их технологичность может способствовать широкому применению.

Дальнейшие исследования в данном направлении связаны как с использованием центров окраски различного типа для лазеров, работающих в других диапазонах, так и с созданием класса лазеров, генерирующих моноимпульсное узкополосное излучение переменной длительности [4].

1. M c M a h o n J . M . // IEEE J. Quantum Electronics. 1969. V. QE-5. N 10. P. 489.

2. Исиянова Е.Д., Маругин А.М., Овчинников В.М. // ЖПС. 1970. Т. 12. № 5. С. 834.

3. Маругин А. М., Овчинников В. М. // Квантовая электроника. 1972. № 4 (10). С. 104.

 А. с. № 626650 СССР, МКИ² НО1S 3/11. Лазер гигантских импульсов генерации переменной длительности / М.М. Макогон, В.И. Сердюков. Приоритет от 17.12.76.

5. Красюк И.К., Лукишева С.Г., Марголин Д.М. идр. // Письма в ЖТФ. 1976. Т. 2. № 13. С. 577. 6. Алексеев В.Н., Стариков А.Д., Чернов В.Н. // Квантовая электроника. 1979. Т. 6. № 11. С. 2374. 7. Тарасов А.А. // Квантовая электроника. 1982. Т. 9. № 8. С. 1727–1729.

Любимов В.В., Полищук В.Е., Тарасов А.А. // Квантовая электроника. 1987.Т. 14. № 2. С. 394.
Отчет о НИР «Квант». «Разработка и исследование активных и пассивных сред на основе кристаллов с центрами окраски для лазерных спектрометров видимого и ИК-диапазонов». Иркутск, 1985. Рег. № 01850029478. 89 с.

10. Агеев Б.Г., Пономарев Ю.Н., Тихомиров Б.А. Нелинейная оптико-акустическая спектроскопия молекулярных газов. Новосибирск: Наука, 1987. 128 с.

Институт оптики атмосферы СО РАН, Томск «Лазерприм», Томск Институт физики полупроводников СО РАН, Новосибирск Поступила в редакцию 26 июля 1995 г.

M.M. Makogon, N.V. Nedel'kin, V.I. Serdjukov, V.M. Tarasov. Granate Lasers With Q-Switch by LiF: F_2 Crystals.

The paper presents the comparative data on profiled and unprofiled Q-switch modulator in the Nd:YAG laser use. The possibility of the LiF crystal use in different types of lasers control is demonstrated.